Amorphous Alloys as a Promising Class of Functional Materials. Pt. 1: Manufacturing Methods, Structure, Physical and Mechanical Properties

DEKHTYARENKO V.A.$^{1,2}$, NOSENKO V.K.$^{1}$, KYRYLCHUK V.V.$^{1}$, NOSENKO A.V.$^{1}$, SEMYRGA O.M.$^{1}$, YEVLASH I.K.$^{1}$, and BONDARCHUK V.I.$^{1}$

$^1$G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$E.O. Paton Electric Welding Institute of the N.A.S. of Ukraine, 11 Kazymyr Malevych Str., UA-03150 Kyiv, Ukraine

Received / Final version: 07.02.2025 / 01.08.2025 Download PDF logo PDF

Abstract
The paper considers a special class of structural materials — amorphous alloys. Unlike crystalline alloys, there is no translation symmetry in the arrangement of atoms in amorphous alloys, which have only short-range atomic order. As demonstrated, the primary experimental techniques for confirming the formation of an amorphous structure are X-ray diffraction analysis (XRD) and differential scanning calorimetry (DSC). The effects of the manufacturing processes, structural relaxation, and solidification on the mechanical properties of amorphous alloys are discussed. The differences in the deformation processes between crystalline and amorphous alloys are considered. Deformation of crystalline alloys occurs due to dislocation sliding, whereas amorphous alloys are deformed due to the local rearrangement of atoms that requires significantly higher energies or stresses. As shown, three main types of crystallisation processes can occur, depending on the chemical composition of an amorphous alloy. The first one is polymorphic crystallization, when an amorphous alloy is transformed into a supersaturated solid solution, a metastable or stable crystalline phase without changing its composition. In the second case, two crystalline phases are formed simultaneously due to the eutectic reaction. The third type corresponds to primary crystallization, when stable or metastable phase is formed at the first stage.

Keywords: amorphous alloy, metallic glass, cooling rate, short-range atomic order, mechanical properties.

DOI: https://doi.org/10.15407/ufm.26.03.***

Citation: V.A. Dekhtyarenko, V.K. Nosenko, V.V. Kyrylchuk, A.V. Nosenko, O.M. Semyrga, I.K. Yevlash, and V.I. Bondarchuk, Amorphous Alloys as a Promising Class of Functional Materials. Pt. 1: Manufacturing Methods, Structure, Physical and Mechanical Properties, Progress in Physics of Metals, 26, No. 3: ***–*** (2025)


References  
  1. A. Brenner, D.E. Couch, and E.K. Williams, Electrodepositionof Phosphorous with Nickel or Cobalt, J. Res. Natl. Bur. Stand., 44: 109–122 (1950); https://doi.org/10.6028/jres.044.009
  2. W. Klement, R.H. Willens, and P. Duwez, Non-Crystalline Structure in Solidified Gold-Silicon Alloys, Nature, 187: 869–870 (1960); https://doi.org/10.1038/187869b0
  3. C. Fu, L. Sun, and Z. Cheng, Molecular Dynamics Simulation of Glass Forming Ability of Al30Co10 Amorphous Alloy, J. Appl. Sci., 5: 552–558 (2015); https://doi.org/10.4236/ojapps.2015.59053
  4. N. Abdelhakim, R. Shalaby, and M. Kamal, A Study of Structure, Thermal and Mechanical Properties of Free Machining Al–Zn–Sn–Bi Alloys Rapidly Solidified from Molten State, World J. Eng. Technol., 6: 637–650 (2018); https://doi.org/10.4236/wjet.2018.63040
  5. Q. Yu and G. Wu, A Binder-Free Amorphous Manganese Dioxide for Aqueous Zinc–Ion Battery, J. Mat. Sci. Chem. Eng. A, 10: 13–18 (2022); https://doi.org/10.4236/msce.2022.106002
  6. S.A. Kube, P. Bordeenithikasem, P. Ziemke, J. Lamb, J. Rossin, C. Torbet, M.R. Begley, R. P. Dillon, and T.M. Pollock, Non-Destructive Evaluation of Bulk Metallic Glass Components Using Resonance Ultrasound Spectroscopy, Applied Mater. Today, 42: 102529 (2025); https://doi.org/10.1016/j.apmt.2024.102529
  7. Q. Yang, B. Wang, Z. Zhao, H. Zhao, Q. Bu, J. Li, P. Yu, and H. Yu, Vapor-Deposited High-Entropy Metallic Glasses, J Phys. Chem. B, 129: 456–464 (2025); https://doi.org/10.1016/10.1021/acs.jpcb.4c04677
  8. C. Zhang, D. Ouyang, S. Pauly, and L. Liu, 3D Printing of Bulk Metallic Glasses, Mater. Sci. Eng. R, 145: 100625 (2021); https://doi.org/10.1016/j.mser.2021.100625
  9. W. Ming, X. Guo, Y. Xu, G. Zhang, Z. Jiang, Y. Li, and X. Li, Progress in Non-Traditional Machining of Amorphous Alloys, Ceram. Int., 49: 1585–1604 (2023); https://doi.org/10.1016/j.ceramint.2022.10.349
  10. S. Sohrabi, J. Fu, L. Li, Y. Zhang, X. Li, F. Sun., J. Ma, and W.H. Wang, Manufacturing of Metallic Glass Components: Processes, Structures and Properties, Prog. Mater Sci., 144: 101283 (2024); https://doi.org/10.1016/j.pmatsci.2024.101283
  11. X. Wang, S. Yu, N. Chen, Y. Chao, X. Jiang, and D. Yu, Optimizing Ni-Zr-Ti Metallic Glasses: Cluster Design and Molecular Dynamics Evaluation of Glass Forming Ability, J. Alloys Compd., 1009: 177007 (2024); https://doi.org/10.1016/j.jallcom.2024.177007
  12. W.L. Johnson, Bulk Amorphous Metal-An Emerging Engineering Material, JOM, 54, No. 3: 40–43 (2002); https://doi.org/10.1016/10.1007/BF02822619
  13. M. Frey, R. Busch, W. Possart, and I. Gallino, On the Thermodynamics, Kinetics, and sub-Tg Relaxations of Mg-Based Bulk Metallic Glasses, Acta Mater., 155: 117–127 (2018); https://doi.org/10.1016/j.actamat.2018.05.063
  14. V.V. Kyrylchuk, Effect of Transition Metal Alloying on Thermal Stability, Structural Relaxation, Crystallization and Magnetic Properties of Amorphous CoSiB Alloys (Abstract of Diss. Candidate of Physical and Mathematical Sciences) (Kyiv: G.V. Kurdyumov Institute for Metal Physics, N.A.S.U.: 2021) (in Ukrainian).
  15. V.I. Tkatch, A.I. Limanovskii, S.N. Denisenko, and S.G. Rassolov, The Effect of the Melt-Spinning Processing Parameters on the Rate of Cooling, Mater. Sci. Eng. A, 323: 91–96 (2002); https://doi.org/10.1016/S0921-5093(01)01346-6
  16. R.C. Ruhl, Cooling Rates in Splat Cooling, Mater. Sci. Eng. A, 1: 313–320 (1967); https://doi.org/10.1016/0025-5416(67)90013-4
  17. Y. Sun, A. Concustell, and A.L. Greer, Thermomechanical Processing of Metallic Glasses: Extending the Range of the Glassy State, Nat. Rev. Mater., 1: 16039 (2016); https://doi.org/10.1038/natrevmats.2016.39
  18. X. Yuan, Y. Zhang, X. Qu, H. Yin, S. Li, Z. Yan, Z. Tan, S. Hu, Y. Gao, and P. Guo, A Review of the Preparation and Prospects of Amorphous Alloys by Mechanical Alloying, J. Mater. Res. Technol., 33: 3117–3143 (2024); https://doi.org/10.1016/j.jmrt.2024.10.026
  19. Si. Yamaura, W. Zhang, and A. Inoue, Introduction to Amorphous Alloys and Metallic Glasses (Eds. Y. Setsuhara, T. Kamiya, T., and S. Yamaura) Novel Structured Metallic and Inorganic Materials (Singapore: Springer: 2019), p. 3–22; https://doi.org/10.1007/978-981-13-7611-5_1
  20. M.O. Vasylyev, V.K. Nosenko, I.V. Zagorulko, and S.M. Voloshko, Nanocrystallization of Amorphous Fe-Based Alloys under Severe Plastic Deformation, Prog. Phys. Met., 21, No. 3: 319–344 (2020); https://doi.org/10.15407/ufm.21.03.319
  21. F. Gaskell, Models of the Structure of Amorphous Metals, Metallic Glasses. Vol. 2 (Eds. G. Beka and G. Guntherodt) (Moskva: Mir: 1986) (in Russian).
  22. O.I. Mitsek and V.M. Pushkar, Cluster Model of Liquid or Amorphous Metal. Quantum-Statistical Theory. Amorphous Metal, Metallofiz. Noveishie Tekhnol., 36, No. 1: 103–125 (2014) (in Russian); https://doi.org/10.15407/mfint.36.01.0103
  23. R. Su, J. Yu, P. Guan, and W. Wang, Efficient and Accurate Simulation of Vitrification in Multicomponent Metallic Liquids with Neural Network Potentials, Sci. China Mater., 67, No. 10: 3298–3308 (2024); https://doi.org/10.1007/s40843-024-2953-9
  24. V. Ankudinov, K. Shklyaev, and M. Vasin, Mesoscopic Glass Transition Model: Influence of the Cooling Rate on the Structure Refinement, AIMS Mathematics, 9, No. 8: 22174–22196 (2024); https://doi.org/10.3934/math.20241078
  25. J.D. Bernal, Geometry of the Structure of Monoatomic Liquids, Nature, 185: 68–70 (1960); https://doi.org/10.1038/185068a0
  26. Z.H. Stachurski, On Structure and Properties of Amorphous Materials, Materials, 4: 1564–1598 (2011); https://doi.org/10.3390/ma4091564
  27. J.A. Prins, Physics of Non-Crystalline Solids (North-Holland Publishing Company: 1965).
  28. C.L. Briant and J.J. Burton Icosahedral Microclusters a Possible Structural unit in Amorphous Metals, Phys. Stat. Sol. B, 85: 393–402 (1978); https://doi.org/10.1002/pssb.2220850144
  29. M. Kramer and M. Li, Changes in Short- and Medium-Range order in Metallic Liquids during Undercooling, MRS Bulletin, 45: 943–950 (2020); https://doi.org/10.1557/mrs.2020.272
  30. A.S. Bakai, Polycluster Amorphous Solids (Kharkiv: Syntex: 2013) (in Russian).
  31. W.L. Johnson and A.R. Williams, Structure and Properties of Transition Metal-Metalloid Glasses Based on Refractory Metals, Phys. Rev., 20, No. 4: 1640–1655 (1979); https://doi.org/10.1103/PhysRevB.20.1640
  32. A.V. Romanova and I.G. Ilyinsky, Structure of Amorphous Metallic Alloys, Amorphous Metallic Alloys (Kyiv: Naukova Dumka: 1987) (in Russian).
  33. A.V. Romanova, V.V. Nemoshkalenko, G.M. Zelinskaya, A.G. Ilyinsky, V.V. Bukhalenko, and A.I. Senkevich, Study of the Structure of Iron–Boron Metallic Glasses, Metallofizika, 5, No. 4: 49–56 (1983) (in Russian).
  34. Y. Hirotsu, R. Akada, High Resolution Electron Microscopy Observation of Microcrystalline Domains in Amorphous Fe84B16 Alloy, Jap. J. Appl. Phys., 23, No 7: 479–481 (1984); https://doi.org/10.1143/JJAP.23.L479
  35. K. Krištiaková, J. Krištiak, P. Pacher, and V. Simkin, Neutron Diffraction Study of Fe83B17 Metallic Glass, Czech J. Phys., 41: 1153–1159 (1991); https://doi.org/10.1007/BF01598991
  36. I.V. Zolotukhin, Amorphous Metallic Materials, Soros Educational J., 4: 73–78 (1997) (in Russian).
  37. A. Jabed, M.N. Bhuiyan, W. Haider, and I. Shabib, Distinctive Features and Fabrication Routes of Metallic-Glass Systems Designed for Different Engineering Applications: A Review, Coatings, 13, No. 10: 1689 (2023); https://doi.org/10.3390/coatings13101689
  38. D.A. Kalashnik, V.A. Shapovalov, I.V. Sheiko, Yu.A. Nikitenko, and V.V. Yakusha, Analysis of Technological Peculiarities of Producing Rapidhardening Aloys (Review), Electrometallurgy Today, 3: 27–34 (2015) (in Russian); https://doi.org/10.15407/sem2015.03.05
  39. Y. Wu, Q. Luo, J. Jiao, X. Wei, and J. Shen, Investigating the Wear Behavior of Fe-Based Amorphous Coatings under Nanoscratch Tests, Metals, 7: 118 (2017); https://doi.org/10.3390/met7040118
  40. G. Kisfaludi, Z. Schay, and L. Guczi, Surface Structure and Satalytic Activity of Rapidly Quenched Amorphous Iron Based Alloys: II. Effect of Hydrochloric Acid Treatment, Appl. Surface Sci., 29: 367–379 (1987); https://doi.org/10.1016/0169-4332(87)90040-7
  41. C. Gao, S. Tang, S. Zhao, Z. Zhao, H. Pan, and C. Shuai, Amorphous/Crystalline Zn60Zr40 Alloys Lattice Structures with Improved Mechanical Properties Fabricated by Mechanical Alloying and Selective Laser Melting, Virtual Phys. Protot., 18, No. 1: e2220549 (2023); https://doi.org/10.1080/17452759.2023.2220549
  42. P.N. Vyugov and A.E. Dmitrenko, Metallic Glasses, Problems of Atomic Science and Technology, 6, No. 14: 185–191 (2004) (in Russian).
  43. I.V. Zolotukhin and Yu.V. Barmin, Stability and Relaxation Processes in Metallic Glasses (Moskva: Metallurgiya: 1991) (in Russian).
  44. M.R.J. Gibbs, J.E. Evetts, and J.A. Leake, Activation Energy Spectra and Relaxation in Amorphous Materials, J. Mater. Sci., 18: 278–288 (1983); https://doi.org/10.1007/BF00543836
  45. P. Kruger, L. Kempen, and H. Neuhauser, Determination of the Effective Attempt Frequency of Irreversible Structural Relaxation Processes in Amorphous Alloys by Anisothermal Measurements, Phys. Stat. Sol. A, 131: 391–402 (1992); https://doi.org/10.1002/pssa.2211310213
  46. P. Roura and J. Farjas, Structural Relaxation Kinetics for First- and Second-Order Processes: Application to Pure Amorphous Silicon, Acta Mater., 57, No. 7: 2098–2107 (2009); https://doi.org/10.1016/j.actamat.2009.01.011
  47. G.W. Koebrugge, J. Van der Stel, J. Sietsma, and A. Van den Beukel, Effect of the Free Volume on the Kinetics of Chemical Short-Range Ordering in Amorphous Fe40Ni40B20, J. Non-Cryst. Sol., 117–118, No. 2: 601–604 (1990); https://doi.org/10.1016/0022-3093(90)90604-K
  48. A. Van den Beukel and J. Sietsma, Diffusivity and Viscosity During Structural Relaxation in Metallic Glasses, Mater. Sci. Eng. A, 179–180: 86–90 (1994); https://doi.org/10.1016/0921-5093(94)90170-8
  49. T. Egami and V. Vítek, Local Structural Fluctuations and Defects in Metallic Glasses, J. Non-Cryst. Sol., 61–62, No. 4: 499–510 (1984); https://doi.org/10.1016/0022-3093(84)90596-9
  50. F. Spaepen, A Microscopic Mechanism for Steady State Inhomoheneous Flow in Metallic Glasses, Acta Metall., 25, No. 3: 407–415 (1977); https://doi.org/10.1016/0001-6160(77)90232-2
  51. A.I. Taub and F. Spaepen, The Kinetics of Structural Relaxation of a Metallic Glass, Acta Metall., 28, No. 10: 1781–1788 (1980); https://doi.org/10.1016/0001-6160(80)90031-0
  52. F. Spaepen and A.I. Taub, Plastic Flow and Destruction, Amorphous Metallic Alloys (Moskva: Metallurgiya: 1987) (Russian translation).
  53. A.T. Kosilov, V.A. Khonic, and V.A. Mikhailov, The Kinetics of Stress-Oriented Structural Relaxation in Metallic Glasses, J. Non-Cryst. Sol., 192–193: 420–423 (1995); https://doi.org/10.1016/0022-3093(95)00385-1
  54. H. Zhou, V. Khonik, and G. Wilde, On the Shear Modulus and Thermal Effects during Structural Relaxation of a Model Metallic Glass: Correlation and Thermal Decoupling, J. Mater. Sci. Technol., 103: 144–151 (2022); https://doi.org/10.1016/j.jmst.2021.05.081
  55. A. Van den Beukel, E. Huizer, A.L. Mulder, and S.A. Van der Zwaag, Change of Viscosity during Structural Relaxation Fe40Ni40B20, Acta Metall., 34, No. 3: 483–492 (1986); https://doi.org/10.1016/0001-6160(86)90084-2
  56. A. Van den Beukel and J. Sielsma, On the Nature of the Glass Transition in Metallic Glasses, Phil. Mag. B, 61, No. 4: 539–547 (1990); https://doi.org/10.1080/13642819008219292
  57. G.W. Koebrugge, J. Sietsma, and A. Van den Beukel, Structural Relaxation and Equilibrium Free Volume in Amorphous Pd40Ni40B20, J. Non-Cryst. Sol., 117–118, No. 2: 609–612 (1990); https://doi.org/10.1016/0022-3093(90)90606-M
  58. G. Knuyt, H. Stulens, W. De Ceuninck, and L.M. Stals, Derivation of an Activation Energy Spectrum for Defect Processes From Isothermal Measurements, Using a Minimization Principle and Fourier Analysis, Modeling Simul. Mater. Sci. Eng., 1: 437–448 (1993); https://doi.org/10.1088/0965-0393/1/4/007
  59. A. Kasardova, V. Ocelik, K. Csach, and J. Miskuf, Activation Energy Spectra for Stress-Induced Ordering in Amorphous Materials Calculated Using Fourier Techniques, Phil. Mag. Lett., 71, No. 5: 257–261 (1995); https://doi.org/10.1080/09500839508240518
  60. A.M. Glezer and B.V. Molotilov, Structure and Mechanical Properties of Amorphous Alloys (Moskva: Metallurgiya: 1992) (in Russian).
  61. I.I. Shtablavyi, Correlations of Free Volume and Short-Range Order Structure in Metallic Melts with Different Degrees of Microheterogeneity of Atomic Distribution (Abstract of Diss. Doctor of Physical and Mathematical Sciences) (Lviv: Ivan Franko National University of Lviv, Ministry of Education and Science of Ukraine: 2020) (in Ukrainian).
  62. A.M. Glezer and V.I. Betechtin, Free Volume and Mechanisms of Destruction of Amorphous Alloys, Solid State Physics, 38, No. 6: 1784–1790 (1996) (in Russian).
  63. G.E. Abrosimova and A.S. Aronin, Free Volume in Amorphous Alloys and Its Change under External Influences, J. Surf. Invest., 17: 934–941 (2023). https://doi.org/10.1134/S1027451023040201
  64. V.I. Betechtin A.M. Glezer, A.G. Kadomtsev, and A.Yu. Kipyatkova, Excess Free Volume and Mechanical Properties of Amorphous Alloys, Solid State Physics, 40, No. 1: 85–89 (1998) (in Russian).
  65. V. Sklenicka, V.I. Betekhtin, K. Kucharova, A.G. Kadomtsev, and A.I. Petrov, Shrinkage of Creep Cavities in Copper by Application of High Hydrostatic Pressure at Ambient Temperature, Scripta Metall. Mater., 25: 2159–2164 (1991); https://doi.org/10.1016/0956-716X(91)90292-9
  66. J. Dvorak, V. Sklenicka, V.I. Betekhtin, A.G. Kadomtsev, P. Kral, M. Kvapilova, and M. Svoboda, The Effect of High Hydrostatic Pressure on Creep Behaviour of Pure Al and a Cu–0.2 wt% Zr Alloy Processed by Equal-Channel Angular Pressing, Mater. Sci. Eng. A, 584: 103–113 (2013); https://doi.org/10.1016/j.msea.2013.07.018
  67. V. Sklenicka, J. Dvorak, P. Kral, V.I. Betekhtin, A.G. Kadomtsev, M.V. Narykova, S.V. Dobatkin, K. Kucharova, and M. Kvapilova, Influence of a Prior Pressurization Treatment on Creep Behaviour of an Ultrafine-Grained Zr-2.5%Nb Alloy, Mater. Sci. Eng. A, 820: 141570 (2021); https://doi.org/10.1016/j.msea.2021.141570
  68. A. Guinier and G. Fournet, Small-Angle Scattering of X-Rays (New York: John Wiley and Sons: 1955).
  69. V.I. Betekhtin, A.G. Kadomtsev, V.A. Konkova, and A.I. Petrov, Accumulation and Healing of Cracks in Deformed Aluminum (Preprint of the Phys.-Tech. Inst. No. 1076, 18 1986) (in Russian).
  70. H.H. Liebermann and C.D. Graham, Production of Amorphous Alloy Ribbons and Effects of Apparatus Parameters on Ribbon Dimensions, IEEE Trans. Magn., 12, No. 6: 921–923 (1976); https://doi.org/10.1109/TMAG.1976.1059201
  71. A.M. Glezer, B.V. Molotilov, and O.L. Utevskaya, Parameters of Structural Relaxation and Mechanical Properties of Amorphous Alloys, Fiz. Met. Metalloved., 57, No. 6: 1198–1210 (1984) (in Russian).
  72. X. Liu, J. Kong, X. Song, S. Feng, Z. Zhang, Y. Yang, and T. Wang, Free Volume Evolution Dominated by Glass Forming Ability Determining Mechanical Performance in ZrxTi65−xBe27.5Cu7.5 Metallic Glasses, Mater. Sci. Eng. A, 804: 140764 (2021); https://doi.org/10.1016/j.msea.2021.140764
  73. V.A. Fedorov, A.V. Yakovlev, and A.N. Kapustin, Effect of Annealing on the Kinetics of Embrittlement of Amorphous Alloys, Met. Sci. Heat. Treat., 50: 397–399 (2008); https://doi.org/10.1007/s11041-008-9058-8
  74. A.M. Glezer, The Problem of Ductile-Brittle Transition of Amorphous Alloys, J. de Phys. IV: JP, 8, No. 8: 175–180 (1998); https://doi.org/10.1051/jp4:1998822
  75. C.A. Pampillo and D.E. Polk, Annealing Embrittlement in an Iron–Nickel-Based Metallic Glasses, J. Mater. Sci. Eng. A, 33, No. 2: 275–280 (1978); https://doi.org/10.1016/0025-5416(78)90181-7
  76. F.E. Fujita, On the Intermediate Range Ordering in Amorphous Structure, Proc. Fourth Int. Conf. RAM (Sendai, Japan), vol. 1, p. 301–304 (1981).
  77. T. Egami, Strucrural Relaxation and Magnetism in Amorphous Alloys, J. Magn. Magn. Mater., 31–34, No. 3: 1571–1574 (1983); https://doi.org/10.1016/0304-8853(83)91019-3
  78. J. Gondro, Influence of the Microstructure on the Magnetic Properties of Fe86Zr7Nb1Cu1B5 Alloy in the States Following Solidification and Following Short-Duration Annealing Below the Crystallization Temperature, J. Magn. Magn. Mater., 432: 501–506 (2017); https://doi.org/10.1016/j.jmmm.2017.02.035
  79. H. Kimura and T. Masumoto, Deformation and Fracture of an Amorphous Pd–Cu–Si Alloy in V-notch Bending Test. I. Model Mechanics of Inhomogeneous Plastic Flow in on-strain Hardening Solids, Acta Metall., 28, No. 7: 1663–1675 (1980); https://doi.org/10.1016/0001-6160(80)90020-6
  80. H. Kimura and T. Masumoto, Deformation and Fracture of an Amorphous Pd–Cu–Si Alloy in V-notch Bending Test. II. Ductile-Brittle Transition, Acta Metall., 28, No. 7: 1677–1693 (1980); https://doi.org/10.1016/0001-6160(80)90021-8
  81. A.M. Glezer, A.I. Potekaev, and A.O. Cheretaeva, Thermal and Time Stability of Amorphous Alloys (Boca Raton: CRC Press: 2017); https://doi.org/10.1201/9781315158112
  82. T. Masumoto, Mechanical Characteristics of Amorphous Metals, Sci. Rep. RITU, 26: 246–262 (1977); https://doi.org/10.50974/00042941
  83. O.L. Kravets, A.B. Lysenko, and T.V. Kalinina, Features of the Formation of the Structure of the Fe80B20 Alloy, Nanosistemi, Nanomateriali, Nanotehnologii, 8, No. 3: 535–545 (2010) (in Russian); https://www.imp.kiev.ua/nanosys/en/articles/2010/3/nano_vol8_iss3_p0535p0545_2010_abstract.html
  84. C. Minnert, M. Kuhnt, S. Bruns, A. Marshal, K.G. Pradeep, M. Marsilius, E. Bruder, and K. Durst, Study on the Embrittlement of Flash Annealed Fe85.2B9.5P4Cu0.8Si0.5 Metallic Glass Ribbons, Mater. Des., 156: 252–261 (2018); https://doi.org/10.1016/j.matdes.2018.06.055
  85. F. Spaepen and D. Turnbull, A Mechanism for the Flow and Fracture of Metallic Glasses, Scr. Metall., 8, No. 2: 563–568 (1974); https://doi.org/10.1016/0036-9748(74)90070-2
  86. R.T. Qu, M. Stoica, J. Eckert, and Z.F. Zhang, Tensile Fracture Morphologies of Bulk Metallic Glass, J. Appl. Phys., 108: 063509 (2010); https://doi.org/10.1063/1.3487968
  87. T.V. Wu and F. Spaepen, Small Angle X-ray Scattering from an Embrittling Metallic Glass, Acta Metall., 33, No. 11: 2185–2187 (1985); https://doi.org/10.1016/0001-6160(85)90179-8
  88. A.R. Yavari, Formation of Boron-rich Zones and Embrittlement of Fe–B–Type Metallic Glasses, J. Mater. Res., 1, No 6: 746–751 (1986); https://doi.org/10.1017/S0884291400120059
  89. F. Jiang, Y. Zhao, L. Zhang, S. Pan, Y. Zhou, L. He, and J. Sun, Dependence of Ductility on Free Volume in a Cu–Zr-Based Metallic Glass, Adv. Eng. Mater., 11, No. 3: 177–181 (2009); https://doi.org/10.1002/adem.200800262
  90. V.A. Soloviev and V.G. Gryaznov, Criterion of Dislocation Nucleation of Cracks Near Interphase Boundaries, Doklady AN SSSR, 301, No. 3: 614–617 (1988) (in Russian).
  91. L.N. Larikov, Healing of Defects in Metals (Kiev: Naukova Dumka: 1980) (in Russian).
  92. A.I. Taub, Measurement of Microscopic Volume Strain Element in Amorphous Alloys, Scr. Metall., 17, No. 7: 873–878 (1983); https://doi.org/10.1016/0036-9748(83)90252-1
  93. U. Kester and U. Herold, Crystallization of Metallic Glasses (Metallic Glasses: Ionic Structure, Electron Transfer and Crystallization) (Moskva: Metallurgiya: 1983) (Russian translation).
  94. G. Abrosimova and A. Aronin, Amorphous and Nanocrystalline Metallic Alloys, Progress in Metallic Alloys (2016); https://doi.org/10.1134/10.5772/64499
  95. V.I. Tkatch, K.A. Svyrydova, S.V. Vasiliev, and O.V. Kovalenko, Relation Between the Structural Parameters of Metallic Glasses at the Onset Crystallization Temperatures and Threshold Values of the Effective Diffusion Coefficients, Phys. Metals Metallogr., 118: 764–772 (2017); https://doi.org/10.1134/S0031918X17080142
  96. V.I. Tkatch, V.K. Nosenko, T.N. Moiseeva, S.G. Rassolov, O.V. Kovalenko, M.S. Nizameev, and K.A. Svyrydova, Nanocrystallization and Thermal Stability of the Fe45Ni19.4Co8.5Cr5.7Mo1.9B14Si5.5 Amorphous Alloy, J. Non-Cryst. Sol., 430: 108–114 (2015); https://doi.org/10.1016/j.jnoncrysol.2015.09.027
  97. U. Kester and U. Herold, Effect of Substitution of Metal or Metalloid in Amorphous Iron–Boron Alloys on Their Crystallization, Fast-Hardened Metals (Ed. B. Cantor) (Moskva: Metallurgiya: 1987) (Russian translation).
  98. I.V. Zagorulko, Formation of Metastable Crystalline, Conditionally and Truly Amorphous Structures under Rapid Cooling of the Melts (Diss. Candidate of Physical and Mathematical Sciences) (Dnipro: Oles Honchar Dnipro National University of the Ministry of Education and Science of Ukraine: 2017) (in Ukrainian).
  99. W.Z. Chen and P.L. Ryder, X-Ray and Differential Scanning Calorimetry Study of the Crystallization of Amorphous Fe73.5Cu1Nb3Si13.5B9 Alloy, Mater. Sci. Eng. B, 24: 204–209 (1995); https://doi.org/10.1016/0921-5107(95)01242-7
  100. K.K. Song, P. Gargarella, S. Pauly, G.Z. Ma, U. Kühn, and J. Eckert, Correlation Between Glass-forming Ability, Thermal Stability, and Crystallization Kinetics of Cu-Zr-Ag Metallic Glasses, J Appl. Phys., 112, No. 6: 063503 (2012); https://doi.org/10.1063/1.4752263
  101. M.O. Vasylyev, B.M. Mordyuk, I.V. Zagorulko, S.M. Voloshko, and V.K. Nosenko, Heat Effects in Rapidly-Quenched NANOMET Type Ribbons after Intense Plastic Deformation, Metallofiz. Noveishie Tekhnol., 45, No. 3: 293-310 (2023) (in Ukrainian); https://doi.org/10.15407/mfint.45.03.0293
  102. J. Zhang, P. Shi, A. Chang, T. Zhao, W. Li, C. Chang, J. Jia, Q. Wang, F. You, D. Feng, X. Wang, Y. Zhao, T. Li, Y. Huang, and S. An, Glass-forming Ability, Thermal Stability, Mechanical and Electrochemical Behavior of Al–Ce–TM (TM = Ti, Cr, Mn, Fe, Co, Ni and Cu) Amorphous Alloys, J. Non-Cryst. Solids X, 1: 100005 (2019); https://doi.org/10.1016/j.nocx.2018.100005
  103. A. Dunst, D.M. Herlach, and F. Giessen, Formation of Glassy Spheres of Fe–Ni–P–B by Containerless Processing, Mater. Sci. Eng. А, 133: 785–789 (1991); https://doi.org/10.1016/0921-5093(91)90186-Q
  104. A. Takeuchi and A. Inoue, Calculations of Dominant Factors of Glass-Forming Ability for Metallic Glasses from Viscosity, Mater. Sci. Eng. А, 375–377: 449–454 (2004); https://doi.org/10.1016/j.msea.2003.10.199
  105. H.G. Mukhin, Metastable and Nonequilibrium Materials and Their Stability. (Metastable and Nonequilibrium Alloys) (Moskva: Metallurgiya: 1998) (in Russian).
  106. R. Ray, R. Hasegawa, C.P. Chou, and L.A. Davis, Iron-Boron Glasses: Density, Mechanical and Thermal Behavior, Scr. Metall., 11: 973–978 (1977); https://doi.org/10.1016/0036-9748(77)90249-6
  107. Y. Cai, B. Lin, Y. Wang, R. Umetsu, D. Liang, S. Qu, Y. Zhang, J. Wang, and J. Shen, Relationship Among Intrinsic Magnetic Parameters and Structure and Crucial Effect of Metastable Fe3B Phase in Fe-Metalloid Amorphous Alloys, J. Mat. Sci. Technol., 180: 141–149 (2024); https://doi.org/10.1016/j.jmst.2023.07.079
  108. A. Lovas, L. Granasy, K. Zambo-Balla, and J. Kiraly, Influence of Transition-Metal Additives on the Thermal Stability of Fe50TМ3B17 Quasi-Eutectic Metallic Glasses, Proc. Conf. Metallic Glasses: Science and Technology (Budapest: Hungary), vol. 2, p. 291–297 (1981).
  109. A. Inoue, K. Kobayashi, J. Kanehira, and T. Masumoto, Mechanical Properties and Thermal Stability of (Fe, Co, Ni)–M–B (M = IV, V and VI-Group Transition Metals) Amorphous Alloys with Low Boron Concentration, Sci. Rep. RITU, 29, No. 2: 331–342 (1981); https://doi.org/10.1016/10.50974/00043247
  110. S.R. Nagel and Y. Tauk, Influence of the Electronic Structure on the Glass-Forming Ability of Alloys, Liquid Metals (Moskva: Metallurgiya: 1980) (in Russian).
  111. A.L. Greer, Crystallization Kinetics of Fe80B20 Glass, Acta Metall., 30, No. 2: 171–192 (1982); https://doi.org/10.1016/0001-6160(82)90056-6
  112. J.W. Christian, The Theory of Transformations in Metals and Alloys (Moskva: Mir: 1978), Pt. 1 (Russian translation).
  113. H.E. Kissinger, Reaction Kinetics in Differential Thermal Analysis, Anal. Chem., 29, No. 11: 1702–1706 (1957); https://doi.org/10.1021/ac60131a045
  114. J.M. Criado and A. Ortega, Non-Isothermal Crystallization Kinetics of Metal Glasses: Simultaneous Determination of Both the Activation Energy and the Exponent n of the JMA Kinetic Law, Acta Metall., 35, No. 7: 1715–1721 (1987); https://doi.org/10.1016/0001-6160(87)90117-9
  115. T. Kemeny and J. Sestak, Comparison of Crystallization Kinetics Determined by Isothermal and Non-Isothermal Methods, Thermochim. Acta, 110: 113–129 (1987); https://doi.org/10.1016/0040-6031(87)88217-5