Green’s Function Technique in the Theory of Disordered Crystals: Application to Potassium-Doped Graphene

REPETSKY S.P.$^{1,2}$, VYSHYVANA I.G.$^{3}$, LIZUNOV V.V.$^{1}$, MELNYK R.M.$^{2}$, REZNIKOV M.I.$^{3}$, RADCHENKO T.M.$^{1}$, and TATARENKO V.A.$^{1}$

$^1$G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$National University of Kyiv-Mohyla Academy, 2 H. Skovoroda Str., UA-04070 Kyiv, Ukraine
$^3$Taras Shevchenko National University of Kyiv, 60 Volodymyrs'ka Str., UA-01033 Kyiv, Ukraine

Received / Final version: 02.05.2025 / 16.08.2025 Download PDF logo PDF

Abstract
The method of describing the energy spectrum, free energy, and electrical conductivity of disordered crystals based on the use of the Hamiltonian of electrons and phonons is reviewed, analysed, and developed. The electron states of a system are described through the tight-binding model. A simple procedure for calculating the matrix elements of the Hamiltonian within the Wannier’s representation is proposed. Expressions for the Green’s functions, free energy, and electrical conductivity are derived using the diagram method. Using this procedure, the vertex parts of the mass operators of the electron–electron and electron–phonon interactions are renormalized. A set of exact equations is obtained for the spectrum of elementary excitations in a crystal. This enables the performance of numerical calculations on the energy spectrum and the prediction of system properties with predetermined accuracy. Expressions are obtained for the static waves of concentrations, charge and spin densities, which determine the phase state of a disordered crystal. In contrast to other approaches, which account for electron correlations only within the limiting cases of infinitely large and infinitesimal electron densities, this method describes electron correlations in the general case of an arbitrary density. In addition to the theory, the results of a numerical calculation of the energy spectrum of a graphene layer with adsorbed potassium (K) atoms are presented. As established, at the K-atoms’ concentration such that the unit cell includes two carbon (C) atoms and one K atom, the latter being located (adsorbed) on the graphene layer surface 0.286 nm above the C atom, the energy gap is ≅ 0.25 eV. The location of the Fermi level (εF) in the energy spectrum depends on the potassium-atoms’ concentration and is in the energy interval −0.36 Ry ≤ εF ≤ −0.23 Ry.

Keywords: disordered crystals, electronic structure, conductivity, Green’s functions, the mass operator, density of states, free energy.

DOI: https://doi.org/10.15407/ufm.26.03.460

Citation: S.P. Repetsky, I.G. Vyshyvana, V.V. Lizunov, R.M. Melnyk, M.I. Reznikov, T.M. Radchenko, and V.A. Tatarenko, Green’s Function Technique in the Theory of Disordered Crystals: Application to Potassium-Doped Graphene, Progress in Physics of Metals, 26, No. 3: 460–*** (2025)


References  
  1. W.A. Harrison, Transition-metal pseudopotentials, Phys. Rev., 181: 1036 (1969); https://doi.org/10.1103/PhysRev.181.1036
  2. D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 41: 7892 (1985); https://doi.org/10.1103/PhysRevB.41.7892
  3. K. Laasonen, R. Car, C. Lee, and D. Vanderbilt, Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics, Phys. Rev. B, 43: 6796 (1991); https://doi.org/10.1103/PhysRevB.43.6796
  4. P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B, 50: 17953 (1994); https://doi.org/10.1103/PhysRevB.50.17953
  5. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59: 1758 (1999); https://doi.org/10.1103/PhysRevB.59.1758
  6. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77: 3865 (1996); https://doi.org/10.1103/PhysRevLett.77.3865
  7. J. Tao, J.P. Perdew, V.N. Staroverov, and G.E. Scuseria, Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids, Phys. Rev. Lett., 91: 146401 (2003); https://doi.org/10.1103/PhysRevLett.91.146401
  8. J.P. Perdew, S. Kurth, A. Zupan, and P. Blaha, Accurate density functional with correct formal properties: a step beyond the generalized gradient approximation, Phys. Rev. Lett., 82: 2544 (1999); https://doi.org/10.1103/PhysRevLett.82.2544
  9. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, L.A. Constantin, and J. Sun, Workhorse semilocal density functional for condensed matter physics and quantum chemistry, Phys. Rev. Lett., 103: 026403 (2009); https://doi.org/10.1103/PhysRevLett.103.026403
  10. J. Sun, M. Marsman, G.I. Csonka, A. Ruzsinszky, P. Hao, Y.-S. Kim, G. Kresse, and J.P. Perdew, Self-consistent meta-generalized gradient approximation within the projector-augmented-wave method, Phys. Rev. B, 84: 035117 (2011); https://doi.org/10.1103/PhysRevB.84.035117
  11. V.V. Ivanovskaya, C. Köhler, and G. Seifert, 3𝑑 metal nanowires and clusters inside carbon nanotubes: structural, electronic, and magnetic properties, Phys. Rev. B, 75: 075410 (2007); https://doi.org/10.1103/PhysRevB.75.075410
  12. D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, and R. Kascher, Construction of tight-binding-like potentials on the basis of density-functional theory: application to carbon, Phys. Rev. B, 51: 12947 (1995); https://doi.org/10.1103/PhysRevB.51.12947
  13. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, and M. Haugk, Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties, Phys. Rev. B, 58: 7260 (1998); https://doi.org/10.1103/PhysRevB.58.7260
  14. C. Köhler, G. Seifert, U. Gerstmann, M. Elstner, and H. Overhof, Approximate density-functional calculations of spin densities in large molecular systems and complex solids, Phys. Chem. Chem. Phys., 3: 5109 (2001); https://doi.org/10.1039/b105782k
  15. V.V. Ivanovskaya and G. Seifert, Tubular structures of titanium disulfide TiS2, Solid State Commun., 130: 175 (2004); https://doi.org/10.1016/j.ssc.2004.02.002
  16. V.V. Ivanovskaya, T. Heine, S. Gemming, and G. Seifert, Structure, stability and electronic properties of composite Mo1−xNbxS2 nanotubes, Phys. Status Solidi B, 243: 1757 (2006); https://doi.org/10.1002/pssb.200541506
  17. A. Enyaschin, S. Gemming, T. Heine, G. Seifert, and L. Zhechkov, C28 fullerites — structure, electronic properties and intercalates, Phys. Chem. Chem. Phys., 8: 3320 (2006); https://doi.org/10.1039/B604737H
  18. J.C. Slater and G.F. Koster, Simplified LCAO method for the periodic potential problem, Phys. Rev., 94: 1498 (1954); https://doi.org/10.1103/PhysRev.94.1498
  19. R.R. Sharma, General expressions for reducing the Slater–Koster linear combination of atomic orbitals integrals to the two-center approximation, Phys. Rev. B, 19: 2813 (1979); https://doi.org/10.1103/PhysRevB.19.2813
  20. L. Bellaiche and D. Vanderbilt, Virtual crystal approximation revisited: Application to dielectric and piezoelectric properties of perovskites, Phys. Rev. B, 61: 7877 (2000); https://doi.org/10.1103/PhysRevB.61.7877
  21. G.M. Stocks, W.M. Temmerman, and B.L. Gyorffy, Complete solution of the Korringa–Kohn–Rostoker coherent-potential-approximation equations: Cu–Ni Alloys, Phys. Rev. Lett., 41: 339 (1978); https://doi.org/10.1103/PhysRevLett.41.339
  22. G.M. Stocks and H. Winter, Self-consistent-field-Korringa–Kohn–Rostoker-coherent-potential approximation for random alloys, Z. Phys. B, 46: 95 (1982); https://doi.org/10.1007/BF01312713
  23. D.D. Johnson, D.M. Nicholson, F.J. Pinski, B.L. Gyorffy, and G.M. Stocks, Total-energy and pressure calculations for random substitutional alloys, Phys. Rev. B, 41: 9701 (1990); https://doi.org/10.1103/PhysRevB.41.9701
  24. S. Mu, R.J. Olsen, B. Dutta, L. Lindsay, G.D. Samolyuk, T. Berlijn, E.D. Specht, K. Jin, H. Bei, T. Hickel, B.C. Larson, and G.M. Stocks, Unfolding the complexity of phonon quasi-particle physics in disordered materials, npj Computational Mater., 6: 4 (2020); https://doi.org/10.1038/s41524-020-0271-3
  25. D. Billington, A.D.N. James, E.I. Harris-Lee, D.A. Lagos, D. O’Neill, N. Tsuda, K. Toyoki, Y. Kotani, T. Nakamura, H. Bei, S. Mu, G.D. Samolyuk, G.M. Stocks, J.A. Duffy, J.W. Taylor, S.R. Giblin, and S.B. Dugdale, Bulk and element-specific magnetism of medium-entropy and high-entropy Cantor–Wu alloys, Phys. Rev. B, 102: 174405 (2020); https://doi.org/10.1103/PhysRevB.102.174405
  26. V.F. Los’ and S.P. Repetsky, A theory for the electrical conductivity of an ordered alloy, J. Phys.: Condens. Matter, 6: 1707 (1994); https://doi.org/10.1088/0953-8984/6/9/013
  27. S.P. Repetsky, I.G. Vyshyvana, S.P. Kruchinin, and S. Bellucci, Influence of the ordering of impurities on the appearance of an energy gap and on the electrical conductance of graphene, Sci. Rep., 8: 9123 (2018); https://doi.org/10.1038/s41598-018-26925-0
  28. S.P. Repetsky, I.G. Vyshyvana, S.P. Kruchinin, B. Vlahovic, and S. Bellucci, Effect of impurities ordering in the electronic spectrum and conductivity of graphene, Phys. Lett. A, 384, Iss. 19: 126401 (2020); https://doi.org/10.1016/j.physleta.2020.126401
  29. S. Bellucci, S. Kruchinin, S.P. Repetsky, I.G. Vyshyvana, and R.M. Melnyk, Behavior of the energy spectrum and electric conduction of doped graphene, Materials, 13: 1718 (2020); https://doi.org/10.3390/ma13071718
  30. S.P. Repetsky, I.G. Vyshyvana, S.P. Kruchinin, and S. Bellucci, Theory of electron correlation in disordered crystals, Materials, 15: 739 (2022); https://doi.org/10.3390/ma15030739
  31. S. Repetsky, I. Vyshyvana, Y. Nakazawa, S. Kruchinin, and S. Bellucci, Electron transport in carbon nanotubes with adsorbed chromium impurities, Materials, 12: 524 (2019); https://doi.org/10.3390/ma12030524
  32. S. Repetsky, I. Vyshyvana, S. Kruchinin, and S. Bellucci, Tight-binding model in the theory of disordered crystals, Mod. Phys. Lett. B, 34: 2040065 (2020); https://doi.org/10.1142/S0217984920400655
  33. S.P. Repetsky and T.D. Shatnii, Thermodynamic potential of a system of electrons and phonons in a disordered alloy, Theor. Math. Phys., 131, No. 3: 832 (2002); https://doi.org/10.1023/A:1015931708479
  34. S.P. Repetsky, E.G. Len, and V.V. Lizunov, Electronic structure and spin transport in a Fe–Co alloy, Metallofiz. Noveishie Tekhnol., 28, No. 8: 989 (2006) (in Russian); https://www.researchgate.net/publication/298537053
  35. S.P. Repetsky, T.S. Len, and V.V. Lizunov, Energy spectrum of electrons and magnetic susceptibility of Fe–Co alloy, Metallofiz. Noveishie Tekhnol., 28, No. 9: 1143 (2006) (in Russian); https://www.researchgate.net/publication/296795307
  36. S.P. Repetsky, E.G. Len, and V.V. Lizunov, Electronic structure and magnetic domains in alloys with narrow energy bands, Metallofiz. Noveishie Tekhnol., 28, No. 11: 1471 (2006) (in Russian); https://www.researchgate.net/publication/298574309
  37. A.A. Abrikosov, L.P. Gor’kov, and I.Ye. Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical Physics. 2nd Ed. (Oxford–London: Pergamon Press: 1965); https://www.scribd.com/doc/249903113
  38. P.O. Löwdin, On the non‐orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals, J. Chem. Phys., 18: 365 (1950); https://doi.org/10.1063/1.1747632
  39. T.M. Radchenko, V.A. Tatarenko, and G. Cuniberti, Effects of external mechanical or magnetic fields and defects on electronic and transport properties of graphene, Mater. Today: Proc., 35, Pt. 4: 523 (2021); https://doi.org/10.1016/j.matpr.2019.10.014
  40. A.G. Solomenko, R.M. Balabai, T.M. Radchenko, and V.A. Tatarenko, Functionalization of quasi-two-dimensional materials: chemical and strain-induced modifications, Prog. Phys. Met., 23, No. 2: 147 (2022); https://doi.org/10.15407/ufm.23.02.147
  41. T.M. Radchenko, I.Yu. Sahalianov, V.A. Tatarenko, Yu.I. Prylutskyy, P. Szroeder, M. Kempiński, and W. Kempiński, Strain- and adsorption-dependent electronic states and transport or localization in graphene, Springer Proceedings in Physics: Nanooptics, Nanophotonics, Nanostructures, and Their Applications (Eds. O. Fesenko and L. Yatsenko) (Cham, Switzerland: Springer: 2018), vol. 210, ch. 3, p. 25; https://doi.org/10.1007/978-3-319-91083-3_3
  42. T.M. Radchenko, I.Yu. Sahalianov, V.A. Tatarenko, Yu.I. Prylutskyy, P. Szroeder, M. Kempiński, and W. Kempiński, The impact of uniaxial strain and defect pattern on magnetoelectronic and transport properties of graphene, Handbook of Graphene: Growth, Synthesis, and Functionalization (Eds. E. Celasco and A. Chaika) (Beverly, MA: Scrivener Publishing LLC: 2019), vol. 1, ch. 14, p. 451; https://doi.org/10.1002/9781119468455.ch14
  43. T.M. Radchenko, V.A. Tatarenko, I.Yu. Sagalianov, and Yu.I. Prylutskyy, Configurations of structural defects in graphene and their effects on its transport properties, Graphene: Mechanical Properties, Potential Applications and Electrochemical Performance (Ed. B.T. Edwards) (New York: Nova Science Publishers: 2014), ch. 7, p. 219; https://novapublishers.com/shop/graphene-mechanical-properties-potential-applications-and-electrochemical-performance
  44. T.M. Radchenko, A.A. Shylau, and I.V. Zozoulenko, Influence of correlated impurities on conductivity of graphene sheets: time-dependent real-space Kubo approach, Phys. Rev. B, 86, No. 3: 035418 (2012); https://doi.org/10.1103/PhysRevB.86.035418
  45. T.M. Radchenko, V.A. Tatarenko, I.Yu. Sagalianov, and Yu.I. Prylutskyy, Effects of nitrogen-doping configurations with vacancies on conductivity in graphene, Phys. Lett. A, 378, Nos. 30–31: 2270 (2014); https://doi.org/10.1016/j.physleta.2014.05.022
  46. I.Yu. Sagalianov, T.M. Radchenko, Yu.I. Prylutskyy, V.A. Tatarenko, and P. Szroeder, Mutual influence of uniaxial tensile strain and point defect pattern on electronic states in graphene, Eur. Phys. J. B, 90, No. 6: 112 (2017); https://doi.org/10.1140/epjb/e2017-80091-x
  47. T.M. Radchenko, V.A. Tatarenko, V.V. Lizunov, V.B. Molodkin, I.E. Golentus, I.Yu. Sahalianov, and Yu.I. Prylutskyy, Defect-pattern-induced fingerprints in the electron density of states of strained graphene layers: diffraction and simulation methods, Phys. Status Solidi B, 256, No. 5: 1800406 (2019); https://doi.org/10.1002/pssb.201800406
  48. P. Szroeder, I. Sahalianov, T. Radchenko, V. Tatarenko, and Yu. Prylutskyy, The strain- and impurity-dependent electron states and catalytic activity of graphene in a static magnetic field, Optical Mater., 96: 109284 (2019); https://doi.org/10.1016/j.optmat.2019.109284
  49. D.M.A. Mackenzie, M. Galbiati, X.D. de Cerio, I.Y. Sahalianov, T.M. Radchenko, J. Sun, D. Peña, L. Gammelgaard, B.S. Jessen, J.D. Thomsen, P. Bøggild, A. Garcia-Lekue, L. Camilli, and J.M. Caridad, Unraveling the electronic properties of graphene with substitutional oxygen, 2D Materials, 8, No. 4: 045035 (2021); https://doi.org/10.1088/2053-1583/ac28ab
  50. T.M. Radchenko, A.A. Shylau, I.V. Zozoulenko, and A. Ferreira, Effect of charged line defects on conductivity in graphene: numerical Kubo and analytical Boltzmann approaches, Phys. Rev. B, 87, No. 19: 195448 (2013); https://doi.org/10.1103/PhysRevB.87.195448
  51. I.Yu. Sahalianov, T.M. Radchenko, V.A. Tatarenko, and Yu.I. Prylutskyy, Magnetic field-, strain-, and disorder-induced responses in an energy spectrum of graphene, Annals of Physics, 398: 80 (2018); https://doi.org/10.1016/j.aop.2018.09.004
  52. T.M. Radchenko, A.A. Shylau, and I.V. Zozoulenko, Conductivity of epitaxial and CVD graphene with correlated line defects, Solid State Commun., 195: 88 (2014); https://doi.org/10.1016/j.ssc.2014.07.012
  53. I.Yu. Sahalianov, T.M. Radchenko, V.A. Tatarenko, and G. Cuniberti, Sensitivity to strains and defects for manipulating the conductivity of graphene, EPL, 132, No. 4: 48002 (2020); https://doi.org/10.1209/0295-5075/132/48002
  54. S.P. Repetsky, I.G. Vyshyvana, S.P. Kruchinin, V.B. Molodkin, and V.V. Lizunov, Influence of the adsorbed atoms of potassium on an energy spectrum of graphene, Metallofiz. Noveishie Tekhnol., 39, No. 8: 1017 (2017) (in Ukrainian); https://doi.org/10.15407/mfint.39.08.1017
  55. T.M. Radchenko, V.A. Tatarenko, I.Yu. Sagalianov, Yu.I. Prylutskyy, P. Szroeder, and S. Biniak, On adatomic-configuration-mediated correlation between electrotransport and electrochemical properties of graphene, Carbon, 101: 37 (2016); https://doi.org/10.1016/j.carbon.2016.01.067
  56. T.M. Radchenko, V.A. Tatarenko, I.Yu. Sagalyanov, and Yu.I. Prylutskyy, Configurational effects in an electrical conductivity of a graphene layer with the distributed adsorbed atoms (K), Nanosistemi, Nanomateriali, Nanotehnologii, 13, No. 2: 201 (2015) (in Ukrainian); https://www.researchgate.net/publication/292463937
  57. J. Yan and M.S. Fuhrer, Correlated charged impurity scattering in graphene, Phys. Rev. Lett., 107: 206601 (2011); https://doi.org/10.1103/PhysRevLett.107.206601
  58. J.-H. Chen, C. Jang, S. Adam, M.S. Fuhrer, E.D. Williams, and M. Ishigami, Charged-impurity scattering in graphene, Nature Phys., 4: 377 (2008); https://doi.org/10.1038/nphys935
  59. O.V. Khomenko, A.A. Biesiedina, K.P. Khomenko, and R.R. Chernushchenko, Computer modelling of metal nanoparticles adsorbed on graphene, Prog. Phys. Met., 23, No. 2: 239 (2022); https://doi.org/10.15407/ufm.23.02.239
  60. O.V. Khomenko, A.A. Biesiedina, K.P. Khomenko, P.E. Trofimenko, and I.A. Chelnokov, Atomistic modelling of frictional anisotropy of metal nanoparticles on graphene, Prog. Phys. Met., 26, No. 2: 219 (2025); https://doi.org/10.15407/ufm.26.02.219
  61. O.S. Skakunova, S.I. Olikhovskii, T.M. Radchenko, S.V. Lizunova, T.P. Vladimirova, and V.V. Lizunov, X-ray dynamical diffraction by quasi-monolayer graphene, Sci. Rep., 13: 15950 (2023); https://doi.org/10.1038/s41598-023-43269-6