Physiological Corrosion and Ion Release in Dental Co–Cr–Mo Alloys Fabricated Using Additive Manufacturing

VASYLYEV M.О.$^{1}$, MORDYUK B.M.$^{1}$, VOLOSHKO S.M.$^{2}$, and GURIN P.O.$^{3}$

$^1$G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Prospect Beresteiskyi, UA-03056 Kyiv, Ukraine
$^3$P.L. Shupyk National Healthcare University of Ukraine, 9, Dorogozhytska Str., UA-04112 Kyiv, Ukraine

Received 20.09.2024, final version 05.02.2025 Download PDF logo PDF

Abstract
The aim of the article is to review the aspects of the corrosion behaviour, which are most relevant to the clinical application of dental metal alloys. From the point of view of biocompatibility, two corrosion phenomena are considered: the degradation of the surface of dental products and the ion release of alloying atoms during exposure to an artificial physiological environment. While corrosion leads to the partial loss of the material strength, the ion release phenomenon causes cytotoxicity, allergy, and other biological influences in the human body. As noted, the Co–Cr-system alloys are widely known for their biomedical applications in the orthopaedic and dental fields due to their low cost and adequate physical-mechanical properties. The review analyses the microstructure and electrochemical properties of the commercial dental Co–Cr–(Mo, W) alloys fabricated by traditional casting techniques and additive manufacturing by means of the selective laser melting (SLM). Currently, SLM is the most promising technique among the emerging additive fabrication technologies used for metal-products’ manufacturing in dentistry.

Keywords: additive manufacturing, dental alloys, microstructure, dentistry, corrosion, ion release.

DOI: https://doi.org/10.15407/ufm.26.01.124

Citation: M.О. Vasylyev, B.M. Mordyuk, S.M. Voloshko, and P.O. Gurin, Physiological Corrosion and Ion Release in Dental Co–Cr–Mo Alloys Fabricated Using Additive Manufacturing, Progress in Physics of Metals, 26, No. 1: 120–145 (2025)


References  
  1. K. Merrit, S.A. Brown, and N.A. Sharkey, J. Biomed. Mater. Res., 18: 991 (1984); https://doi.org/10.1002/jbm.820180904
  2. E.N. Codaro, P. Melnikov, I. Ramires, and A.C. Guastaldi, Russ. J. Electrochem., 36: 1117 (2000); https://doi.org/10.1007/BF02757531
  3. E.C. Erthridge, Biomaterials: An Interfacial Approach (New York: Academic Press: 1982).
  4. D.F. Williams, Biomaterials, 29: 2941 (2008); https://doi.org/10.1016/j.biomaterials.2008.04.023
  5. B.D. Ratner, A.S. Hoffman, F.J. Schoen, and J.E. Lemons, Biomaterials Science: an Introduction to Materials in Medicine (New York: Academic Press: 1996).
  6. C.V. Vidal and A.I. Muñoz, Electrochemical aspects in biomedical alloy characterization: Electrochemical impedance spectroscopy, Biomedical Engineering, Trends in Materials Science (Ed. A. Laskovski) (InTech: 2011), p. 283; https://doi.org/10.5772/13039
  7. K. Prasad, O. Bazaka, M. Chua, M. Rochford, L. Fedrick, J. Spoor, R. Symes, M. Tieppo, C. Collins, A. Cao, D. Markwell, K. Ostrikov, and K. Bazaka, Mater., 10: 884 (2017); https://doi.org/10.3390/ma10080884
  8. D. Rokaya, V. Srimaneepong, and J. Qin, Modification of titanium alloys for dental applications, Metal, Metal Oxides and Metal Sulphides for Biomedical Applications. Environmental Chemistry for a Sustainable World (Eds. S. Rajendran, M. Naushad, D. Durgalakshmi, and E. Lichtfouse) (Springer: 2021), vol. 58, p. 51; https://doi.org/10.1007/978-3-030-56413-1_2
  9. D. Rokaya, S. Bohara, V. Srimaneepong, J. Sapkota, S. Kongkiatkamon, and Z. Sultan, Metallic biomaterials for medical and dental prosthetic applications, Functional Biomaterials (Eds. S. Jana and S. Jana) (Springer: 2022), p. 503; https://doi.org/10.1007/978-981-16-7152-4_18
  10. L.C. Lucas, R.A. Buchanan, J.E. Lemons, and C.D. Griffin, J. Biomed. Mater. Res., 16: 799 (2004); https://doi.org/10.1002/jbm.820160606
  11. A. Kocijan, I. Milošec, and D.K. Merl, J. Appl. Electrochem., 34: 5 (2004); https://doi.org/10.1023/b:jach.0000021868.10122.96
  12. M.B. Leban, M. Kurnik, I. Kopač, M.J. Klug, B. Podgornik, and T. Kosec, Electrochim. Acta, 445: 142066 (2023); https://doi.org/10.1016/j.electacta.2023.142066
  13. I. Milosev, CoCrMo alloy for biomedical applications, Biomedical Applications Modern Aspects of Electrochemistry (Ed. S. Djokić) (Boston, MA: Springer: 2012), vol. 55, p. 1; https://doi.org/10.1007/978-1-4614-3125-1_1
  14. D.J. Blackwood, Corrosion Reviews, 21: 97 (2003); https://doi.org/10.1515/corrrev.2003.21.2-3.97
  15. N. Rinčič, I. Baučić, S. Miko, M. Papić, and E. Prohić, Int. J. Collegium Antropologicum, 27: 99 (2003).
  16. Biomaterials Science (Eds. B.D. Ratner, A.S. Hoffman, F.J. Schoen, and J.E. Lemons). (Elsevier: 2013).
  17. F. Contu, B. Elsener, and H. Bohni, Corrosion Sci., 47: 1863 (2005); https://doi.org/10.1016/j.corsci.2004.09.003
  18. A.W.E. Hodgson, S. Kurz, S. Virtanen, V. Fervel, C.A. Olsson, and S. Mischler, Electrochim. Acta, 49: 2167 (2004); https://doi.org/10.1016/j.electacta.2003.12.043
  19. A.I. Munoz and S. Mischler, J. Electrochem. Soc., 154: 562 (2007); https://doi.org/10.1149/1.2764238
  20. C.V. Vidal and A.I. Munoz, Corrosion Sci., 50: 1954 (2008); https://doi.org/10.1016/j.corsci.2008
  21. W. Elshahawy and I. Watanabe, Tanta Dent. J., 11: 150 (2014); https://doi.org/10.1016/j.tdj.2014.07.005
  22. C.M. Garcia-Falcon, T. Gil-Lopez, A. Verdu-Vazquez, and J. Mirza-Rosca, Mater. Chem. Phys., 260: 124164 (2021); https://doi.org/10.1016/j.matchemphys.2020.124164
  23. I. Milosev and H.H. Strehblow, Electrochim. Acta, 48: 2767 (2003); https://doi.org/10.1016/S0013-4686(03)00396-7
  24. A.W.E. Hodgson, S. Kurz, S. Virtanen, V. Fervel, C.-O.A. Olsson, and S. Mischler, Electrochim. Acta, 49: 2167 (2004); https://doi.org/10.1016/j.electacta.2003.12.043
  25. A. Mace, P. Khullar, C. Bouknight, and J.L. Gilbert, Dent. Mater., 38: 1184 (2022); https://doi.org/10.1016/j.dental.2022.06.021
  26. A.L. Ramírez-Ledesma, P. Roncagliolo, M.A. Álvarez-Pérez, H.F. Lopez, and J.A. Juárez-Islas, J. Mater. Eng. Perform., 29: 1657 (2020); https://doi.org/10.1007/s11665-020-04711-2
  27. H.R.A. Bidhendi and M. Pouranvari, Metallurgical and Materials Engineering, 17: 13 (2011); https://doi.org/10.30544/384
  28. M.C. Lucchetti, G. Fratto, F. Valeriani, E. De Vittori, S. Giampaoli, P. Papetti, V.R. Spica, and L. Manzon, J. Prosthet. Dent., 114: 602 (2015); https://doi.org/10.1016/j.prosdent.2015.03.002
  29. T. Hanawa, Mater. Sci. Eng. C, 24: 745 (2004); https://doi.org/10.1016/j.msec.2004.08.018
  30. H. Lin and J.D Bumgardner, Biomater., 25: 1233 (2004); https://doi.org/10.1016/j.biomaterials.2003.08.016
  31. Y. Okazakia and E. Gotoh, Biomater., 26: 11 (2005); https://doi.org/10.1016/j.biomaterials.2004.02.005
  32. G. Can, G. Akpinar, and A. Aydin, Eur. J. Dent., 1: 86 (2007).
  33. T.H. Huang, C.C. Yen, and C.T. Kao, Am. J. Orthod. Dentofacial Orthop., 120: 68 (2001); https://doi.org/10.1067/mod.2001.113794
  34. P. Garhammer, G. Schmalz, K.A. Hiller, and T. Reitinger, Clin. Oral. Investig, 7: (2003); https://doi.org/10.1007/s00784-003-0204-9
  35. P. Garhammer, T. Reitinger, and G. Schmalz, Clin. Oral Investig., 8: 238 (2004); https://doi.org/10.1007/s00784-004-0281-4
  36. M.P. Groover, Fundamentals of Modern Manufacturing — Materials, Processes and Systems (John Wiley and Sons: 2010).
  37. H. Nesse, D. Mari Åkervik Ulstein, and M. Myhre Vaage, J. Prosthet Dent., 114: 686 (2015); https://doi.org/10.1016/j.prosdent.2015.05.007
  38. M. Srivastava, S. Rathee, S. Maheshwari, and T.K. Kundra, Additive Manufacturing: Fundamentals and Advancements (Taylor & Francis Group: 2019).
  39. D. Godec, J. Gonzalez-Gutierrez, A. Nordin, and E. Pei, A Guide to Additive Manufacturing. Springer Tracts in Additive Manufacturing (Springer: 2022).
  40. T. Deb Roy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, and W. Zhang, Prog. Mater. Sci., 92: 112 (2018); https://doi.org/10.1016/j.pmatsci.2017.10.001
  41. S.P. Narra, P.N. Mittwede, S.D. Wolf, and K.L. Urish, Orthop. Clin. North. Am., 50: 13 (2019); https://doi.org/10.1016/j.ocl.2018.08.009
  42. M.O. Vasylyev, B.M. Mordyuk, S.M. Voloshko, and P.O. Gurin, Prog. Phys. Met., 23, No. 2: 337 (2022); https://doi.org/10.15407/ufm.23.02.337
  43. M.O. Vasylyev and P.O. Gurin, Prog. Phys. Met., 24, No. 1: 106 (2023); https://doi.org/10.15407/ufm.24.01.106
  44. E. Dianne Rekow, Dental Materials, 36: 9 (2020); https://doi.org/10.1016/j.dental.2019.08.103
  45. T. Koutsoukis, S. Zinelis, G. Eliades, K. Al-Wazzan, M.A. Rifaiy, and Y.S. Al Jabbari, J. Prosthodont., 24: 303 (2015); https://doi.org/10.1111/jopr.12268
  46. K.P. Krug, A.W. Knauber, and F.P. Nothdurft, Clin. Oral Investig., 19: 401 (2015); https://doi.org/10.1007/s00784-014-1233-2
  47. M. Revilla-León and M. Özcan, Curr. Oral Health Rep., 4: 201 (2017); https://doi.org/10.1007/s40496-017-0152-0
  48. Y.S. Hedberg, B. Quian, Z. Schen, S. Virtanen, and I.O. Wallinder, Dent. Mater., 30: 525 (2014); https://doi.org/10.1016/j.dental.2014.02.008
  49. L.W. Lin, Y.F. Fang, Y.X. Liao, G. Chen, C.X. Gao, and P.Z. Zhu, Adv. Eng. Mater., 21: 1801013 (2019); https://doi.org/10.1002/adem.201801013
  50. O. Alageel, B. Wazirian, B. Almufleh, and F. Tamimi, Fabrication of dental restorations using digital technologies: techniques and materials, Digital Restorative Dentistry: A Guide to Materials, Equipment, and Clinical Procedures (Eds. F. Tamimi and H. Hirayama) (Springer: 2019), pp. 55–91.
  51. X.Z. Xin, J. Chen, N. Xiang, and B. Wie, Cell Biochem. Biophys., 67: 983 (2013); https://doi.org/10.1007/s12013-013-9593-9
  52. J. Qiu, W.-Q. Yu, F.-Q. Zhang, R.J. Smales, Y.L. Zhang, and C.H. Lu, European J. Oral Sci., 119: 93 (2011); https://doi.org/10.1111/j.1600-0722.2011.00791.x
  53. Y.J. Lu, S.Q. Wu, Y.L. Gan, J.L. Li, C.Q. Zhao, D.X. Zhuo, and J.X. Lin, Mater. Sci. Eng. C, 49: 517 (2015); https://doi.org/10.1016/j.msec.2015.01.023
  54. M. Seyedi, F. Zanotto, E. Liverani, A. Fortunato, C. Monticelli, and A. Balbo, La Metallurgia Italiana, 3: 49 (2018); https://sfera.unife.it/handle/11392/2386240
  55. X.Z. Xin, N. Xiang, J. Chen, and B. Wei, Mater. Let., 88: 101 (2012); https://dx.doi.org/10.1016/j.matlet.2012.08.032
  56. Y.S. Hedberga, B. Qianc, Z.J. Shenc, S. Virtanena, and I.O. Wallinder, Dental Materials, 30: 525 (2014); https://doi.org/10.1016/j.dental.2014.02.008
  57. Y. Xin, T. Hu, and P.K. Chu, Acta Biomater., 7: 1452 (2011); https://doi.org/10.1016/j.actbio.2010.12.004
  58. A. Takaichi, T. Nakamoto, N. Joko, N. Nomura, Y. Tsutsumi, S. Migita, H. Doi, S. Kurosu, and A. Chiba, J. Mech. Behav. Biomed. Mater., 21: 67 (2013); https://doi.org/10.1016/j.jmbbm.2013.01.021
  59. D.C. Smith, R.M. Pillar, J.B. Metson, and N.S. McIntyre, J. Biomed. Mater. Res., 25: 1069 (1991); https://doi.org/10.1002/jbm.820250903
  60. T. Hanawa, S. Hiromoto, and K. Asami, Appl. Surf. Sci., 183: 68 (2001); https://doi.org/10.1016/S0169-4332(01)00551-7
  61. Z. Guoqing, Y. Yongqiang, S. Changhui, F. Fan, and Z. Zimian, J. Med. Biol. Eng., 38: 76 (2018); https://doi.org/10.1007/s40846-017-0293-6
  62. R. Mirea, I.M. Biris, L.C Ceatra, R. Ene, A. Paraschiv, A.T. Cucuruz, G. Sbarcea, E. Popescu, and T. Badea, Metals, 11: 857 (2021); https://doi.org/10.3390/met11060857
  63. M.R.C. Marques, R. Loedberg, and M. Almukainzi, Technologies, 18: 15 (2011); https://doi.org/10.3390/met11060857