Strengthening of Copper during High-Speed Deformation

VOLOKITIN A.V.$^1$, DENISSOVA A.I.$^1$, and SÖNMEZ M.Ş.$^2$

$^1$Karaganda Industrial University, 30 Republic Ave., 101400 Temirtau, Kazakhstan
$^2$Istanbul Technical University, 34469 Maslak, Istanbul, Turkey

Received 22.07.2024, Final version 04.05.2025 Download PDF logo PDF

Abstract
One of the main research areas in recent decades in the field of materials science has been the search for possibilities to control the internal defective substructure of crystals to obtain the materials’ best strength and plastic properties. Strength here refers to the ability to withstand as large a load as possible without the onset of plastic deformation. High ductility implies the ability to withstand high plastic deformations before localisation of plastic flow and the subsequent destruction of the metal begins. Studies of up-to-date micro- and nanostructured materials’ physical and mechanical properties are of great scientific and practical interest, especially, in recent years. This is because these materials demonstrate a range of unique physical and mechanical properties. Currently, many methods have been developed to produce micro- and nanostructured materials. One of the paths leading to grain refinement of metals and alloys is the use of various options of intense plastic deformation, as a result of which, depending on the degree of deformation, micro- or nanocrystalline structures are formed. One of these methods is the method of dynamic hardening under high-speed deformation. This article shows that, during high-speed deformation in regions of a material with a submicron structure, grain-boundary slip dominates and the material is deformed in the superplasticity regime. In regions of the material with larger grain sizes, intragranular deformation dominates, accompanied by fragmentation and formation of a fine-grained structure with a submicron grain size. The transformation of structure from fine-grained to coarse-grained one occurs due to deformation-stimulated grain growth. Transformation of the structure from coarse-grained to fine-grained one occurs due to dynamic fragmentation. The transition from grain boundary sliding to intragranular deformation occurs at the optimal grain size necessary for dynamic recrystallization to occur.

Keywords: high-speed deformation, strengthening, coarse-grained structure, fine-grained structure, defects.

DOI: https://doi.org/10.15407/ufm.26.02.***

Citation: A.V. Volokitin, A.I. Denissova, and M.Ş. Sönmez, Strengthening of Copper during High-Speed Deformation, Progress in Physics of Metals, 26, No. 2: ***–*** (2025)


References  
  1. I.E. Volokitina, A.I. Denissova, A.V. Volokitin, and E.A. Panin, Methods for obtaining a gradient structure, Prog. Phys. Met., 25, No. 1: 132–160 (2024); https://doi.org/10.15407/ufm.25.01.132
  2. I.E. Volokitina, A.V. Volokitin, M.A. Latypova, V.V. Chigirinsky, and A.S. Kolesnikov, Effect of controlled rolling on the structural and phase transformations, Prog. Phys. Met., 24, No. 1: 132–156 (2023); https://doi.org/10.15407/ufm.24.01.132
  3. A.V. Volokitin, I.E. Volokitina, and E.A. Panin, Thermomechanical treatment of stainless steel piston rings, Prog. Phys. Met., 23, No. 3: 411–437 (2022); https://doi.org/10.15407/ufm.23.03.411
  4. I.E. Volokitina, A.V. Volokitin, and E.A. Panin, Martensitic transformations in stainless steels, Prog. Phys. Met., 23, No. 4: 684–728 (2022); https://doi.org/10.15407/ufm.23.04.684
  5. G.S. Firstov, Yu.M. Koval, V.S. Filatova, V.V. Odnosum, G. Gerstein, and H.J. Maier, Development of high-entropy shape-memory alloys: structure and properties, Prog. Phys. Met., 24, No. 4: 819–837 (2023); https://doi.org/10.15407/ufm.24.04.819
  6. I. Volokitina, B. Sapargaliyeva, A. Agabekova, A. Volokitin, S. Syrlybekkyzy, A. Kolesnikov, G. Ulyeva, A. Yerzhanov, and P. Kozlov, Case Studies Construct. Mater., 18: e02162 (2023); https://doi.org/10.1016/j.cscm.2023.e02162
  7. I.E. Volokitina, Structural and phase transformations in alloys under the severe plastic deformation, Prog. Phys. Met., 3: No. 24: 593–622 (2023); https://doi.org/10.15407/ufm.24.03.593
  8. I. Volokitina, A. Volokitin, A. Denissova, T. Fedorova, D. Lawrinuk, A. Kolesnikov, A. Yerzhanov, Y. Kuatbay, and Y. Liseitsev, Case Studies Construct. Mater., 19: e02346 (2023); https://doi.org/10.1016/j.cscm.2023.e02346
  9. I. Volokitina, A. Bychkov A. Volokitin, and A. Kolesnikov, Metallogr. Microst. Anal., 12, No. 3: 564–566 (2023); https://doi.org/10.1007/s13632-023-00966-y
  10. A. Naizabekov, A. Arbuz, S. Lezhnev, E. Panin, and I. Volokitina, Physica Scripta, 94, No. 10: 105702 (2019); https://doi.org/10.1088/1402-4896/ab1e6e
  11. N. Zhangabay, I. Baidilla, A. Tagybayev, U. Suleimenov, Z. Kurganbekov, M. Kambarov, A. Kolesnikov, G. Ibraimbayeva, K. Abshenov, I. Volokitina, B. Nsanbayev, and Y. Anarbayev, Case Studies Construct. Mater., 18: e02161 (2023); https://doi.org/10.1016/j.cscm.2023.e02161.
  12. I.E. Volokitinа and A.V. Volokitin, Metallurgist, 67: 232–239 (2023); https://doi.org/10.1007/s11015-023-01510-7
  13. I.E. Volokitina, Metal Sci. Heat Treat., 61: 234–238 (2019); https://doi.org/10.1007/s11041-019-00406-1
  14. I. Volokitina, A. Volokitin, E. Panin, T. Fedorova, D. Lawrinuk, A. Kolesnikov, Z. Gelmanova, and Y. Liseitsev, Case Studies in Construction Materials, 19: e02609 (2023); https://doi.org/10.1016/j.cscm.2023.e02609
  15. I.E. Volokitina and A.V. Volokitin, Phys. Metals. Metallogr., 119, No. 9: 917–921 (2018); https://doi.org/10.1134/S0031918X18090132
  16. V. Chigirinsky and I. Volokitina, Engineering Solid Mechanics, 12, No. 2: 113–126 (2024); https://doi.org/10.5267/j.esm.2023.11.001
  17. I. Volokitina, B. Sapargaliyeva, A. Agabekova, S. Syrlybekkyzy, A. Volokitin, L. Nurshakhanova, F. Nurbaeva, A. Kolesnikov, G. Sabyrbayeva, A. Izbassar, O. Kolesnikova, Y. Liseitsev, and S. Vavrenyuk, Case Studies Construct. Mater., 19: e02256 (2023); https://doi.org/10.1016/j.cscm.2023.e02256
  18. I.E. Volokitina, Metal Sci. Heat Treat., 63: 163 (2021); https://doi.org/10.1007/s11041-021-00664-y
  19. A.B. Naizabekov, S.N. Lezhnev, and I.E. Volokitina, Metal Sci. Heat Treat., 57, Nos. 5–6: 254 (2015); https://doi.org/10.1007/s11041-015-9870-x
  20. I.E. Volokitina and G.G. Kurapov, Metal Sci. Heat Treat., 59, Nos. 11–12: 786 (2018); https://doi.org/10.1007/s11041-018-0227-0
  21. A. Nurumgaliyev, T. Zhuniskaliyev, V. Shevko, Y. Mukhambetgaliyev, B. Kelamanov, Y. Kuatbay, A. Badikova, G. Yerekeyeva, and I. Volokitina, Scientific Reports, 14, No. 1: 7456 (2024); https://doi.org/10.1038/s41598-024-57529-6
  22. F.J. Humphreys, Recrystallization and related annealing phenomena (Oxford: Pergamon Press: 1995).
  23. A. Babaei and M.M. Mashhadi, Progress in Natural Science: Materials International, 24: 623–630 (2014); https://doi.org/10.1016/j.pnsc.2014.10.009
  24. C. Wang, F. Li, Q. Li, and L. Wang, Mater. Sci. Eng. A, 548: 19–26 (2012).
  25. H. Sheikh, R. Ebrahimi, and E. Bagherpour, Material and Design, 109: 289–299 (2016); https://doi.org/10.1016/j.matdes.2016.07.030
  26. A. Habibi, M. Ketabchi, and M. Eskandarzadeh, J. Mater. Process. Technol., 211: 1085–1090 (2011); https://doi.org/10.1016/j.jmatprotec.2011.01.009
  27. K.J. Al-Fadhalah, S.N. Alhajeri, A.I. Almazrouee, and T.G. Langdon, J. Mater Sci., 48: 4563–4572 (2013); https://doi.org/10.1007/s10853-013-7200-5
  28. G.A. Salishchev, N.D. Stepanov, A.V. Kuznetsov, S.V. Zherebtsov, O.R. Valiakhmetov, A.A. Kuznetsov, and S.V. Dobatkin, Mater. Sci. Forum, 667–669: 289–294 (2011); https://doi.org/10.4028/www.scientific.net/MSF.667-669.289
  29. S. Ranjbar Bahadori, K. Dehghani, and F. Bakhshandeh, Mater. Sci. Eng. A, 583: 36–42 (2013); https://doi.org/10.1016/j.msea.2013.06.061
  30. A. Habibi and M. Ketabchi, Materials and Design, 34: 483–487 (2012); https://doi.org/10.1016/j.matdes.2011.07.029
  31. Y. Liu and S. Cai, Mater. Sci. Eng. A, 755: 116–127 (2019); https://doi.org/10.1016/j.msea.2019.04.006
  32. J.E. Field, S.M. Walley, W.G. Proud, H.T. Goldrein, and C.R. Siviour, Int. J. Impact Engineering, 30: 725–775 (2004).
  33. N.W. Buijs, Stainless Steel World, 3: 1–4 (2010).
  34. E.V. Shorokhov I.N. Zhgilev, I.V. Khomskaya, I.G. Brodova, V.I. Zel’dovich, D.V. Gunderov, N.Yu. Frolova, A.A. Gurov, N.P. Oglezneva, I.G. Shirinkina, A.E. Kheifets, and V.V. Astaf’ev, Russ. Met., 4: 323–327 (2010).
  35. I.V. Khomskaya, E.V. Shorokhov, V.I. Zel’dovich, A.E. Kheifets, N.Y. Frolova, A.V. Abramov, P.A. Nasonov, and I.V. Minaev, Russ. Met., 4: 292–299 (2013).
  36. D.K. Qi, M.X. Tang, L. Lu, F. Zhao, L. Wang, and S.N. Luo, J. Mater. Sci., 54: 4314–4324 (2019); https://doi.org/10.1007/s10853-018-3102-x
  37. D.K. Bonora, J. Dynamic Behavior Mater., 1: 136–152 (2015); https://doi.org/10.1007/s40870-015-0013-7
  38. M. Hörnqvist, Acta Mater., 89: 163–180 (2015); https://doi.org/10.1016/j.actamat.2015.01.053
  39. J. Wang, R. Yang, L. Jiang, X. Wang, and N. Zhou, Appl. Phys. A, 113: 771–777 (2013); https://doi.org/10.1007/s00339-013-7590-x
  40. J. Wang, N. Zhou, B. Li, Ji-Sheng Qian, and Z. Zheng, Combustion, Explosion, and Shock Waves, 47: 369–373 (2011); https://doi.org/10.1134/S0010508211030166
  41. A.B. Nayzabekov and I.E. Volokitina, Phys. Metals. Metallogr., 120, No. 2: 177–183 (2019); https://doi.org/10.1134/S0031918X19020133
  42. I.E. Volokitina, A.I. Denissova, A.V. Volokitin, T.D. Fedorova, D.N. Lavrinyuk, Application of cryogenic technologies in deformation processing of metals, Prog. Phys. Met., 25, No. 1: 161–194 (2024); https://doi.org/10.15407/ufm.25.01.161
  43. S.N. Lezhnev, I.E. Volokitina, and A.V. Volokitin, Phys. Metals. Metallogr., 118, No. 11: 1167–1170 (2017); https://doi.org/10.1134/S0031918X17110072
  44. I. Volokitina, A. Volokitin, and B. Makhmutov, Symmetry, 16, No. 8: 997 (2024); https://doi.org/10.3390/sym16080997
  45. A. Volokitin, I. Volokitina, and E. Panin, Metallogr. Microst. Anal., 13: 1013–1016 (2024); https://doi.org/10.1007/s13632-024-01078-x
  46. I. Volokitina, Superplasticity of metals in modern engineering and technology, Prog. Phys. Met., 25, No. 4: 570–599 (2024); https://doi.org/10.15407/ufm.25.03.570
  47. I.E. Volokitina, A.I. Denissova, A.V. Volokitin, and E.A. Panin, Methods for obtaining a gradient structure, Prog. Phys. Met., 25, No. 1: 132–160 (2024); https://doi.org/10.15407/ufm.25.01.132
  48. S. Lezhnev, I. Volokitina, and T. Koinov, J. Chem. Technol. Metall., 49, No. 6: 621 (2014); https://journal.uctm.edu/node/j2014-6/14-Koinov-621-630.pdf
  49. G. Kurapov, E. Orlova, I. Volokitina, and A. Turdaliev, J. Chem. Technol. Metall., 51, No. 4: 451–457 (2016); https://journal.uctm.edu/node/j2016-4/13-Volokitina_451-457.pdf
  50. I. Volokitina, J. Chem. Technol. Metall., 57, No. 3: 631–636 (2022); https://journal.uctm.edu/node/j2022-3/24_21-123_br_3_pp_631-636.pdf
  51. I. Volokitina, A. Volokitin, and D. Kuis, J. Chem. Technol. Metall., 56: 643 (2021); https://journal.uctm.edu/node/j2021-3/25_20-126p643-647.pdf
  52. I.E. Volokitina, Metal Sci. Heat Treat., 62: 253–258 (2020); https://doi.org/10.1007/s11041-020-00544-x
  53. A. Volokitin, I. Volokitina, and E. Panin, Metallogr. Microst. Anal., 11, No. 4: 673–675 (2022); https://doi.org/10.1007/s13632-022-00877-4
  54. S. Lezhnev, A. Naizabekov, and I. Volokitina, J. Chem. Technol. Metall., 52, No. 4: 626–635 (2017); https://journal.uctm.edu/node/j2017-4/3_17-04_Lezhnev_p_626-635.pdf
  55. S. Lezhnev, A. Naizabekov, E. Panin, and I. Volokitina, Proc. Eng., 81: 1499 (2014); https://doi.org/10.1016/j.proeng.2014.10.180
  56. H. Mecking and U.F. Kocks, Acta Metall., 29: 1865–1875 (1981).
  57. S. Cheng, J.A. Spencer, and W.W. Milligan, Acta Mater., 51: 4505–4518 (2003); https://doi.org/10.1016/S1359-6454(03)00286-6
  58. M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, and E. Ma, Acta Mater., 55: 4041–4065, (2007); https://doi.org/10.1016/j.actamat.2007.01.038
  59. H. Conrad, Mater. Sci. Eng. A, 341: 216–228 (2003); https://doi.org/10.1016/S0921-5093(02)00238-1
  60. S. Queck, Z. Chooi, Z. Wu, Y. Zhang, and D. Srolovitz, J. Mech. Phys. Solids, 88: 252–266 (2016); https://doi.org/10.1016/j.jmps.2015.12.012
  61. G. Saada and G. Dirras, Dislocations in Solids, 15: 199–248 (2009); https://doi.org/10.1016/S1572-4859(09)01503-4
  62. S. Brandstetter, H. Swygenhoven, S. Petegem, B. Schmitt, R. Maaß, and P. Derlet, Adv. Mater., 18: 1545 (2006); https://doi.org/10.1002/adma.200600397
  63. S. Lezhnev, A. Naizabekov, A. Volokitin, and I. Volokitina, Proc. Eng., 81: 1505 (2014); https://doi.org/10.1016/j.proeng.2014.10.181
  64. S. Lezhnev, E. Panin, and I. Volokitina, Adv. Mater. Res., 814: 68–75 (2013); https://doi.org/10.4028/www.scientific.net/AMR.814.68
  65. V.V. Chigirinsky and I.E. Volokitina, Energy and power parameters of rolling profiles for wheel rims of reduced metal intensity with toroidal flanges, Metallofiz. Noveishie Tekhnol., 46, No. 4: 343–354 (2024); https://doi.org/10.15407/mfint.46.04.0343
  66. V.V. Chigirinsky, Y.S. Kresanov, and I.Y. Volokitina, Study of kinematic and deformation parameters of rolling of compressor blade workpieces, Metallofiz. Noveishie Tekhnol., 45, No. 5: 631–646 (2023); https://doi.org/10.15407/mfint.45.05.0631
  67. D.A. Sinitsin, A.E.M.M. Elrefaei, A.O. Glazachev, D.V. Kuznetsov, A.A. Parfenova, I.E. Volokitina, E.I. Kayumova, and I.V. Nedoseko, Construction Mater. Prod., 6, No. 6: 2 (2023); https://doi.org/10.58224/2618-7183-2023-6-6-2
  68. I. Volokitina, A. Volokitin, and E. Panin, J. Mater. Res. Technol., 31: 2985–2993 (2024); https://doi.org/10.1016/j.jmrt.2024.07.038
  69. I.E. Volokitina and A.V. Volokitin, Metallurgist, 68: 52–58 (2024); https://doi.org/10.1007/s11015-024-01703-8
  70. I. Volokitina, A. Volokitin, E. Panin, and B. Makhmutov, Symmetry, 16, No. 9: 1174 (2024); https://doi.org/10.3390/sym16091174
  71. J.G. Sevillano, P. Houtte, and E. Aernoudt, Prog. Mater. Sci., 25: 69–134 (1980); https://doi.org/10.1016/0079-6425(80)90001-8
  72. M.A. Meyers and L.E. Murr, Shock waves and high-strain-rate phenomena in metals: concepts and applications (New York: Springer: 1981), p. 487–530; https://doi.org/10.1007/978-1-4613-3219-0_30
  73. C.S. Smith, Transactions of the Metallurgical Society of AIME, 212: 574–589 (1958).
  74. E. Hornbogen, Shock-induced dislocations, Acta Metall., 10: 978–980 (1962); https://doi.org/10.1016/0001-6160(62)90153-0
  75. M.A. Meyers, A mechanism for dislocation generation in shock-wave deformation, Scripta Metall., 12: 21–26 (1978); https://doi.org/10.1016/0036-9748(78)90219-3
  76. R.W. Armstrong and S.M. Walley, Int. Mater. Rev. 53: 105–128 (2008); https://doi.org/10.1179/174328008X277795
  77. J. Weertman, Shock waves and high-strain-rate phenomena in metals: concepts and applications (New York: Springer: 1981), p. 469–486; https://doi.org/10.1007/978-1-4613-3219-0_29
  78. H. Kressel and N. Brown, Lattice defects in shock-deformed and cold-worked nickel, J. Appl. Phys., 38, No. 4: 1618–1625 (1967); https://doi.org/10.1063/1.1709733
  79. H.A. Grebe, H.R. Pak, and M.A. Meyers, Adiabatic shear localization in titanium and Ti-6 pct Al-4 pct V alloy, Metall. Trans. A, 16: 761–775 (1985); https://doi.org/10.1007/BF02814827
  80. S.P. Timothy and I.M. Hutchings, The structure of adiabatic shear bands in a titanium alloy, Acta Metall., 33, No. 4: 667–676 (1985); https://doi.org/10.1016/0001-6160(85)90030-6
  81. B. Dodd and Y. Bai, Ductile Fracture and Ductility (London: Academic Press: 1987).
  82. H. Rogers and C.V. Shastry, Shock waves and high-strain-rate phenomena in metals: concepts and applications (New York: Springer: 1981), p. 285–298; https://doi.org/10.1007/978-1-4613-3219-0_18
  83. D.E. Grady and M.E. Kipp, The growth of inhomogeneous thermoplastic shear, J. Phys. Colloques, 46: 291–298 (1985); https://doi.org/10.1051/jphyscol:1985537
  84. V.A. Tatarenko, T.M. Radchenko, A.Yu. Naumuk, and B.M. Mordyuk, Statistical-thermodynamic models of the Ni–Al-based ordering phases (L12, L10, B2): role of magnetic Ni-atoms’ contribution, Prog. Phys. Met., 25, No. 1: 3–26 (2024); https://doi.org/10.15407/ufm.25.01.003
  85. V.A. Tatarenko, T.M. Radchenko, A.Yu. Naumuk, and B.M. Mordyuk, Parameterization of diffusion characteristics of atomic-order relaxation kinetics in Ni–Al alloys, Prog. Phys. Met., 26, No. 1: 3–25 (2025); https://doi.org/10.15407/ufm.26.01.003
  86. T. Radchenko, H. Zapolsky, D. Blavette, and V. Tatarenko, Computation of kinetic and thermodynamic characteristics for close-packed crystalline solutions from diffuse scattering and phase diagram data, Acta Cryst. A, 60: s71 (2004).
  87. T.M. Radchenko, V.A. Tatarenko, H. Zapolsky, and D. Blavette, Statistical-thermodynamic description of the order–disorder transformation of D019-type phase in Ti–Al alloy, J. Alloys Compd., 452, No. 1: 122–126 (2008); https://doi.org/10.1016/j.jallcom.2006.12.149
  88. V.A. Tatarenko, S.M. Bokoch, V.M. Nadutov, T.M. Radchenko, and Y.B. Park, Semi-empirical parameterization of interatomic interactions and kinetics of the atomic ordering in Ni–Fe–C permalloys and elinvars, Def. Diffus. Forum, 280: 29–78 (2008); https://doi.org/10.4028/www.scientific.net/ddf.280-281.29
  89. M.A. Latypova and Z.S. Gelmanova, Ordering alloys with micro- and nanoscale structures based on cubic lattices: mechanical and thermodynamic properties, Prog. Phys. Met., 25, No. 1: 26–63 (2025); https://doi.org/10.15407/ufm.26.01.027
  90. I.E. Volokitina, A.I. Denissova, and A.V. Volokitin, Evolution of the microstructure of steel in the processes of severe plastic deformation, Prog. Phys. Met., 26, No. 1: 89–119 (2025); https://doi.org/10.15407/ufm.26.01.091
  91. J.H. Giovanola, Adiabatic shear banding under pure shear loading Part I: direct observation of strain localization and energy dissipation measurements, Mech. Mater., 7: 59–71 (1988); https://doi.org/10.1016/0167-6636(88)90006-3