Patterns of the Mechanisms of Deformation and Strain Hardening of Titanium Alloys and Metal Matrix Composites Based on the Analysis of Experimental Results on Quasi-Static and Dynamic Compressions

DEKHTYAR O.I.$^{1}$, JANISZEWSKI J.$^{2}$, and MARKOVSKY P.E.$^{1}$

$^1$G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$Jarosław Dąbrowski Military University of Technology, 2, Gen. Sylwester Kaliski Str., 00-908 Warsaw, Poland

Received / Final version: 11.03.2025 / 04.08.2025 Download PDF logo PDF

Abstract
The deformation behaviour of titanium-based alloys and their composites during quasi-static and high-strain-rate compressions is analysed based on the earlier method developed by V.F. Moiseev and his colleagues to analyse stress–strain curves obtained under tension. The present overview approach is employed for the treatment and subsequent analysis of numerous compression curves obtained from quasi-static and high-strain-rate experiments with titanium-based alloys and their composites with varying compositions and initial microstructures. As shown convincingly, the Moiseev’s method can also be successfully applied to analyse the behaviour of alloys under compression. A comparison of the obtained data with structural studies made it possible, in most cases, to identify the mechanisms of deformation and strengthening of titanium alloys in a wide range of compression rates. As found, depending on the type and morphology of the initial structure, deformation and strengthening under compression can be controlled by either α- or β-phase, or both phases simultaneously. The influence of the level of alloying with β-stabilizers and the introduction of strengthening dispersed high-modulus particles into the titanium matrix are considered. As revealed, the strengthening mechanism is often different under quasi-static and dynamic compressions. Moreover, in the case of high-strain-rate compression, the deformation behaviour can differ between the first stage and subsequent stages, which exhibit an oscillating nature. A physical explanation is proposed for the effects discovered during quasi-static and dynamic compressions of the considered titanium materials.

Keywords: titanium, titanium alloys, titanium-matrix composites, compression tests, quasi-static and dynamic deformations, mechanism of deformation.

DOI: https://doi.org/10.15407/ufm.26.03.***

Citation: O.I. Dekhtyar, J. Janiszewski, and P.E. Markovsky, Patterns of the Mechanisms of Deformation and Strain Hardening of Titanium Alloys and Metal Matrix Composites Based on the Analysis of Experimental Results on Quasi-Static and Dynamic Compressions, Progress in Physics of Metals, 26, No. 3: ***–*** (2025)


References  
  1. N.F. Mott, The mechanical properties of metals, Proc. Phys. Soc. B, 64, No. 9: 729–742 (1951); https://doi.org/10.1088/0370-1301/64/9/301
  2. A.S. Argon, Mechanical properties of single-phase crystalline media: deformation at low temperatures, Physical Metallurgy (Eds. R.W. Cahn and P. Haasen) (Elsevier: 1996), Ch. 21, p. 1877–1955; https://doi.org/10.1016/b978-044489875-3/50026-0
  3. P. Haasen, Mechanical properties of solid solutions, Physical Metallurgy (Eds. R.W. Cahn and P. Haasen) (Elsevier: 1996), Ch. 23, p. 2009–2073; https://doi.org/10.1016/b978-044489875-3/50028-4
  4. J.-L. Strudel, Mechanical properties of multiphase alloys, Physical Metallurgy (Eds. R.W. Cahn and P. Haasen) (Elsevier: 1996), Ch. 25, p. 2105–2206; https://doi.org/10.1016/b978-044489875-3/50030-2
  5. R.E. Smallman and A.H.W. Ngan, Plastic deformation and dislocation behaviour, Modern Physical Metallurgy, Ch. 9, p. 357–414 (2014); https://doi.org/10.1016/b978-0-08-098204-5.00009-2
  6. X.Li, L. Lu, J. Li, X. Zhang, and H. Gao, Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys, Nat. Rev. Mater., 5, 706–723 (2020); https://doi.org/10.1038/s41578-020-0212-2
  7. V.I. Trefilov, V.F. Moiseev, and E.P. Pechkovsky, Deformation hardening and fracture of polycrystalline materials (Kiev: Naukova Dumka: 1989) (in Russian).
  8. V.F. Moiseev, Effective exponent of deformation strengthening the metals, Metallofiz. Noveishie Tekhnol., 23, 387–399 (2001) (in Russian).
  9. Yu.N. Podrezov and S.A. Firstov, Two approaches to the analysis of strain hardening curves, High Pressure Physics and Engineering, 16: 37–48 (2006) (in Russian); https://dspace.nbuv.gov.ua/handle/123456789/70256
  10. U.F. Kocks and H. Meсking, Physics and phenomenology of strain hardening: the FCC case, Prog. Mater. Sci., 48, No. 3: 171–273 (2003); https://doi.org/10.1016/S0079-6425(02)00003-8
  11. U. Zwikker, Titan und Titanlegirungen (Berlin–Heidelberg: Springer: 1974); https://doi.org/10.1007/978-3-642-80587-5
  12. G. Lutjering and J.C. Williams, Titanium (Berlin–Heidelberg: Springer: 2007); https://doi.org/10.1007/978-3-540-73036-1
  13. A.V. Kotko, V.F. Moiseev, E.P. Pechkovskij, I.V. Moiseeva, and V.K. Pishchak, Special features of the plastic deformation of multiphase titanium alloys, Metallofiz. Noveishie Tekhnol., 23: 1013–1027 (2001) (in Russian).
  14. V.F. Moiseev, I.V. Moiseeva, and V.K. Pishchak, Influence of a β-phase on low- and high-temperature strength of a titanium alloy VT6, Metallofiz. Noveishie Tekhnol., 25, No. 2: 193–203 (2003) (in Russian).
  15. A.I. Dekhtyar, M.V. Matviychuk, I.V. Moiseeva, and D.G. Savvakin, Strain hardening and fracture of VT-6 alloy synthesized by the method of powder metallurgy, Mater. Sci., 44: 429–434 (2008); https://doi.org/10.1007/s11003-008-9097-8
  16. A.V. Kotko, Deformation hardening of titanium alloys, Modern Problems of Physical Materials Science: Collective Scientific Works (Kyiv: Institute for Problems of Materials Science of the N.A.S. of Ukraine: 2013), vol. 22, p. 94–102 (in Russian).
  17. A.I. Dekhtyar, I.V. Moiseyeva, and D.G. Savvakin, Tensile deformation and fracture of α+β-titanium alloys synthesized by powder metallurgy, Metallofiz. Noveishie Tekhnol., 35, No. 7: 889–908 (2013) (in Russian).
  18. A.I. Dekhtyar, V.I. Bondarchuk, V.V. Nevdacha, and A.V. Kotko, The effect of microstructure on porosity healing mechanism of powder near-β titanium alloys under hot isostatic pressing in α+β-region: Ti–10V–2Fe–3Al, Mater. Charact., 165: 110393 (2020); https://doi.org/10.1016/j.matchar.2020.110393
  19. C.M. Sellars and W.J. McTegart, On the mechanism of hot deformation, Acta Metall., 14, No. 9: 1136–1139 (1966); https://doi.org/10.1016/0001-6160(66)90207-0
  20. H.J. McQueen and W.J. McGregor, The deformation of metals at high temperatures, Scientific American, 232, No. 4: 116–125 (1975); https://www.jstor.org/stable/24949778
  21. S.L. Semiatin, V. Seetharaman, and I. Weiss, The thermomechanical processing of alpha/beta titanium alloys, JOM, 49: 33–39 (1997); https://doi.org/10.1007/BF02914711
  22. I. Weiss and S.L. Semiatin, Thermomechanical processing of beta titanium alloys — an overview, Mater. Sci. Eng. A, 243, Nos. 1–2: 46–65 (1998); https://doi.org/10.1016/S0921-5093(97)00783-1
  23. V. Tuninettia, G. Gillesa, V. Péron-Lührsa, and A.M. Habrakena, Compression test for metal characterization using digital image correlation and inverse modeling, Procedia IUTAM, 4: 206–214 (2012); https://doi.org/10.1016/j.piutam.2012.05.022
  24. Y.D. Wang, A. Vadon, and J.J. Heizmann, Room temperature compression textures and deformation mechanisms of Ti–46Al–2V alloy, Mater. Sci. Eng. A, 222, No. 1: 70–75 (1997); https://doi.org/10.1016/S0921-5093(96)10380-4
  25. P.R. Sreenivasan and S.K. Ray, Mechanical testing at high strain rates, Encyclopedia of Materials: Science and Technology (New York, USA: Elsevier: 2001, p. 5269–5271; https://doi.org/10.1016/B0-08-043152-6/00919-0
  26. J.S. Pigott, N. Velisavljevic, E.K Moss, D. Popov, C. Park, J.A. Van Orman, N. Draganic, Y.K. Vohra, and B.T. Sturtevant, J. Phys.: Condens. Matter, 32, No. 12: 12LT02 (2020); https://doi.org/10.1088/1361-648X/ab5e6e
  27. B. Morrow, R. Lebensohn, C. Trujillo, D.T. Martinez, F. Addessio, C.A. Bronkhorst, T. Lookman, and E. Cerreta, E. Characterization and modeling of mechanical behavior of single crystal titanium deformed by split-Hopkinson pressure bar. Int. J. Plast., 82: 225–240 (2016); https://doi.org/10.1016/j.ijplas.2016.03.006
  28. W. Yin, F. Xu, O. Ertorer, Z. Pan, X. Zhang, L. Kecskes, E.J. Lavernia, and Q. Wei, Mechanical behavior of microstructure engineered multi-length-scale titanium over a wide range of strain rates, Acta Mater., 61, No. 10: 3781–3798 (2013); https://doi.org/10.1016/j.actamat.2013.03.011
  29. T. Zhou, J. Wu, J. Che, Y. Wang, and X. Wang, Dynamic shear characteristics of titanium alloy Ti–6Al–4V at large strain rates by the split Hopkinson pressure bar test. Int. J. Impact Eng., 109: 167–177 (2017); https://doi.org/10.1016/j.ijimpeng.2017.06.007
  30. Y. Guo, Q. Ruan, S. Zhu, Q. Wei, J. Lu, B. Hu, X. Wu, and Y. Li, Dynamic failure of titanium: Temperature rise and adiabatic shear band formation. J. Mech. Phys. Solids, 135: 103811 (2020); https://doi.org/10.1016/j.jmps.2019.103811
  31. P.E. Markovsky, J. Janiszewski, V.I. Bondarchuk, O.O. Stasyuk, D.G. Savvakin, M.A. Skoryk, K. Cieplak, P. Dziewit, and S.V. Prikhodko, Effect of strain rate on microstructure evolution and mechanical behavior of titanium-based materials, Metals, 10,No. 11: 1404 (2020);. https://doi.org/10.3390/met10111404
  32. P.E. Markovsky, J. Janiszewski, V.I. Bondarchuk, O.O. Stasyuk, K. Cieplak, and O.P. Karasevska, Effect of strain rate on mechanical behavior and microstructure evolution of Ti-based T110 alloy, Metallog., Microstruct., Anal., 10: 839–861 (2021); https://doi.org/10.1007/s13632-021-00797-9
  33. P.E. Markovsky, J. Janiszewski, S.V. Akhonin, V.I. Bondarchuk, V.J. Berezos, K. Cieplak, O.P., Karasevska, M.A. Skoryk, Mechanical behavior of Ti-15Mo alloy produced with electron-beam cold hearth melting depending on deformation rate and in comparison with other titanium alloys, Prog. Phys. Met., 23, No. 3: 438–475 (2022); https://doi.org/10.15407/ufm.23.03.438
  34. P.E. Markovsky, J. Janiszewski, O.O. Stasyuk, V.I. Bondarchuk, D.G. Savvakin, M.A. Skoryk, K. Cieplak, D. Goran, P. Soni, and S.V. Prikhodko, Mechanical behavior of titanium based metal matrix composites reinforced with TiC or TiB particles under quasi-static and high strain-rate compression, Materials, 14, No. 22: 6837 (2021); https://doi.org/10.3390/ma14226837
  35. P.E. Markovsky, J. Janiszewski, D.G. Savvakin, O.O. Stasiuk, V.I. Bondarchuk, K. Cieplak, P. Baranowski, and S.V. Prikhodko, Mechanical behavior of bilayer structures of Ti64 alloy and its composites with TiC or TiB under quasi-static and dynamic compression, Materials and Design, 223: 111205 (2022); https://doi.org/10.1016/j.matdes.2022.111205
  36. P.E. Markovsky, J. Janiszewski, O.I. Dekhtyar, M. Mecklenburg, and S.V. Prikhodko, Deformation mechanism and structural changes in the globular Ti–6Al–4V alloy under quasi-static and dynamic compression. to the question of the controlling phase in the deformation of α+β titanium alloys, Crystals, 12, No. 5: 645 (2022); https://doi.org/10.3390/cryst12050645
  37. H. Kolsky, Propagation of stress waves in linear viscoelastic solids, J. Acoust. Soc. Am., 37: 1206–1207 (1965); https://doi.org/10.1121/1.1939562
  38. H. Kolsky, Stress waves in solids, J. Sound Vib., 1: 88–110 (1964); https://doi.org/10.1016/0022-460x(64)90008-2
  39. W. Chen and B. Song, Split Hopkinson (Kolsky) Bar: Design, Testing and Applications (Berlin–Heidelberg: Springer: 2011); https://doi.org/10.1007/978-1-4419-7982-7
  40. Y. Guo, Q. Ruan, S. Zhu, Q. Wei, J. Lu, B. Hu, X. Wu, and Y. Li, Dynamic failure of titanium: Temperature rise and adiabatic shear band formation, J. Mech. Phys. Solids, 135: 103811 (2020); https://doi.org/10.1016/j.jmps.2019.103811
  41. M. Deguchi, M. S. Yamasaki, M. Mitsuhara, H. Nakashima, G. Tsukamoto, and T. Kunieda, Tensile deformation behaviors of pure Ti with different grain sizes under wide-range of strain rate, Materials, 16, No. 2: 529 (2023); https://doi.org/10.3390/ma16020529
  42. G. Lütjering, Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys, Mater. Sci. Eng. A, 243, Nos. 1–2: 32–45 (1998); https://doi.org/10.1016/S0921-5093(97)00778-8
  43. T.R. Jones, Army Research Laboratory, Report ARL-CR-0533 (February 2004), p. 19.
  44. P.E. Markovsky, Mechanical behavior of titanium alloys under different conditions of loading, Mater. Sci. Forum, 941: 839–844 (2018); https://doi.org/10.4028/www.scientific.net/MSF.941.839
  45. J. Li, L. Liu, Sh. Xu, J. Zhang, and W. She, First-principles study of mechanical, electronic properties and anisotropic deformation mechanisms of TiB under uniaxial compressions, Appl. Phys. A, 125: 222 (2019); https://doi.org/10.1007/s00339-019-2523-y
  46. O.M. Ivasishin, P.E. Markovsky, D.G. Savvakin, O.O. Stasyuk, S.D. Sitzman, M. Norouzi Rad, and S. Prikhodko, Multi-layered structures of Ti–6Al–4V alloy and TiC and TiB composites on its base fabricated using blended elemental powder metallurgy, J. Mater. Process. Technol., 269: 172–181 (2019); https://doi.org/10.1016/j.jmatprotec.2019.02.006
  47. O.M. Ivasishin and V.S. Moxon, Low cost titanium hydride powder metallurgy, Titanium Powder Metallurgy, Science, Technology and Applications; (Eds. M. Qian, S.H. Froes) (Amsterdam, the Netherlands: Elsevier: 2015); Ch. 8, p. 117–148; https://doi.org/10.3390/met10050682
  48. P.E. Markovsky, O.M. Ivasishin, D.G. Savvakin, V.I. Bondarchuk, and S. Prikhodko, Mechanical behavior of titanium-based layered structures fabricated using blended elemental powder metallurgy, J. Mater. Eng. Perform., 28: No. 9: 5772–5792 (2019); https://doi.org/10.1007/s11665-019-04263-0
  49. L. Gibson and M. Ashby, Cellular Solids: Structure and Properties (Cambridge: Cambridge University Press: 1997); https://doi.org/10.1017/CBO9781139878326
  50. A. Suzuki, N. Kosugi, N. Takata, and M. Kobashi, Microstructure and compressive properties of porous hybrid materials consisting of ductile Al/Ti and brittle Al3Ti phases fabricated by reaction sintering with space holder, Mater. Sci. Eng. A, 776: 139000 (2020); https://doi.org/10.1016/j.msea.2020.139000
  51. P.E. Markovsky, J. Janiszewski, O.O. Stasyuk, D.G. Savvakin, D.V. Oryshych, and P. Dziewit, Mechanical energy absorption ability of titanium-based porous structures produced by various powder metallurgy approaches, Mater., 16: 3530 (2023); https://doi.org/10.3390/ma16093530
  52. P.E. Markovsky, D.V. Kovalchuk, S.V. Akhonin, S.L. Schwab, D.G. Savvakin, O.O. Stasiuk, D.V. Oryshych, D.V. Vedel, M.A. Skoryk, and V.P. Tkachuk, New Approach for Manufacturing Ti–6Al–4V+40%TiC Metal-Matrix Composites by 3D Printing Using Conic Electron Beam and Cored Wire. Pt. 1: Main Features of the Process, Microstructure Formation and Basic Characteristics of 3D Printed Material, Prog. Phys. Met., 24, No. 4: 715–740 (2023); https://doi.org/10.15407/ufm.24.04.715
  53. P.E. Markovsky, D.V. Kovalchuk, J. Janiszewski, B. Fikus, D.G. Savvakin, O.O. Stasiuk, D.V. Oryshych, M.A. Skoryk, V.I. Nevmerzhytskyi, and V.I. Bondarchuk, New Approach for Manufacturing Ti–6Al–4V+40%TiC Metal-Matrix Composites by 3D Printing Using Conic Electron Beam and Cored Wire. Pt. 2: Layered MMC/Alloy Materials, Their Main Characteristics, and Possible Application as Ballistic Resistant Materials, Prog. Phys. Met., 24, No. 4: 741–763 (2023); https://doi.org/10.15407/ufm.24.04.741
  54. M.O. Vasylyev, B.M. Mordyuk, and S.M. Voloshko, Wire-Feeding Based Additive Manufacturing of the Ti–6Al–4V Alloy. Part I. Microstructure, Prog. Phys. Met., 24, No. 1: 5–37 (2023); https://doi.org/10.15407/ufm.24.01.005
  55. M.O. Vasylyev, B.M. Mordyuk, and S.M. Voloshko, Wire-Feeding Based Additive Manufacturing of the Ti–6Al–4V Alloy. Pt. II. Mechanical Properties, Progress in Physics of Metals, 24, No. 1: 38–74 (2023); https://doi.org/10.15407/ufm.24.01.038