Increasing Resistance to Ultrasonic Cavitation Erosion of Metallic Parts by Means of the Surface Modification

MORDYUK B.M.$^{1}$, VASYLYEV M.O.$^{1}$, VOLOSHKO S.M.$^{2}$, and VYSLYI O.А.$^{2}$

$^1$G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Beresteiskyi Ave., UA-03056 Kyiv, Ukraine

Received / Final version: 07.02.2025 / 19.08.2025 Download PDF logo PDF

Abstract
The current development of surface treatments, which are aimed at improving the cavitation erosion (CE) resistance of the metal parts working under vibration conditions in liquid environments, is reviewed. The ultrasonic-cavitation test, which is a convenient and express method for evaluating the cavitation resistance of materials, is also considered. The CE resistance of the metal samples is mainly tested using the typical ultrasonic-vibration apparatus according to the ASTM G32-10 test standard. The physical mechanism of the surface cavitation destruction based on the vaporous-bubbles’ formation is described and analysed. This analysis allows for a better understanding of the role of the surface-treatment methods and their parameters on the structure and mechanical properties of the near-surface region, helping to enhance the protection against the destructive cavitation effects. Examples are given regarding the effective methods for improving the surface-properties’ finish of various metal materials, viz., coatings methods including microarc oxidation, arc spraying, high-velocity oxygen-fuel deposition, cold spraying, cathode arc plasma deposition, laser surface alloying, and nitriding. Additionally, the methods of surface modification, such as laser surface treatment, friction stir processing, and tungsten inert-gas welding/dressing, are also concluded to be efficient CE inhibitors.

Keywords: cavitation, surface treatments, coating, erosion resistance, ultrasonic vibration, cavitation tests.

DOI: https://doi.org/10.15407/ufm.26.03.***

Citation: B.M. Mordyuk, M.O. Vasylyev, S.M. Voloshko, and O.А. Vyslyi, Increasing Resistance to Ultrasonic Cavitation Erosion of Metallic Parts by Means of the Surface Modification, Progress in Physics of Metals, 26, No. 3: ***–*** (2025)


References  
  1. C.E. Brennen, Cavitation and Bubble Dynamics (Cambridge University Press: 2013).
  2. R.T. Knapp, J.W. Daily, and F.G. Hammitt, Cavitation (McGraw-Hill: 1970).
  3. F.R. Young, Cavitation (Imperial College Press: 1999).
  4. K.S. Suslick, Science, 247: 1439 (1990); https://doi.org/10.1126/science.247.4949.143
  5. H. Crockett and J. Horowitz, J. Press. Vessel Technol., 132: 024501 (2010); https://doi.org/10.1115/1.4000509
  6. C. Kang, N. Mao, W. Zhang, and Y. Gu, Ann. Nucl. Energy., 110: 789 (2017); https://doi.org/10.1016/j.anucene.2017.07.028
  7. B.K. Sreedhar, S.K. Albert, and A.B. Pandit, Wear, 372–373: 177 (2017); https://doi.org/10.1016/j.wear.2016.12.009
  8. D.E. Zakrzewska and A.K. Krella, Adv. Mater. Sci., 19: 18 (2019); https://doi.org/10.2478/adms-2019-0019
  9. A.K. Krella, Wear, 258: 604 (2005); https://doi.org/10.1016/j.wear.2004.11.025
  10. M. Dular and O. Coutier-Delgosha, Int. J. Numer. Meth. Fluids, 61: 1388 (2009); https://doi.org/10.1002/fld.2003
  11. G.Y. Gao, S.H. Guo, and D. Li, Materials, 17: 1007 (2024); https://doi.org/10.3390/ma17051007
  12. K.H. Kim, G.L. Chahine, J.-P. Franc, and A. Karimi, Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction (Berlin: Springer: 2014).
  13. A. Gedanken, Ultrason. Sonochem., 11: 47–55 (2013); https://doi.org/10.1016/j.ultsonch.2004.01.037
  14. D. Leng, S. Shao, Y. Xie, H. Wang, and G. Liu, Ocean Eng., 228: 108565 (2021); https://doi.org/10.1016/j.oceaneng.2020.108565
  15. Y.-G. Ren, L. Yang, Y.-J. Liu, K.B. Yu, and J.H. Zhang, J. Marine Sci. Eng., 9: 682 (2021); https://doi.org/10.3390/jmse9060682
  16. S. Wu, Y. Wu, J. Tian, and H. Ouyang, Eng. Appl. Comput. Fluid Mech., 16: 1048 (2022); https://doi.org/10.1080/19942060.2022.2067243
  17. R. Singh, S.K. Tiwari, and S.K. Mishra, J. Mater. Eng. Perform., 21: 1539 (2012); https://doi.org/10.1007/s11665-011-0051-9
  18. M. Brunhart, C. Soteriou, C. Daveau, M. Gavaises, P. Koukouvinis, and M. Winterbourn, Wear, 442: 203024 (2020); https://doi.org/10.1016/j.wear.2019.203024
  19. R. Khare and V. Prasad, Ocean Eng., 221: 108512 (2021); https://doi.org/10.1016/j.oceaneng.2020.108512
  20. C.K. Toh, Int. J. Adv. Manuf. Technol., 31: 688 (2007); https://doi.org/10.1007/s00170-005-0249-9
  21. H. Soyama and F. Takeo, J. Mater. Process. Technol., 227: 80 (2016); https://doi.org/10.1016/j.jmatprotec.2015.08.012
  22. M. Mathias, A. Göcke, and M. Pohl, Wear, 150: 11–20 (1991); https://doi.org/10.1016/0043-1648(91)90302-B
  23. Q.J. Peng, T.G. Ming, Y.L. Han, and T. Zhang, Surf. Coat. Technol., 496: 131675 (2025); https://doi.org/10.1016/j.surfcoat.2024.131675
  24. H. Soyama, K.L. Wong, D. Eakins, and A.M. Korsunsky, Int. J. Fatigue, 185: 108348 (2024); https://doi.org/10.1016/j.ijfatigue.2024.108348
  25. H. Soyama, C. Kuji, and Y.L. Liao, J. Magnesium Alloys, 11: 1592 (2023); https://doi.org/10.1016/j.jma.2023.04.004
  26. P. Murugesan, S.H. Jung, and H. Lee, Mater. Design, 229: 111906 (2023); https://doi.org/10.1016/j.matdes.2023.111906
  27. Y. Iwai, T. Honda, H. Yamaa, T. Matsumura, M. Larsson, and S. Hogmark, Wear, 251: 861 (2001); https://doi.org/10.1016/S0043-1648(01)00743-8
  28. L.A. Espitia, H. Dong, X.Y. Li, C.E. Pinedo, and A.P. Tschiptschin, Wear, 332–333: 1070 (2015); https://doi.org/10.1016/j.wear.2014.12.009
  29. V. Schulze, F. Bleicher, P. Groche, Y.B. Guo, and Y.S. Pyun, CIRP Ann., 65: 809 (2016); https://doi.org/10.1016/j.cirp.2016.05.005
  30. C.E. Brennen, Cavitation and Bubble Dynamics (New York: Oxford University Press: 1995).
  31. L.Z. Ye, X.J. Zhu, L.J. Wang, and C. Guo, Ultrason. Sonochem., 40: 988 (2018); https://doi.org/10.1016/ j.ultsonch.2017.09.013
  32. L. Ye and X. Zhu, Adv. Mech. Eng., 9: 1 (2017); https://doi.org/10.1177/1687814017712947
  33. J. Doktycz and K. S. Suslick, Science, 247: 1067 (1990); https://doi.org/10.1126/science.23091
  34. T. Volkov-Husović, S. Martinović, A. Alil, M. Vlahović, B. Dimitrijević, I. Ivanić, and V. Pavkov, J. Min. Metall. Sect. B-Metall., 60: 295 (2024); https://doi.org/10.2298/JMMB240118018V
  35. https://www.hielscher.com/information-about-ultrasonic-cavitation.htm
  36. L.Q. Wang, N. Qiu, D.H. Hellmann, and X.W. Zhu, J. Mech. Sci. Technol., 30: 533 (2016); https://doi.org/10.1007/s12206-016-0106-9
  37. L.Z. Ye, X.J. Zhu, Y. He, T.J. Song, and W. Hu, Chinese J. Aeronaut, 34: 508 (2021); https://doi.org/10.1016/j.cja.2020.08.043
  38. C. Zhu, S. He, M. Shan, and J Chen, Ultrasonics, 44: 349 (2006); https://doi.org/10.1016/j.ultras.2006.07.016
  39. G.L. Chahine, A. Kapahi, J.K. Choi, and C.T. Hsiao, Ultrason. Sonochem., 29: 528 (2016); https://doi.org/10.1016/j.ultsonch.2015.04.026
  40. G. Wang, W. Wu, J. J. Zhu, and D. Peng, Ultrason. Sonochem., 79: 105781 (2021); https://doi.org/10.1016/j.ultsonch.2021.105781
  41. L. Jing and L. Jian, J. Eng. Tribology, 223: 985 (2009); https://doi.org/10.1243/13506501JET593
  42. B.N. Mordyuk and G.I. Prokopenko, Ultrasonics, 42: 43 (2004); https://doi.org/10.1016/j.ultras.2004.01.001
  43. V.M. Nadutov, B.N. Mordyuk, G.I. Prokopenko, and I.S. Gavrilenko, Ultrasonics, 42: 47 (2004); https://doi.org/10.1016/j.ultras.2004.01.002
  44. M. Duraiselva, R. Galun, V. Wesling, B.L. Mordike, R. Reiter, J. Oligmuller, and G. Buvanashekaran, Mater. Sci. Eng. A, 454–455: 63 (2007); https://doi.org/10.1016/j.msea.2006.11.002
  45. H.S. Chen, S.H. Liu, J.D. Wang, and D. Chen, J. Appl. Phys., 101: 103 (2007); https://doi.org/10.1063/1.2734547
  46. J. Lago, L. Trsko, M. Jambor, F. Novy, O. Bokuvka, M. Mician, and F. Pastorek, Metals, 9: 619 (2019), https://doi.org/10.3390/met9060619
  47. H. Qi, Z. Cheng, D. Cai, L. Yin, Z. Wang, and D. Wen, J. Mater. Process. Technol., 259: 361 (2018); https://doi.org/10.1016/j.jmatprotec.2018.04.043
  48. ASTM G32-16; Standard test method for cavitation erosion using vibratory apparatus. ASTM International (West Conshohocken, PA, USA: 2021).
  49. J.Z. Zhang, W.B. Dai, X.S. Wang, Y.M. Wang, H.T. Yue, Q. L, X.N. Yang, C.G. Guo, and C.Y. Li. J. Mater. Res. Technol., 23: 4307 (2023); https://doi.org/10.1016/j.jmrt.2023.02.028
  50. R. Kamal Jayaraj, S. Malarvizhi, and V. Balasubramanian, Defence Technology, 13: 111 (2017); https://doi.org/10.1016/j.dt.2017.03.003
  51. L. Ropyak, T. Shihab, A. Velychkovych, O. Dubei, T. Tutko, and V. Bilinskyi, Design of a two-layer Al–Al2O3 coating with an oxide layer formed by the plasma electrolytic oxidation of Al for the corrosion and wear protections of steel, Prog. Phys. Met., 24, No. 2: 319 (2023); https://doi.org/10.15407/ufm.24.02.319
  52. M. Szkodo, A. Stanisławska, A. Komarov, and L. Bolewski, Wear, 474–475: 203709 (2021); https://doi.org.0.1016/j.wear.2021.203709
  53. J.B. Cheng, X.B. Liang, B.S. Xu, and Y.X. Wu, J. Mater. Sci., 44: 3356 (2009); https://doi.org/10.1007/s10853-009-3436-5
  54. Y. Wang, K.Y. Li, F. Scenini, J. Jiao, S.J. Qu, Q. Luo, and J. Shen, Surf. Coat. Technol., 302: 27 (2016); https://doi.org/10.1016/j.surfcoat.2016.05.034
  55. J.R. Lin, Z. Wang, J.B. Cheng, M. Kang, X.Q. Fu, and S. Hong, Coatings, 7: 200 (2017); https://doi.org/10.3390/coatings7110200
  56. R.H. Purba, K. Shimizu, K. Kusumoto, T. Todaka, M. Shirai, H. Hara, and J. Ito, Tribol. Int., 159: 106982 (2021); https://doi.org/10.1016/j.triboint.2021.106982
  57. J.C. Tan, L. Looney, and M.S.J. Hashmi, J. Mater. Process. Tech., 92–93: 203 (1999); https://doi.org/10.1016/s0924-0136(99)00113-2
  58. K.N. Singh, S.M.A. Ang, K.D. Mahajan, and H. Singh, Tribol. Int., 159: 106954 (2021); https://doi.org/10.1016/j.triboint.2021.106954
  59. E. Jonda and L. Łatka, Adv. Sci. Technol. Res. J., 15: 57 (2021); https://doi.org/10.12913/22998624/135979
  60. E. Jonda, M. Szala, M. Sroka, L. Łatka, and M. Walczak, Appl. Surf. Sci., 608: 155071 (2023); https://doi.org/10.1016/j.apsusc.2022.155071
  61. X. Ding, X.D. Cheng, X. Yu, C. Li, C.Q. Yuan, and Z.X. Ding, Trans. Nonferrous Met. Soc. China, 28: 487 (2018); https://doi.org/10.1016/S1003-6326(18)64681-3
  62. J. Cheng, Y.P. Wu, S.S. Zhu, S. Hong, J.B. Cheng, and Y.J. Wang, J. Mater. Res. Technol., 25: 2936 (2023); https://doi.org/10.1016/j.jmrt.2023.06.10936e2947
  63. C. Suryanarayana and A. Inoue, Int. Mater. Rev., 58: 131 (2013); https://doi.org/10.1179/1743280412Y.0000000007
  64. G.Y. Koga, R. Schulz, S. Savoie, A.R.C. Nascimento, Y. Drolet, C. Bolfarini, C.S. Kiminami, and W.J. Botta, Surf. Coat. Technol., 309: 938 (2016); https://doi.org/10.1016/j.surfcoat.2016.10.057
  65. L. Qiao, Y. Wu, S. Hong, J. Zhang, W. Shi, and Y. Zheng, Ultrasonics Sonochemistry, 306: 938 (2017); https://doi.org/10.1016/j.ultsonch.2017.04.011
  66. A. Bandar, Fundamentals of cold spray processing: evolution and future perspectives, Cold Spray Coatings: Recent Trends Future Perspective (Ed. P. Cavaliere) (Springer: 2018); https://doi.org/10.1007/978-3-319-67183-3
  67. M. Kazasidis, S. Yin, J. Cassidy, T. Volkov-Husović, M. Vlahović, S. Martinović, E. Kyriakopoulou, and R. Lupoi, Surf. Coat. Technol., 382: 125195 (2020); https://doi.org/10.1016/j.surfcoat.2019.125195
  68. Y. Shuo, E.J. Ekoi, T.L. Lupton, D.P. Dowling, and R. Lupoi, Mater. Des., 126: 305 (2017); https://doi.org/10.1016/j.matdes.2017.04.040
  69. S. Krebs, F. Gärtner, and T. Klassen, J. Therm. Spray Technol., 24: 126 (2015); https://doi.org/10.1007/s11666-014-0161-7
  70. F. Lomello, F. Sanchette, F. Schuster, M. Tabarant, and A. Billard, Surf. Coat. Technol., 224: 77 (2013); https://doi.org/10.1016/j.surfcoat.2013.02.051
  71. B. Navinsek, P. Panjan, and I. Milosev, Surf. Coat. Technol., 97: 182 (1997); https://doi.org/10.1016/S0257-8972(97)00393-9
  72. S. Han, J.H. Lin, J.J. Kuo, J.L. He, and H.C. Shih, Surf. Coat. Technol., 161: 20 (2002); https://doi.org/10.1016/S0257-8972(02)00392-4
  73. F. da S. Severo, C.J. Scheuer, R.P. Cardoso, and S.F. Brunatto, Wear, 428–429: 162 (2019); https://doi.org/10.1016/j.wear.2019.03.009
  74. C.L. Wu, S. Zhang, C.H. Zhang, H. Zhang, and S.Y. Dong, J. Alloys Compounds, 698: 761 (2017); http://dx.doi.org/10.1016/j.jallcom.2016.12.196
  75. K.H. Lo, F.T. Cheng, C.T. Kwok, and H.C. Man, Surf. Coat. Technol., 165: 258–267 (2003); https://doi.org/10.1016/S0257-8972(02)00739-9
  76. S. Zhang, C.L.Wu, C.H. Zhang, M. Guan, and J.Z. Tan, Optics Laser Technol., 84: 2331 (2016); https://doi.org/10.1016/j.optlastec.2016.04.011
  77. C.T. Kwok, F.T. Cheng, and H.C. Man, Surf. Coat. Technol., 145: 194 (2001); https://doi.org/10.1016/S0257-8972(01)01293-2
  78. S.P. Gadag, M.N. S.P. Gadag, and M.N. Srinivasan, Mater. Process. Technol., 51: 150 (1995); https://doi.org/10.1016/0924-0136(94)01601-V
  79. E. Wolowiec-Korecka, Carburising and Nitriding of Iron Alloys (Springer: 2024).
  80. D. Liedtke, U. Baudis, J. Boßlet, U. Huchel, H.K. Westkamp, W. Lerche, and H.J. Spies, Nitriding and Nitrocarburizing on Iron Materials (Tokyo: AGNE Gijutsu Center: 2013).
  81. M. Drouet and E. Le Bourhis, Materials, 16: 4704 (2023); https://doi.org/10.3390/ma16134704
  82. A.N. Allenstein, C.M. Lepienski, A.J.A. Buschinelli, and S.F. Brunatto, Wear, 309: 159 (2014); https://doi.org/10.1016/j.wear.2013.11.002
  83. I. Mitelea, E. Dimian, I. Bordeasu, and C. Craciunescu, Ultrasonics Sonochem., 21: 1544 (2014); https://doi.org/10.1016/j.ultsonch.2014.01.005
  84. H.C. Man, Z.D. Cui, T.M. Yue, and F.T. Cheng, Mater. Sci. Eng. A, 355: 167 (2003); https://doi.org/10.1016/S0921-5093(03)00062-5
  85. S.P. Gadag and M.N. Srinivasan, J. Mater. Process. Technol., 51: 150 (1995); https://doi.org/10.1016/0924-0136(94)01601-V
  86. B.G. Giren, Surf. Eng., 14: 325 (1998); https://doi.org/10.1179/sur.1998.14.4.325
  87. C.T. Kwok, H.C. Man, and F.T. Cheng, Surf. Coat. Technol., 126: 238 (2000); https://doi.org/10.1016/S0257-8972(00)00533-8
  88. C.H. Tang, F.T. Cheng, and H.C. Man, Surf. Coat. Technol., 182: 300 (2004); https://doi.org/10.1016/j.surfcoat.2003.08.048
  89. R.S. Mishra and Z.Y. Ma, Mater. Sci. Eng. R, 50: 1 (2005); https://doi.org/10.1016/j.mser.2005.07.001
  90. S. Park, C.G. Lee, H.N. Han, S.J. Kim, and K. Chung, Met. Mater. Int., 14: 47 (2008); https://doi.org/10.3365/met.mat.2008.02.047
  91. A.K. Lakshminarayanan and V. Balasubramanian, Mater. Sci. Eng. A, 539: 143 (2012); https://doi.org/10.1016/j.msea.2012.01.071
  92. H.A. Abdollah-Zadeh, S.S. Rezaei-Nejad, H. Assadi, S.M.M. Hadavi, K. Chung, and M. Shokouhimehr, Appl. Surf. Sci., 308: 184 (2014); https://doi.org/10.1016/j.apsusc.2014.04.132
  93. X. Zhang and L. Fang, Wear, 253: 1105 (2002); https://doi.org/10.1016/S0043-1648(02)00168-0
  94. G.W. Lorimer, F. Hasan, J. Iqbal, and N. Ridley, Br. Corros. J., 21: 244 (1986); http://dx.doi.org/10.1179/000705986798272046
  95. A. Al-Hashem and W. Riad, Mater. Characterization, 48: 37 (2002); https://doi.org/10.1016/S1044-5803(02)00196-1
  96. A. Al-Hashem and J. Carew, Desalination, 150: 255 (2002); https://doi.org/10.1016/S0011-9164(02)00981-5
  97. S. Thapliyal and D.K. Dwivedi, Wear, 376–377: (2017); https://doi.org/10.1016/j.wear.2017.01.030
  98. J.H. Chen, P.H. Hua, P.N. Chen, C.M. Chang, M.C. Chen, and W. Wu, Mater. Lett., 62: 2490 (2008); https://doi.org/10.1016/j.matlet.2007.12.038
  99. Z.D. Wan, Z.L. Yi, Y. Zhao, S.C. Zhang, Q. Li, J. Lin, and A.P. Wu, Mater. Design, 245: 113274 (2024); https://doi.org/10.1016/j.matdes.2024.113274
  100. P. Binande, H.R. Shahverdi, and A. Farnia, J. Mater. Res. Technol., 33: 9092 (2024); https://doi.org/10.1016/j.jmrt.2024.11.231
  101. M. Ardeshir, M. Yousefpour, S.M.S. Nourbabksh, and M. Bozorg, Heliyon, 10: 41062 (2024); https://doi.org/10.1016/j.heliyon.2024.e41062
  102. I. Mitelea, T. Bena, I. Bordeasu, I.D. Uţu, and C.M. Crăciunescu, Metall Mater. Trans. A, 50: 3767 (2019); https://doi.org/10.1007/s11661-019-05287-w
  103. I. Adhiwiguna, N. Nobakht, and R. Deike, Metals, 14: 915 (2024); https://doi.org/10.3390/met14080915
  104. K. Salonitis, M. Jolly, E. Pagone, and M. Papanikolaou, Energies, 12: 2557 (2019); https://doi.org/10.3390/en12132557
  105. K. Jhaveri, G.M. Lewis, J.L. Sullivan, and G.A. Keoleian, Sustainable Mater. Technol., 15: 1 (2018); https://doi.org/10.1016/j.susmat.2018.01.002
  106. E. Riemschneider, I. Bordeasu, I. Mitelea, I. D. Utu, and C.M. Crăciunescu, Mater. Today: Proc., 45: 4157 (2021); https://doi.org/10.1016/j.matpr.2020.11.929