Grain Growth during Annealing of Ultrafine-Grained and Nanomaterials

VOLOKITINA I.E., FEDOROVA T.D., and LAVRINYUK D.N.

Karaganda Industrial University, 30 Republic Ave., 101400 Temirtau, Kazakhstan

Received 01.07.2024, Final version 05.05.2025 Download PDF logo PDF

Abstract
Ultrafine-grained metals and alloys with a submicrocrystalline structure in some cases demonstrate a set of unique properties, for example, high strength and hardness, low-temperature superplasticity at high strain rates, and improved electrical and magnetic properties. Severe plastic deformation (SPD) is one of the main methods for producing ultrafine-grained materials, and various methods of SPD have been developed in recent decades. The uniqueness of these methods is the ability to deform the material to large degrees of deformation without significantly changing the external dimensions of the product; that is, strain by methods of SPD is mainly aimed at changing the internal structure of materials, namely, the dimensions of structural elements. Along with the ultrafine structure, the most important feature of ultrafine-grained materials obtained by SPD is the presence of deformation-modified (‘nonequilibrium’) crystallite boundaries. In recent years, considerable attention has been paid to the study of nonequilibrium grain boundaries. However, as a rule, such studies were carried out using one research method (electron microscopy, determination of diffusion parameters, tunnelling or atomic force microscopy, etc.), which did not allow a comprehensive characterisation of the state of grain boundaries. Therefore, there is a need for a comprehensive study of the state of grain boundaries in ultrafine-grained materials subjected to SPD.

Keywords: ultra-fine-grained metals, nanomaterials, grain growth, grain boundaries, deformation modification.

DOI: https://doi.org/10.15407/ufm.26.02.***

Citation: I.E. Volokitina, T.D. Fedorova, and D.N. Lavrinyuk, Grain Growth during Annealing of Ultrafine-Grained and Nanomaterials, Progress in Physics of Metals, 26, No. 2: ***–*** (2025)


References  
  1. A.V. Volokitin, I.E. Volokitina, and E.A. Panin, Thermomechanical treatment of stainless steel piston rings, Prog. Phys. Met., 23, No. 3: 411–437 (2022); https://doi.org/10.15407/ufm.23.03.411
  2. I.E. Volokitina, A.V. Volokitin, and E.A. Panin, Martensitic transformations in stainless steels, Prog. Phys. Met., 23, No. 4: 684–728 (2022); https://doi.org/10.15407/ufm.23.04.684
  3. I. Volokitina, A. Volokitin, and B. Makhmutov, Symmetry, 16, No. 8: 997 (2024); https://doi.org/10.3390/sym16080997
  4. I.E. Volokitina, A.V. Volokitin, M.A. Latypova, V.V. Chigirinsky, and A.S. Kolesnikov, Effect of controlled rolling on the structural and phase transformations, Prog. Phys. Met., 24, No. 1: 132–156 (2023); https://doi.org/10.15407/ufm.24.01.132
  5. N. Zhangabay, I. Baidilla, A. Tagybayev, U. Suleimenov, Z. Kurganbekov, M. Kambarov, A. Kolesnikov, G. Ibraimbayeva, K. Abshenov, I. Volokitina, B. Nsanbayev, Y. Anarbayev, and P. Kozlov, Case Studies Construct. Mater., 18: e02161 (2023); https://doi.org/10.1016/j.cscm.2023.e02161
  6. I. Volokitina, B. Sapargaliyeva, A. Agabekova, A. Volokitin, S. Syrlybekkyzy, A. Kolesnikov, G. Ulyeva, A. Yerzhanov, and P. Kozlov, Case Studies Con-struct. Mater., 18: e02162 (2023); https://doi.org/10.1016/j.cscm.2023.e02162
  7. I.E. Volokitina, Structural and phase transformations in alloys under the se-vere plastic deformation, Prog. Phys. Met., 3: No. 24: 593–622 (2023); https://doi.org/10.15407/ufm.24.03.593.
  8. I. Volokitina, A. Bychkov A. Volokitin, and A. Kolesnikov, Metallogr. Micro-struct. Anal., 12, No. 3: 564–566 (2023); https://doi.org/10.1007/s13632-023-00966-y
  9. I. Volokitina, A. Volokitin, A. Denissova, T. Fedorova, D. Lawrinuk, A. Kolesnikov, A. Yerzhanov, Y. Kuatbay, and Y. Liseitsev, Case Studies Construct. Mater., 19: e02346 (2023); https://doi.org/10.1016/j.cscm.2023.e02346
  10. I. Volokitina, A. Volokitin, E. Panin, T. Fedorova, D. Lawrinuk, A. Kolesnikov, A. Yerzhanov, Z. Gelmanova, and Y. Liseitsev, Case Studies Construct. Mater., 19: e02609 (2023); https://doi.org/10.1016/j.cscm.2023.e02609
  11. I.E. Volokitinа and A.V. Volokitin, Metallurgist, 67: 232–239 (2023); https://doi.org/10.1007/s11015-023-01510-7
  12. J. De Messemaeker, B. Verlinden, and J. Van Humbeeck, Acta Mater., 53: 4245–4257 (2005); https://doi.org/10.1016/j.actamat.2005.05.024
  13. A. Naizabekov, A. Arbuz, S. Lezhnev, E. Panin, and I. Volokitina, Phys. Scr., 94, No. 10: 105702 (2019); https://doi.org/10.1088/1402-4896/ab1e6e
  14. J. Wang, N. Li, O. Anderoglu, X. Zhang, A. Misra, J.Y. Huang, and J.P. Hirth, Acta Mater., 58: 2262–2270 (2010); https://doi.org/10.1016/j.actamat.2009.12.013
  15. I.E. Volokitina, Metal Sci. Heat Treat., 61: 234 (2019); https://doi.org/10.1007/s11041-019-00406-1
  16. S.A. Firstov, T.G. Rogul, and O. A. Shut, Funct. Mater., 16: 364–373 (2009)
  17. R.Z. Valiev, B. Straumal, and T.G. Langdon, Ann. Rev. Mater. Res., 2: 357–382 (2022); https://doi.org/10.1146/annurev-matsci-081720-123248
  18. R.Z. Valiev, V.Yu. Gertsman, and O.A. Kaibyshev, Phys. Stat. Sol., 97: 11–56 (1986); https://doi.org/10.1002/pssa.2210970102
  19. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Prog. Mater. Sci., 45: 103–189 (2000); https://doi.org/10.1016/S0079-6425(99)00007-9
  20. S.V. Divinski, G.Reglitz, I.S. Golovin, M. Peterlechner, R. Lapovok, Y. Estrin, and G. Wilde, Acta Mater., 82: 11–21 (2015); https://doi.org/10.1016/j.actamat.2014.08.064
  21. A.P. Sutton and R.W. Balluffi, Interfaces in Crystalline Materials (Oxford: Clarendon Press: 1995).
  22. H. Gleiter, Prog. Mater. Sci., 33: 223–315 (1989); https://doi.org/10.1016/0079-6425(89)90001-7
  23. H. Gleiter, Acta Mater., 48: 1–29 (2000); https://doi.org/10.1016/S1359-6454(99)00285-2
  24. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and T.Y. Zhu, JOM, 58: 33–39 (2006); https://doi.org/10.1007/s11837-006-0213-7
  25. M.W. Grabski and R. Korski, Phil. Mag., 22: 707–715 (1970); https://doi.org/10.1080/14786437008220941
  26. S. Lastigue and L. Priester, Acta Metall., 31: 1809–1819 (1983); https://doi.org/10.1016/0001-6160(83)90127-X
  27. P.H. Pumphrey and H. Gleiter, Phil. Mag., 32: 881–885 (1975); https://doi.org/10.1080/14786437508221629
  28. A.A. Nazarov, Lett. Mater., 8: 372–381 (2018); https://doi.org/10.22226/2410-3535-2018-3-372-381
  29. R.Z. Valiev, V.Y. Gertsman, O.A. Kaibyshev, and Sh.Kh. Khannanov, Phys. Stat. Sol., 77: 97–105 (1983).
  30. D.J. Dingley and R.C. Pond, Acta Metal., 27: 667–682 (1979); https://doi.org/10.1016/0001-6160(79)90018-X
  31. M. Jenecek and K. Tangi, Mater. Sci. Eng. A, 138: 237–245 (1991).
  32. I.E. Volokitina, Metal Sci. Heat Treat., 63: 163 (2021); https://doi.org/10.1007/s11041-021-00664-y
  33. I.E. Volokitina and A.V. Volokitin, Phys. Metals Metallogr., 119, No. 9: 917–921 (2018); https://doi.org/10.1134/S0031918X18090132
  34. A. Volokitin, I. Volokitina, and E. Panin, J. Mater. Res. Technol., 31: 2985 (2024); https://doi.org/10.1016/j.jmrt.2024.07.038
  35. I.E. Volokitina and G.G. Kurapov, Metal Sci. Heat Treat., 59, Nos. 11–12: 786 (2018); https://doi.org/10.1007/s11041-018-0227-0
  36. A.B. Nayzabekov and I.E. Volokitina, Phys. Metals Metallogr., 120, No. 2: 177–183 (2019); https://doi.org/10.1134/S0031918X19020133
  37. V. Chigirinsky and I. Volokitina, Eng. Solid Mech., 12, No. 2: 113–126 (2024); https://doi.org/10.5267/j.esm.2023.11.001
  38. I. Volokitina, B. Sapargaliyeva, A. Agabekova, S. Syrlybekkyzy, A. Volokitin, L. Nurshakhanova, F. Nurbaeva, A. Kolesnikov, G. Sabyrbayeva, A. Izbassar, O. Kolesnikova, Y. Liseitsev, and S. Vavrenyuk, Case Studies Construct. Ma-ter., 19: e02256 (2023); https://doi.org/10.1016/j.cscm.2023.e02256
  39. A. Nurumgaliyev, T. Zhuniskaliyev, V. Shevko, Y. Mukhambetgaliyev, B. Kelamanov, Y. Kuatbay, A. Badikova, G. Yerekeyeva, and I. Volokitina, Sci. Rep., 14, No. 1: 7456 (2024); https://doi.org/10.1038/s41598-024-57529-6
  40. S. Lezhnev, I. Volokitina, and T. Koinov, J. Chem. Technol. Metallurgy, 49, No. 6: 621 (2014); https://journal.uctm.edu/node/j2014-6/14-Koinov-621-630.pdf
  41. V.V. Rybin, A.A. Zisman, and N.Y. Zolotorevsky, Acta Metall. Mater., 41: 2211–2217 (1993); https://doi.org/10.1016/0956-7151(93)90390-E
  42. R.Z. Valiev A.V. Korznikov, and R.R. Mulyukov, Mater. Sci. Eng., 186: 141–148 (1993); https://doi.org/10.1016/0921-5093(93)90717-S
  43. R.K. Islamgaliev and R.Z. Valiev, Phys. Metals Metallogr., 87: 46–52 (1999).
  44. S.V. Divinski, G. Reglitz. H. Rosner, Y. Estrin, and G. Wilde, Acta Mater., 59: 1974–1985 (2011); https://doi.org/10.1016/j.actamat.2010.11.063
  45. Z. Horita, D.J. Smith, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon, J. Mater. Res., 11: 1880–1890 (1996).
  46. X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, and R.Z. Valiev, Mater. Sci. Eng. A, 540: 1–12 (2012); https://doi.org/10.1016/j.msea.2012.01.080
  47. T.E. Hsieh and R.W. Balluffi, Acta Metall., 37: 2133–2139 (1989); https://doi.org/10.1016/0001-6160(89)90138-7
  48. L.S. Shvindlerman, G. Gottstein, V.A. Ivanov, D.A. Molodov, D. Kolesnikov, and W. Łojkowski, J. Mater. Sci., 41: 7725–7729 (2006); https://doi.org/10.1007/s10853-006-0563-0
  49. V.N. Kaihorodov and S.M. Klotsman, Pisma v ZhETF, 28: 386–388 (1978) (in Russian).
  50. V.N. Kaigorodov, V.V. Popov, E.N. Popova, T.N. Pavlov, and S.V. Efremova, J. Phase Equilib. Diffus., 26: 510–515 (2005); https://doi.org/10.1007/s11669-005-0043-2
  51. V.V. Popov, Solid State Phenom., 138: 133–144 (2008); https://doi.org/10.4028/www.scientific.net/SSP.138.133
  52. V.V. Popov, Defect Diffus. Forum, 289–292: 633–640 (2009); https://doi.org/10.4028/www.scientific.net/DDF.289-292.633
  53. Y. Amouyal, E. Rabkin, and Y. Mishin, Acta Mater., 53: 3795–3805 (2005); https://doi.org/10.1016/j.actamat.2005.04.043
  54. C.C. Camilo, E.C. de Souza, P.L Di Lorenzo, and J.M.D. Rollo, Braz. J. Biom. Eng., 27: 175–181 (2011); https://doi.org/10.4322/RBEB.2011.014
  55. Y. Amouyal, E. Rabkin, and Y. Mishin, Acta Mater., 55: 6681–6689 (2007); https://doi.org/10.1016/j.actamat.2007.08.023
  56. J. Zimmerman, A. Sharma, S.V. Divinski, and E. Rabkin, Scr. Mater., 182: 90–93 (2020); https://doi.org/10.1016/j.scriptamat.2020.03.008
  57. G. Wilde and S. Divinski, Mater. Transactions, 60: 1302–1315 (2019); https://doi.org/10.2320/matertrans.MF201934
  58. S.N. Lezhnev, I.E. Volokitina, and A.V. Volokitin, Phys. Metals Metallogr., 118, No. 11: 1167–1170 (2017); https://doi.org/10.1134/S0031918X17110072
  59. I. Volokitina, A. Volokitin, E. Panin, and B. Makhmutov, Symmetry, 16, No. 9: 1174 (2024); https://doi.org/10.3390/sym16091174
  60. I.E. Volokitina, A.I. Denissova, A.V. Volokitin, T.D. Fedorova, and D.N. Lavrinyuk, Prog. Phys. Met., 25, No. 1: 161–194 (2024); https://doi.org/10.15407/ufm.25.01.161
  61. A. Naizabekov, I. Volokitina, A. Volokitin, and E. Panin, J. Mater. Eng. Per-form., 28, No. 3: 1762 (2019); https://doi.org/10.1007/s11665-019-3880-6
  62. G. Kurapov, E. Orlova, I. Volokitina, and A. Turdaliev, J. Chem. Technol. Metallurgy., 51, No. 4: 451–457 (2016); https://journal.uctm.edu/node/j2016-4/13-Volokitina_451-457.pdf
  63. A. Volokitin, I. Volokitina, and E. Panin, Metallogr. Microstruct. Anal., 13: 1013–1016 (2024); https://doi.org/10.1007/s13632-024-01078-x
  64. I.E. Volokitina, A.I. Denissova, A.V. Volokitin, and E.A. Panin, Prog. Phys. Met., 25, No. 1: 132–160 (2024); https://doi.org/10.15407/ufm.25.01.132.
  65. I. Volokitina, J. Chem. Technol. Metallurgy, 57, No. 3: 631–636 (2022); https://journal.uctm.edu/node/j2022-3/24_21-123_br_3_pp_631-636.pdf
  66. A.P. Zhilyaev and T.G. Langdon, Prog. Mater. Sci., 53: 893–979 (2008); https://doi.org/10.1016/j.pmatsci.2008.03.002
  67. T.G. Langdon and R.Z. Valiev, Prog. Mater. Sci., 51: 881–891(2006).
  68. I. Volokitina, A. Volokitin, and D. Kuis, J. Chem. Technol. Metallurgy, 56: 643 (2021); https://journal.uctm.edu/node/j2021-3/25_20-126p643-647.pdf
  69. I.E. Volokitina, Metal Sci. Heat Treat., 62: 253–258 (2020); https://doi.org/10.1007/s11041-020-00544-x.
  70. S. Lezhnev, A. Naizabekov, E. Panin, and I. Volokitina, Proc. Eng., 81: 1499 (2014); https://doi.org/10.1016/j.proeng.2014.10.180
  71. S. Lezhnev A. Naizabekov, A. Volokitin, and I. Volokitina, Proc. Eng., 81: 1505 (2014); https://doi.org/10.1016/j.proeng.2014.10.181
  72. S. Lezhnev, A. Naizabekov, and I. Volokitina, J. Chem. Technol. Metallurgy, 52, No. 4: 626 (2017); https://journal.uctm.edu/node/j2017-4/3_17-04_Lezhnev_p_626-635.pdf
  73. A. Volokitin, I. Volokitina, and E. Panin, Metallogr. Microstruct. Anal., 11, No. 4: 673–675 (2022); https://doi.org/10.1007/s13632-022-00877-4
  74. S. Lezhnev, E. Panin, and I. Volokitina, Adv. Mater. Res., 814: 68–75 (2013); https://doi.org/10.4028/www.scientific.net/AMR.814.68
  75. D.A. Sinitsin, A.E.M.M. Elrefaei, A.O. Glazachev, D.V. Kuznetsov, A.A. Parfenova, I.E. Volokitina, E.I. Kayumova, and I.V. Nedoseko, Con-struct. Mater. Products, 6, No. 6: 2 (2023); https://doi.org/10.58224/2618-7183-2023-6-6-2
  76. R.A. Andrievskii and A.M. Glezer, Phys. Metals Metallogr., 88: 45–66 (1999).
  77. P.J. Apps, M. Berta, and P.B. Prangnell, Acta Mater., 53: 499–511 (2005); https://doi.org/10.1016/j.actamat.2004.09.042
  78. M. Cabibbo, E. Evangelista, and C. Scalabroni, Micron, 36: 401–414 (2005); https://doi.org/10.1016/j.micron.2005.03.004
  79. K. Furuno, H. Asamatsu, K. Ohishi, M. Furukawa, Z. Horita, and T.G. Langdon, Acta Mater., 52: 2497–2507 (2004); https://doi.org/10.1016/j.actamat.2004.01.040
  80. D. Setman, E. Schafler, E. Korznikova, and M.J. Zehetbauer, Mater. Sci. Eng. A, 493, Nos. 1–2: 116–122 (2008); https://doi.org/10.1016/j.msea.2007.06.093
  81. W. Cao, C. Gu, E. Pereloma, and C.H.J. Davies, Mater. Sci. Eng. A, 492: 74–79 (2008).
  82. S. Suwas, G. Gottstein, and R. Kumar, Mater. Sci. Eng. A, 471: 1–14 (2007); https://doi.org/10.1016/J.MSEA.2007.05.030
  83. V.N. Perevezentsev, V.V. Rybin, and V.N. Chuvil’deev, Acta Metall. Mater., 40: 887–924 (1992); https://doi.org/10.1016/0956-7151(92)90068-P
  84. R.Z. Valiev and I.V. Aleksandrov, Doklady Phys., 46: 633–635 (2001); https://doi.org/10.1134/1.1408991
  85. H.K. Kim and W.J. Kim, Mater. Sci. Eng. A, 385: 300–308 (2004); https://doi.org/10.1016/S0921-5093(04)00882-2
  86. V.N. Chuvil’deev, T.G. Nieh, M.Yu. Gryaznov, A.N. Sysoev, and V.I. Kopylov, J. Alloys Compd., 378: 253–257 (2004); https://doi.org/10.1016/j.jallcom.2003.10.062
  87. H.B. Geng, S.B. Kang, and B.K. Min, Mater. Sci. Eng. A, 373: 229–238 (2004); https://doi.org/10.1016/j.msea.2004.01.047
  88. H.V. Atkinson, Acta Metall., 36: 469 (1988); https://doi.org/10.1016/0001-6160(88)90079-X
  89. C.S. Pande and R.A. Masumura, Nanostructures: Synthesis, Functional Properties, and Applications (Eds. T. Tsakalakos, I.A. Ovid’ko, and A.K. Vasudevan) (Dordrecht–Boston: Kluwer Academic: 2003).
  90. A.J. Haslam, D. Moldovan, V. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter, Acta Mater., 51: 2097 (2003); https://doi.org/10.1016/S1359-6454(03)00011-9
  91. C.S. Smith, Transactions AIME, 175: 15 (1948).
  92. C.S. Smith, Acta Metall., 1: 295 (1953); https://doi.org/10.1016/0001-6160(53)90102-3
  93. C.S. Smith, Metall. Rev., 9: 1 (1964).
  94. V.N. Chuvil’deev, A.V. Nokhrin, and V.I. Kopylov, Fiz. Met. Metalloved., 96, No. 5: 51–60 (2003).
  95. A.N. Tyumentsev, A.D. Korotaev, and Yu.P. Pinzhin, Processing Applica-tions: Proc. 2nd Int. Conf. (Vienna: J. Wiley VCH Weinheim: 2004), p. 381–386; https://doi.org/10.1002/3527602461.ch6j
  96. R.Z. Valiev, A.V. Sergueeva, and A.K. Mukherjee, Scr. Mater., 49: 669–674 (2003); https://doi.org/10.1016/S1359-6462(03)00395-6
  97. Z.Q. Yang, Mater. Lett., 60: 3846–3850 (2006); https://doi.org/10.1016/j.matlet.2006.03.127
  98. G. Gottstein, Physical Foundations of Materials Science (Berlin: Springer: 2004); https://doi.org/10.1007/978-3-662-09291-0
  99. K. Edalati, T. Fujioka, and Z. Horita, Mater. Sci. Eng. A, 497: 168–173 (2008); https://doi.org/10.1016/j.msea.2008.06.039
  100. C.E. Krill III, L. Helfen, D. Michels, N. Natter, A. Fitch, O. Masson, and R. Birringer, Phys. Rev. Lett., 86: 842 (2001); https://doi.org/10.1103/PhysRevLett.86.842
  101. D. Farkas, S. Mohanty, and J. Monk, Phys. Rev. Lett., 98: 165502 (2007); https://doi.org/10.1103/PhysRevLett.98.165502
  102. U. Czubayko, V.G. Sursaeva, G. Gottstein, and L.S. Shvindlerman, Acta Mater., 46: 5863 (1998); https://doi.org/10.1016/S1359-6454(98)00241-9
  103. M. Upmanyu, D.J. Srolovitz, L.S. Shvindlerman, and G. Gottstein, Acta Mater., 50: 1405 (2002); https://doi.org/10.1016/S1359-6454(01)00446-3
  104. G. Gottstein, A.H. King, and L.S. Shvindlerman, Acta Mater., 48: 397 (2000); https://doi.org/10.1016/S1359-6454(99)00373-0
  105. Y.B. Wang, B.Q. Li, M.L. Sui, and S.X. Mao, Appl. Phys. Lett., 92: 011903 (2008); https://doi.org/10.1063/1.2828699
  106. H.H. Shuro, Y. Kuo, M. Todaka, and M. Umemoto, J. Mater. Sci, 47: 8128–8133 (2012); https://doi.org/10.1007/s10853-012-6708-4
  107. I.Y. Litovchenko, A.N. Tyumentsev, M.I. Zahozheva, and A.V. Korznikov, Rev. Adv. Mater. Sci., 31: 47–53 (2012).
  108. A. Etienne, B. Radiguet, C. Genevois, J.-M. Le Breton, R. Valiev, and P. Pareige, Mater. Sci. Eng. A, 527: 5805–5810 (2010); https://doi.org/10.1016/j.msea.2010.05.049
  109. D.A.H. Hanaorn, W. Xu, M. Ferry, and C.C. Sorrell, J. Crystal Growth, 359: 83–91 (2012); https://doi.org/10.1016/j.jcrysgro.2012.08.015
  110. S.-J. Shih, S. Lozano-Perez, and D.J.H. Cockayne, J. Mater. Res., 25: 260–265 (2010); https://doi.org/10.1557/jmr.2010.0046