Atomistic Modelling of Frictional Anisotropy of Metal Nanoparticles on Graphene

KHOMENKO O.V., BIESIEDINA A.A., KHOMENKO K.P., TROFIMENKO P.E., and CHELNOKOV I.A.

Sumy State University, 116 Kharkivska Str., UA-40007 Sumy, Ukraine

Received 17.02.2025, Final version 30.04.2025 Download PDF logo PDF

Abstract
The object of the research is the process of frictional interaction of surfaces with anisotropic roughness. This study aims to improve the model of frictional anisotropy of the aluminium, palladium, and platinum nanoparticles on graphene. The objective is to familiarise oneself with the standard models employed in atomic-level physics of friction and surface wear, utilising molecular-dynamics methods. Additionally, the aim is to develop a mathematical model that characterises the relationship between the friction force and the shear direction. The goal is to identify the structural, tribological, and kinetic patterns at both atomic scale and macroscopic one, when the aluminium, palladium, and platinum nanoparticles move on the surface of graphene under varying shear angles and temperature conditions. The study investigates the impact of friction on nanoparticles on a graphene sheet in various lateral directions using classical molecular-dynamics simulations. The study focuses on anisotropy at a high sliding speed of nanoparticles comprising 10000 atoms on the graphene surface. The lack of a distinct angular dependence of the friction force is attributed to the impact of incommensurability, the short-range order of the contact surfaces of nanoparticles, and the deformation of graphene. For a better understanding of the results, the work includes the dependences corresponding to the optimal numerical values of the parameters.

Keywords: molecular dynamics, friction force, graphene, nanoparticle, nanotribology.

DOI: https://doi.org/10.15407/ufm.26.02.***

Citation: O.V. Khomenko, A.A. Biesiedina, K.P. Khomenko, P.E. Trofimenko, and I.A. Chelnokov, Atomistic Modelling of Frictional Anisotropy of Metal Nanoparticles on Graphene, Progress in Physics of Metals, 26, No. 2: ***–*** (2025)


References  
  1. G. Fessler, A. Sadeghi, T. Glatzel, S. Goedecker, and E. Meyer, Tribol. Lett., 67, No. 2: 59 (2019); https://doi.org/10.1007/s11249-019-1172-9
  2. L. Chen, Y. Wang, H. Bu, and Y. Chen, J. Nanoengineering and Nanosystems, 227, No. 3: 130 (2013); https://doi.org/10.1177/1740349913482117
  3. G. He, M.H. Muser, and M.O. Robbins, Science, 284: 1650 (1999); https://doi.org/10.1126/science.284.5420.1650
  4. P. Depondt, A. Ghazali, and J.C.S. Levy, Surf. Sci., 419: 29 (1998); https://doi.org/10.1016/S0039-6028(98)00767-5
  5. C. Almeida, R. Prioli, B. Fragneaud, L. Cancado, R. Paupitz, D. Galvao, M. De Cicco, M.Menezes, C. Achete, and R. Capaz, Scientific Reports, 6: 31569 (2016); https://doi.org/10.1038/srep31569
  6. Fundamentals of Friction and Wear on the Nanoscale (Eds. E. Gnecco, E. Meyer) (Cham: Springer: 2015); https://doi.org/10.1007/978-3-319-10560-4
  7. D. Kumar, J. Jain, and N.N. Gosvami, Springer Nature, 67: 44 (2019); https://doi.org/10.1007/s11249-019-1160-0
  8. A.D. Pogrebnjak, A.G. Ponomarev, A.P. Shpak, and Yu.A. Kunitskii, Phys.-Usp., 55, No. 3: 270 (2012); https://doi.org/10.3367/UFNE.0182.201203D.0287
  9. M. Feldmann, D. Dietzel, A. Tekiel, J. Topple, P. Grutter, and A. Schirmeisen, Phys. Rev. Lett., 117: 025502 (2016); https://doi.org/10.1103/PhysRevLett.117.025502
  10. A. Vanossi, D. Dietzel, A. Schirmeisen, E. Meyer, R. Pawlak, T. Glatzel, M. Kisiel, S. Kawai, and N. Manini, Beilstein J. Nanotechnol., 9: 1995 (2018); https://doi.org/10.3762/bjnano.9.190
  11. A.G. Solomenko, R.M. Balabai, T.M. Radchenko, and V.A. Tatarenko, Functionalization of quasi-two-dimensional materials: Chemical and strain-induced modifications, Progress in Physics of Metals, 23, No. 2: 147 (2022); https://doi.org/10.15407/ufm.23.02.147
  12. T.M. Radchenko, A.A. Shylau, and I.V. Zozoulenko, Conductivity of epitaxial and CVD graphene with correlated line defects, Solid State Communications, 195: 88 (2014); https://doi.org/10.1016/j.ssc.2014.07.012
  13. T.M. Radchenko, V.A. Tatarenko, V.V. Lizunov, V.B. Molodkin, I.E. Golentus, I.Yu. Sahalianov, and Yu.I. Prylutskyy, Defect-pattern-induced fingerprints in the electron density of states of strained graphene layers: diffraction and simulation methods, Phys. Status Solidi B, 256, No. 5: 1800406 (2019); https://doi.org/10.1002/pssb.201800406
  14. P. Szroeder, I. Sahalianov, T. Radchenko, V. Tatarenko, and Yu. Prylutskyy, The strain- and impurity-dependent electron states and catalytic activity of graphene in a static magnetic field, Optical Materials, 96: 109284 (2019); https://doi.org/10.1016/j.optmat.2019.109284
  15. I.Yu. Sahalianov, T.M. Radchenko, V.A. Tatarenko, and G. Cuniberti, Sensitivity to strains and defects for manipulating the conductivity of graphene, Europhysics Letters, 132, No. 4: 48002 (2020); https://doi.org/10.1209/0295-5075/132/48002
  16. T.M. Radchenko, V.A. Tatarenko, and G. Cuniberti, Effects of external mechanical or magnetic fields and defects on electronic and transport properties of graphene, Mater. Today: Proc., 35, Pt. 4: 523 (2021); https://doi.org/10.1016/j.matpr.2019.10.014
  17. O.S. Skakunova, S.I. Olikhovskii, T.M. Radchenko, S.V. Lizunova, T.P. Vladimirova, and V.V. Lizunov, X-ray dynamical diffraction by quasi-monolayer graphene, Scientific Reports, 13: 15950 (2023); https://doi.org/10.1038/s41598-023-43269-6
  18. C.M. Mancinelli and A.J. Gellman, Langmuir, 20, No. 5: 1680 (2004); https://doi.org/10.1021/la034764e
  19. S. Pietruszczak, Mechanics of Cohesive-frictional Materials, 4, No. 3: 281 (1999); https://doi.org/10.1002/(SICI)1099-1484(199905)4:3%3C281::AID-CFM63%3E3.0.CO;2-M
  20. Y. Emonoto and D. Tabor, Nature, 283: 51 (1980); https://doi.org/10.1038/283051a0
  21. Z. Ye, A. Martini, P. Thiel, H.H. Lovelady, K. McLaughlin, and D.A. Rabson, Phys. Rev. B, 93: 1354 (2016); https://doi.org/10.1103/PhysRevB.93.235438
  22. A.V. Khomenko, N.V. Prodanov, M.A. Khomenko, and B.O. Krasulya, Frictional anisotropy of metal nanoparticles adsorbed on graphene, J. Nano- Electron. Phys., 5, No. 3: 03018 (2013); https://doi.org/10.48550/arXiv.1303.4187
  23. A. Khomenko, M. Zakharov, and B.N.J. Persson, Frictional anisotropy of Al, Pt, and Pd nanoparticles on a graphene substrate, Tribol. Lett., 67, No. 4: 113 (2019); https://doi.org/10.1007/s11249-019-1226-z
  24. A.V. Khomenko and M.V. Zakharov, Atomistic modelling of frictional anisotropy of palladium nanoparticles on graphene, Condensed Matter Physics, 24, No. 1: 13301 (2021); https://doi.org/10.5488/CMP.24.13301
  25. A.V. Khomenko and N.V. Prodanov, Study of friction of Ag and Ni nanoparticles: an atomistic approach J. Phys. Chem. C, 114: 47 (2010); https://doi.org/10.1021/jp108981e
  26. A.V. Khomenko, N.V. Prodanov, and B.N.J. Persson, Atomistic modelling of friction of Cu and Au nanoparticles adsorbed on graphene, Condensed Matter Phys., 16: 33401: 1 (2013); https://doi.org/10.5488/CMP.16.33401
  27. A. Khomenko, M. Zakharov, D. Boyko, and B.N.J. Persson, Atomistic modeling of tribological properties of Pd and Al nanoparticles on a graphene surface, Beilstein J. Nanotechnol., 9: 1239 (2018); https://doi.org/10.3762/bjnano.9.115
  28. A.V. Khomenko, D.V. Boyko, M.V. Zakharov, K.P. Khomenko, and Y.V. Khyzhnya, Molecular dynamics of aluminum nanoparticles friction on graphene, Proceedings of the IEEE 7th International Conference on Nanomaterials: Application Properties (USA: IEEE) (2017), p. 01SSI05; https://doi.org/10.1109/NAP47236.2019.216990
  29. A.V. Khomenko, M.V. Zakharov, K.P. Khomenko, Y.V. Khyzhnya, and P.E. Trofimenko, Atomistic modeling of friction force dependence on contact area of metallic nanoparticles on graphene, Proceedings of the IEEE 8th International Conference on Nanomaterials: Application Properties (USA: IEEE) (2018), p. 1; https://doi.org/10.1109/NAP.2018.8915102
  30. G.-P. Ostermeyer, V. L. Popov, E. V. Shilko, and O. S. Vasiljeva, Multiscale Biomechanics and Tribology of Inorganic and Organic Systems (Cham: Springer: 2021); https://doi.org/10.1007/978-3-030-60124-9
  31. J.F. Nye, Fizicheskie Svoistva Kristallov [Physical Properties of Crystals] (Moskva: Mir: 1967) (Russian translation).
  32. P.I. Baransky et al., Elektrychni ta Galvanomahnitni Yavyshcha v Anizotropnykh Napivprovidnykakh [Electrical and Galvanomagnetic Phenomena in Anisotropic Semiconductors] (Kyiv: Naukova Dumka: 1977) (in Ukrainian).
  33. M.P. Shaskolskaya, Kristallografiya [Crystallography] (Moskva: Vysshaya Shkola: 1984) (in Russian).
  34. A.V. Nedolya, Krystalohrafiya, Fizychna Syla Krystaliv [Crystalography, The Physical Power of Crystals] (Zaporizhzhia: Prosvita: 2014) (in Ukrainian).
  35. P.Vannucci, Anisotropic Elasticity (Singapore: Springer: 2018).
  36. A. Pogrebnjak and A. Goncharov, Metallofiz. Noveishie Tekhnol., 38, No. 9: 1145 (2016); https://doi.org/10.15407/mfint.38.09.1145
  37. C. Gómez-Navarro, R.T. Weitz, A.M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, Nano Letters, 7, No. 11: 3499 (2007); https://doi.org/10.1021/nl072090c
  38. K. Srinivasan, B.R. Acharya, and G. Bertero, J. Appl. Phys., 107: 113912 (2010); https://doi.org/10.1063/1.3436583
  39. O.V. Fedchenko, A.I. Saltykova, and S.I. Protsenko, J. Nano- Electron. Phys., 4, No. 3: 03016 (2012).
  40. R. Hill, The Mathematical Theory of Plasticity (London: Oxford University Press: 1950).
  41. A.V. Khomenko, N.V. Prodanov, K.P. Khomenko, and D.S. Troshchenko, J. Nano- Electron. Phys., 6, No. 1: 01012 (2014).
  42. J. Li, X. Zeng, T. Ren, and E. van der Heide, Lubricants, 2, No. 3: 137 (2014); https://doi.org/10.3390/lubricants2030137
  43. G. Binnig and Н. Rohrer, Helvetica Physica Acta, 55: 726(1982); http://doi.org/10.5169/seals-115309
  44. J.P. Spatz, S. Sheiko, M. Moller, R.G. Winkler, P. Reineker, and O. Marti, Nanotechnology, 6: 44 (1995).
  45. R. Luthi, E. Meyer, L. Howald, H. Haefke, D. Anselmetti, M. Dreier, M. Ruetschi, Т. Bonner, R.M. Overney, J. Frommer, and H.-J. Guntherodt, J. Vac. Sci. Technol., 3: 1673 (1994); https://doi.org/10.1116/1.587260
  46. M. Lucas, X. Zhang, I. Palaci, C. Klinke, E. Tosatti, and E. Riedo, Nat. Mater., 8, No. 11: 876 (2009); http://doi.org/10.1038/nmat2529
  47. N.V. Prodanov and A.V. Khomenko, Computational investigation of the temperature influence on the cleavage of a graphite surface, Surf. Sci., 604, Nos. 7–8: 730 (2010); https://doi.org/10.1016/j.susc.2010.01.024
  48. A.V. Khomenko, D.S. Troshchenko, and L.S. Metlov, Effect of stochastic processes on structure formation in nanocrystalline materials under severe plastic deformation, Phys. Rev. E, 100: 022110 (2019); https://doi.org/10.1103/PhysRevE.100.022110
  49. A.V. Khomenko, I.A. Lyashenko, and L.S. Metlov, Metallofiz. Noveishie Tekhnol., 30, No. 6: 859 (2008).
  50. A. Khomenko, D. Boyko, and K. Khomenko, Atomistic tribological investigation of ultrathin layer of carbon disulfide between diamond surfaces, Mol. Cryst. Liq. Cryst., 719, No. 1: 1 (2021); https://doi.org/10.1080/15421406.2020.1860531
  51. D.C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press: 2004).
  52. M. Griebel, S. Knapek, and G. Zumbusch, Numerical Simulation in Molecular Dynamics (Berlin–Heidelberg: Springer-Verlag: 2007); https://doi.org/10.1007/978-3-540-68095-6
  53. J.A. van Meel, A. Arnold, D. Frenkel, S.F.P. Zwart, and R.G. Belleman, Mol. Sim., 34: 259 (2008); https://doi.org/10.1080/08927020701744295
  54. W. Liu, B. Schmidt, G. Voss, and W. Muller-Wittig, Comp. Phys. Commun., 179: 63424 (2008); https://doi.org/10.1016/j.cpc.2008.05.008
  55. J.A. Anderson, C.D. Lorenz, and A. Travesset, J. Comp. Phys., 227: 5342 (2008); https://doi.org/10.1016/j.jcp.2008.01.047
  56. X.W. Zhou, H.N.G. Wadley, R.A. Johnson, D.J. Larson, N. Tabat, A. Cerezo, A.K. Petford-Long, G.D.W. Smith, P.H. Clifton, R.L. Martens, and T.F. Kelly, Acta Mater., 49, No. 19: 4005 (2001); https://doi.org/10.1016/S1359-6454(01)00287-7
  57. M. Griebel, S. Knapek, and G. Zumbusch, Numerical Simulation in Molecular Dynamics (Berlin–Heidelberg: Springer-Verlag: 2007); https://doi.org/10.1007/978-3-540-68095-6
  58. ASM Handbook, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (Metals Park, Ohio: ASM International: 1992).
  59. N. Sasaki, K. Kobayashi, and M. Tsukada, Phys. Rev. B, 54: 2138 (1996); https://doi.org/10.1103/PhysRevB.54.2138
  60. H. Berendsen, J. Postma, W. van Gunsteren, A. DiNola, and J. Haak, J. Chem. Phys., 81, No. 8: 3684 (1984); https://doi.org/10.1063/1.448118
  61. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics., 14, No. 1: 33 (1996); https://doi.org/10.1016/0263-7855(96)00018-5
  62. O. Mazur and L. Stefanovich, Physica D, 424: 132942 (2021); http://dx.doi.org/10.1016/j.physd.2021.132942
  63. O.V. Yushchenko and A.Yu. Badalyan, J. Nano- Electron. Phys., 9, No. 4: 04022 (2017); https://doi.org/10.21272/jnep.9(4).04022
  64. J.S. Choi, J.-S. Kim, I.-S. Byun, D.H. Lee, M.J. Lee, B.H. Park, C. Lee, D. Yoon, H. Cheong, K.H. Lee, Y.-W. Son, J.Y. Park, and M. Salmeron, Science, 333, 6042: 607 (2011); https://doi.org/10.1126/science.1207110
  65. G. He and M.O. Robbins, Phys. Rev. B, 64: 035413 (2001); https://doi.org/10.1103/PhysRevB.64.035413
  66. G. He and M.O. Robbins, Tribol. Lett., 10: 7 (2001); https://doi.org/10.48550/arXiv.cond-mat/0008196
  67. O.M. Braun and N. Manini, Phys. Rev. E, 83: 021601 (2011); https://doi.org/10.1103/PhysRevE.83.021601
  68. D. Dietzel, M. Feldmann, U.D. Schwarz, H. Fuchs, and A. Schirmeisen, Phys. Rev. Lett., 111: 235502 (2013); https://doi.org/10.1103/PhysRevLett.111.235502
  69. K. Matsushita, H. Matsukawa, and N. Sasaki, Sol. State Commun., 136, No. 1: 51 (2005); https://doi.org/10.1016/j.ssc.2005.05.052
  70. O.V. Khomenko, A.A. Biesiedina, K.P. Khomenko, and R.R. Chernushchenko, Computer modelling of metal nanoparticles adsorbed on graphene, Progress in Physics of Metals, 23, No. 2: 239 (2022); https://doi.org/10.15407/ufm.23.02.239