Systematic Review of Superelastic FeNiCoAlTaB Alloys

HASBI M.Y.$^{1,2}$, EFENDI$^{2}$, and SOFYAN N.$^{1,3}$

$^1$Department of Metallurgical and Materials Engineering, Faculty of Engineering, Universitas Indonesia, 16424 Depok, Indonesia
$^2$Research Centre for Metallurgy, National Research and Innovation Agency, Tangerang Selatan, 15314 Banten, Indonesia
$^3$Advanced Materials Research Centre, Faculty of Engineering, Universitas Indonesia, 16424 Depok, Indonesia

Received 03.09.2024, final version 28.01.2025 Download PDF logo PDF

Abstract
Iron-based shape-memory alloys (Fe-SMAs) have attracted significant attention due to their unique properties and potential applications. Among these alloys, the polycrystalline Fe–Ni–Co–Al–Ta–B (NCATB) alloy stands out as a promising alternative to NiTi-based SMAs owing to its superior superelastic (SE) behaviour. The SE properties of Fe-SMAs are intrinsically linked to the thermoelastic (TE) nature of their martensitic structure. This structure is achieved through a combination of appropriate fabrication processes and thermomechanical treatments (TMTs). These processes facilitate the formation of precipitates and the development of a dominant texture along specific directions and planes. Previous research has demonstrated the remarkable SE capability of the NCATB alloy, achieving a strain value of 13.5% at room temperature. This remarkable achievement was attributed to the cold-rolling fabrication process, which involved an extreme deformation of 98.6%. However, this process resulted in extremely thin sheets (of 0.2 mm thick), posing challenges for practical applications due to the limited size and form factor. To advance the development of NCATB alloys further, a comprehensive review is essential. Such a review will provide a foundational understanding and facilitate future research efforts by summarising the existing data and methodologies. Therefore, this review paper aims to offer an in-depth discussion of the collected research data, organised according to the evolving research methodologies. By compiling and analysing these studies, the review work seeks to highlight the current progress, identify gaps, and suggest potential directions for future research on the NCATB alloy.

Keywords: alloying, Fe–Ni–Co–Al–Ta–B, shape-memory alloy, superelasticity, thermomechanical treatments.

DOI: https://doi.org/10.15407/ufm.26.01.066

Citation: M.Y. Hasbi, Efendi, and N. Sofyan, Systematic Review of Superelastic FeNiCoAlTaB Alloys, Progress in Physics of Metals, 26, No. 1: 64–88 (2025)


References  
  1. L. Lecce and A. Concilio, Shape Memory Alloy Engineering for Aerospace, Structural and Biomedical Applications (Vienna: Elsevier Ltd: 1996), p. 1–68; https://doi.org/10.1007/978-3-7091-4348-3_1
  2. D.G. Poitout, Biomechanics and Biomaterials in Orthopedics. 2nd ed. (London: Springer: 2016); https://doi.org/10.1007/978-1-84882-664-9
  3. S. Parvizi, S.M. Hashemi, and S. Moein, NiTi shape memory alloys: properties, Nickel-Titanium Smart Hybrid Materials (Elsevier: 2022), Ch. 19, p. 399; https://doi.org/10.1016/B978-0-323-91173-3.00021-3
  4. K. Mehta and K. Gupta, Fabrication and Processing of Shape Memory Alloys, SpringerBriefs in Applied Sciences and Technology (Cham, Switzerland: Springer: 2019); https://doi.org/10.1007/978-3-319-99307-2
  5. C. Lexcellent, Shape-Memory Alloys Handbook (London: Wiley: 2013); https://doi.org/10.1002/9781118577776
  6. X. Chen, K. Liu, W. Guo, N. Gangil, A.N. Siddiquee, and S. Konovalov, Rapid Prototyp. J., 25, No. 8: 1421 (2019); https://doi.org/10.1108/RPJ-11-2018-0292
  7. S.K. Patel, B. Behera, B. Swain, R. Roshan, D. Sahoo, and A. Behera, Mater. Today Proc., 33, No. 8: 5548 (2020); https://doi.org/10.1016/j.matpr.2020.03.538
  8. J. Xia, Y. Noguchi, X. Xu, T. Odaira, Y. Kimura, M. Nagasako, T. Omori, and R. Kainuma, Science, 369, No. 6505: 855 (2020); https://doi.org/10.1126/science.abc1590
  9. Z. Li, Y. Zhang, K. Dong, and Z. Zhang, Crystals, 12, No. 5: 602 (2022); https://doi.org/10.3390/cryst12050602
  10. R.A. Rahman, D. Juhre, and T. Halle, Pakistan J. Enginnering Appl. Sci., 24, No. 5: 32 (2019).
  11. Y. Tanaka, Y. Himuro, R. Kainuma, Y. Sutou, T. Omori, and K. Ishida, Science, 327, No. 5972: 1488 (2010); https://doi.org/10.1126/science.1183169
  12. C. Sobrero, V. Remich, J. Cassineiro, M. F. Giordana, G. Abreu Faria, A. Liehr, J. Freudenberger, T. Niendorf, and P. Krooß, Shape Mem. Superelasticity, 9, No. 3: 531 (2023); https://doi.org/10.1007/s40830-023-00449-7
  13. L.-W. Tseng, C.-H. Chen, W.-C. Chen, Y. Cheng, and N.-H. Lu, Crystals, 11, No. 10: 1253 (2021); https://doi.org/10.3390/cryst11101253
  14. J. Fiocchi, J.N. Lemke, S. Zilio, C.A. Biffi, A. Coda, and A. Tuissi, Mater. Today Commun., 27: 102447 (2021); https://doi.org/10.1016/j.mtcomm.2021.102447
  15. U. Allenstein, Y.Ma, A. Arabi-Hashemi, M. Zink, and S.G. Mayr, Acta Biomater., 9, No. 3: 5845 (2013); https://doi.org/10.1016/j.actbio.2012.10.040
  16. L. Tseng, M. Song, W.-C. Chen, Y. Hsu, and C. Chen, Metals, 14, No. 6: 643 (2024); https://doi.org/10.3390/met14060643
  17. C. Zhang, C. Zhu, S. Shin, L. Casalena, and K. Vecchio, Mater. Sci. Eng. A, 743: 372 (2018); https://doi.org/10.1016/j.msea.2018.11.077
  18. H. Zhao, H. Fu, J. Xie, and Z. Zhang, Mater. Res. Express, 5, No. 1: 016508 (2018); https://doi.org/10.1088/2053-1591/aaa1fd
  19. W.S. Choi, E.L. Pang, P.P. Choi, and C.A. Schuh, Scr. Mater., 188: 1 (2020); https://doi.org/10.1016/j.scriptamat.2020.06.067
  20. J. Cassinerio, M.F. Giordana, E. Zelaya, V. Remich, P. Krooß, J. Freudenberger, T. Niendorf, and C. E. Sobrero, Shape Mem. Superelasticity, 10, No. 1: 37 (2024); https://doi.org/10.1007/s40830-023-00470-w
  21. H. Ozcan, J. Ma, S.J. Wang, I. Karaman, Y. Chumlyakov, J. Brown, and R.D. Noebe, Scr. Mater., 134: 66 (2017); https://doi.org/10.1016/j.scriptamat.2017.02.023
  22. T. Omori, M. Okano, and R. Kainuma, APL Mater., 1, No. 3: 032103 (2013); https://doi.org/10.1063/1.4820429
  23. J. Mohd Jani, M. Leary, A. Subic, and M.A. Gibson, Mater. Des., 56: 1078 (2014); https://doi.org/10.1016/j.matdes.2013.11.084
  24. S. Barbarino, E.L. Saavedra Flores, R.M. Ajaj, I. Dayyani, and M.I. Friswell, Smart Mater. Struct., 23, No. 6: 063001 (2014); https://doi.org/10.1088/0964-1726/23/6/063001
  25. P.S. Lobo, J. Almeida, and L. Guerreiro, Procedia Eng., 114: 776 (2015); https://doi.org/10.1016/j.proeng.2015.08.025
  26. D. Patil and G. Song, Smart Mater. Struct., 26, No. 9: 1 (2017); https://doi.org/10.1088/1361-665X/aa7706
  27. Z. Wang and A.M. Korsunsky, Encycl. Smart Mater., 4: 239 (2022); https://doi.org/10.1016/B978-0-12-803581-8.11793-X
  28. R.E. McMahon, J. Ma, S.V. Verkhoturov, D. Munoz-Pinto, I. Karaman, F. Rubitschek, H.J. Maier, and M.S. Hahn, Acta Biomater., 8, No. 7: 2863 (2012); https://doi.org/10.1016/j.actbio.2012.03.034
  29. A. Weirich and B. Kuhlenkotter, Actuators, 8, No. 3: 61 (2019); https://doi.org/10.3390/act8030061
  30. S. Jayachandran, K. Akash, S.S. Mani Prabu, M. Manikandan, M. Muralidharan, A. Brolin, and I.A. Palani, Compos. Part B: Eng., 176, No. 1: 107182 (2019); https://doi.org/10.1016/j.compositesb.2019.107182
  31. N. Shayesteh Moghaddam, S. Saedi, A. Amerinatanzi, A. Hinojos, A. Ramazani, J. Kundin, M.J. Mills, H. Karaca, and M. Elahinia, Sci. Rep., 9, No. 1: 1 (2019); https://doi.org/10.1038/s41598-018-36641-4
  32. K.K. Alaneme and E.A. Okotete, Eng. Sci. Technol. Int. J., 19, No. 3: 1582 (2016); https://doi.org/10.1016/j.jestch.2016.05.010
  33. I.V. Kireeva, Y.I. Chumlyakov, V.A. Kirillov, I. Karaman, and E. Cesari, Tech. Phys. Lett., 37, No. 5: 487 (2011); https://doi.org/10.1134/S1063785011050221
  34. I. Darwin Immanuel, M. Gangaraju, D. Arulkirubakaran, R. Malkiya Rasalin Prince, T. Debnath, and D. Palanisamy, Mater. Today Proc., 68, No. 5: 1718 (2022); https://doi.org/10.1016/j.matpr.2022.09.194
  35. E.M. Mazzer, M.R. da Silva, and P. Gargarella, J. Mater. Res., 37, No. 1: 162 (2022); https://doi.org/10.1557/s43578-021-00444-7
  36. S. Saedi, E. Acar, H. Raji, S.E. Saghaian, and M. Mirsayar, J. Alloys Compd., 956: 170286 (2023); https://doi.org/10.1016/j.jallcom.2023.170286
  37. K.K. Alaneme, E.A. Okotete, and J.U. Anaele, J. Build. Eng., 22: 22 (2019); https://doi.org/10.1016/j.jobe.2018.11.014
  38. Z.-X. Zhang, J. Zhang, H. Wu, Y. Ji, and D.D. Kumar, Materials, 15, No. 5: 1723 (2022); https://doi.org/10.3390/ma15051723
  39. T. Omori, K. Ando, M. Okano, X. Xu, Y. Tanaka, I. Ohnuma, R. Kainuma, and K. Ishida, Science, 333, No. 6038: 68 (2011); https://doi.org/10.1126/science.1202232
  40. A. Cladera, B. Weber, C. Leinenbach, C. Czaderski, M. Shahverdi, and M. Motavalli, Constr. Build. Mater., 63: 281 (2014); https://doi.org/10.1016/j.conbuildmat.2014.04.032
  41. X. Wang, Y. Zhang, Z. Zhang, L. Liu, B. Wang, Y. Cui, I. Baker, and J. Cheng, Crit. Rev. Solid State Mater. Sci., 49, No. 2: 308 (2023); https://doi.org/10.1080/10408436.2023.2175641
  42. F.C. Nascimento Borges, Iron based shape memory alloys: mechanical and structural properties, Shape Memory Alloys — Processing, Characterization and Applications (2013); https://doi.org/10.5772/51877
  43. R.A. Ur Rahman, D. Juhre, and T. Halle, Korean J. Mater. Res., 28, No. 7: 381 (2018); https://doi.org/10.3740/MRSK.2018.28.7.381
  44. M.Y. Hasbi, E. Mabruri, S.D. Yudanto, F.M. Ridlo, B. Adjiantoro, D. Irawan, I.G.P. Astawa, M.R. Rido, T.B. Romijarso, R. Roberto, D.P. Utama, and N. Amalia, AIP Conf. Proc., 3003, No. 1: 020054 (2024); https://doi.org/10.1063/5.0186259
  45. D. Lee, T. Omori, K. Han, Y. Hayakawa, and R. Kainuma, Shape Mem. Superelasticity, 4, No. 1: 102 (2018); https://doi.org/10.1007/s40830-018-0160-5
  46. J. Ma and I. Karaman, Science, 327, No. 5972: 1468 (2010); https://doi.org/10.1126/science.1186766
  47. A. Francis, Y. Yang, S. Virtanen, and A.R. Boccaccini, J. Mater. Sci. Mater. Med., 26, No.3: 138 (2015); https://doi.org/10.1007/s10856-015-5473-8
  48. Y. Wang, J. Venezuela, and M. Dargusch, Biomaterials, 279: 121215 (2021); https://doi.org/10.1016/j.biomaterials.2021.121215
  49. T. Huang, J. Cheng, and Y.F. Zheng, Mater. Sci. Eng. C, 35, No. 1: 43 (2014); https://doi.org/10.1016/j.msec.2013.10.023
  50. L.C. Trincă, L. Burtan, D. Mareci, B.M. Fernández-Pérez, I. Stoleriu, T. Stanciu, S. Stanciu, C. Solcan, J. Izquierdo, and R.M. Souto, Mater. Sci. Eng. C, 118: 111436 (2021); https://doi.org/10.1016/j.msec.2020.111436
  51. B. Liu, Y.F. Zheng, and L. Ruan, Mater. Lett., 65, No. 3: 540 (2011); https://doi.org/10.1016/j.matlet.2010.10.068
  52. A.M. Roman, V. Geantă, R. Cimpoeșu, C. Munteanu, N.M. Lohan, G. Zegan, E.R. Cernei, I. Ioniță, N. Cimpoeșu, and N. Ioanid, Materials, 15, No. 2: 568 (2022); https://doi.org/10.3390/ma15020568
  53. V.A. Silvestru, Z. Deng, J. Michels, L. Li, E. Ghafoori, and A. Taras, Glas. Struct. Eng., 7, No. 2: 187 (2022); https://doi.org/10.1007/s40940-022-00183-z
  54. A. Muntasir Billah, J. Rahman, and Q. Zhang, Structures, 37: 514 (2022); https://doi.org/10.1016/j.istruc.2022.01.034
  55. M.R. Izadi, E. Ghafoori, M. Shahverdi, M. Motavalli, and S. Maalek, Eng. Struct., 174: 433 (2018); https://doi.org/10.1016/j.engstruct.2018.07.073
  56. A. Hassanzadeh and S. Moradi, Front. Struct. Civ. Eng., 16, No. 3: 281 (2022); https://doi.org/10.1007/s11709-022-0807-3
  57. C. Czaderski, M. Shahverdi, and J. Michels, Constr. Build. Mater., 274: 121793 (2021); https://doi.org/10.1016/j.conbuildmat.2020.121793
  58. X. Qiang, L. Chen, and X. Jiang, Materials, 15, No. 22: 8089 (2022); https://doi.org/10.3390/ma15228089
  59. S. Bhowmick and S.K. Mishra, Soil Dyn. Earthq. Eng., 100: 34 (2017); https://doi.org/10.1016/j.soildyn.2017.03.037
  60. A.B. Habieb, M. Valente, and G. Milani, Eng. Struct., 196: 109281 (2019); https://doi.org/10.1016/j.engstruct.2019.109281
  61. F. Hedayati Dezfuli and M.S. Alam, Eng. Struct., 61: 166 (2014); https://doi.org/10.1016/j.engstruct.2014.01.008
  62. F. Hedayati Dezfuli and M. Shahria Alam, Smart Mater. Struct., 22, No. 4: 045013 (2013); https://doi.org/10.1088/0964-1726/22/4/045013
  63. C.D. Medina, R.A. Herrera, and J.F. Beltran, Eng. Struct., 274: 115151 (2023); https://doi.org/10.1016/j.engstruct.2022.115151
  64. U. Allenstein, E.I. Wisotzki, C. Gräfe, J.H. Clement, Y. Liu, J. Schroers, and S.G. Mayr, Mater. Des., 131: 366 (2017); https://doi.org/10.1016/j.matdes.2017.06.032
  65. M. Zink and S.G. Mayr, Mater. Sci. Technol., 30, No. 13: 1579 (2014); https://doi.org/10.1179/1743284714Y.0000000592
  66. J. Xia, T. Hoshi, X. Xu, T. Omori, and R. Kainuma, Shape Mem. Superelasticity, 7, No. 3: 402 (2021); https://doi.org/10.1007/s40830-021-00349-8
  67. J.-M. Frenck, M. Vollmer, and T. Niendorf, Mater. Lett., 365: 136408 (2024); https://doi.org/10.1016/j.matlet.2024.136408
  68. Z. Chen and W. Peng, Funct. Mater. Lett., 13, No. 01: 1950096 (2020); https://doi.org/10.1142/S1793604719500966
  69. C. Lauhoff, V. Remich, M.F. Giordana, C. Sobrero, T. Niendorf, and P. Krooß, J. Mater. Eng. Perform., 32, No. 19: 8593 (2023); https://doi.org/10.1007/s11665-022-07745-w
  70. X. Wang, Y. Zhang, Z. Zhang, J. Li, L. Liu, W. Jiang, and K. Du, JOM, 76, No. 5: 2526 (2024); https://doi.org/10.1007/s11837-024-06469-7
  71. N. Gangil, A.N. Siddiquee, and S. Maheshwari, J. Manuf. Process., 59: 205 (2020); https://doi.org/10.1016/j.jmapro.2020.09.048
  72. Y.I. Chumlyakov, V. Kireeva, O.A. Kuts, Y.N. Platonova, V.V Poklonov, V. Kukshauzen, D.A. Kukshauzen, M.Y. Panchenko, and K.A. Reunova, Russ. Phys. J., 58, No. 11: 1549 (2016); https://doi.org/10.1007/s11182-016-0681-3
  73. J. Ma, B.C. Hornbuckle, I. Karaman, G.B. Thompson, Z.P. Luo, and Y.I. Chumlyakov, Acta Mater., 61, No. 9: 3445 (2013); https://doi.org/10.1016/j.actamat.2013.02.036
  74. N. Jost, Mater. Sci. Forum, 56–58: 667 (1990); https://doi.org/10.4028/www.scientific.net/MSF.56-58.667
  75. D.R. Askeland, P.P. Fulay, and W.J. Wright, The Science and Engineering of Materials (Stamford: CL-Engineering: 2011).
  76. Y. Tanaka, R. Kainuma, T. Omori, and K. Ishida, Mater. Today Proc., 2, No. 3: S485 (2015); https://doi.org/10.1016/j.matpr.2015.07.333
  77. T. Maki, K. Kobayashi, and I. Tamura, J. Phys. Colloq., 43, No. C4: 541 (1982); https://doi.org/10.1051/jphyscol:1982484
  78. L.W. Tseng, J. Ma, I. Karaman, S.J. Wang, and Y.I. Chumlyakov, Scr. Mater., 101: 1 (2015); https://doi.org/10.1016/j.scriptamat.2014.12.021
  79. Y. Geng, D. Lee, X. Xu, M. Nagasako, M. Jin, X. Jin, T. Omori, and R. Kainuma, J. Alloys Compd., 628: 287 (2015); https://doi.org/10.1016/j.jallcom.2014.12.172
  80. F. Borza, N. Lupu, V. Dobrea, and H. Chiriac, J. Appl. Phys., 117, No. 17: 1 (2015); https://doi.org/10.1063/1.4917186
  81. Y. Geng, M. Jin, W. Ren, W. Zhang, and X. Jin, J. Alloys Compd., 577: S631 (2013); https://doi.org/10.1016/j.jallcom.2012.03.033
  82. M. Czerny, G. Cios, W. Maziarz, Y.I. Chumlyakov, N. Schell, and R. Chulist, Mater. Des., 197: 109225 (2021); https://doi.org/10.1016/j.matdes.2020.109225
  83. H. Fu, W. Li, S. Song, Y. Jiang, and J. Xie, J. Alloys Compd., 684: 556 (2016); https://doi.org/10.1016/j.jallcom.2016.05.209
  84. D. Lee, T. Omori, and R. Kainuma, J. Alloys Compd., 617: 120 (2014) https://doi.org/10.1016/j.jallcom.2014.07.136
  85. C.E. Sobrero, C. Lauhoff, T. Wegener, T. Niendorf, and P. KrooB, Shape Mem. Superelasticity, 6, No. 2: 191 (2020); https://doi.org/10.1007/s40830-020-00280-4
  86. A. Wójcik, R. Chulist, A. Szewczyk, J. Dutkiewicz, and W. Maziarz, Arch. Metall. Mater., 68, No. 3: 1157 (2023); https://doi.org/10.24425/amm.2023.145488
  87. K. Du, Y. Zhang, G. Zhao, T. Huang, L. Liu, J. Li, X. Wang, and Z. Zhang, Mater. Sci. Eng. A, 890: 145858 (2024); https://doi.org/10.1016/j.msea.2023.145858
  88. A. Evirgen, J. Ma, I. Karaman, Z.P. Luo, and Y.I. Chumlyakov, Scr. Mater., 67, No. 5: 475 (2012); https://doi.org/10.1016/j.scriptamat.2012.06.006
  89. M. Czerny, G. Cios, W. Maziarz, Y. Chumlyakov, and R. Chulist, Materials, 13, No. 1724: 1 (2020); https://doi.org/10.3390/ma13071724
  90. C. Sobrero, C. Lauhoff, D. Langenkämper, C. Somsen, G. Eggeler, Y.I. Chumlyakov, T. Niendorf, and P. Krooß, Mater. Lett., 291: 129430 (2021); https://doi.org/10.1016/j.matlet.2021.129430
  91. H. Fu, H. Zhao, Y. Zhang, and J. Xie, Procedia Eng., 207: 1505 (2017); https://doi.org/10.1016/j.proeng.2017.10.1084
  92. L.-W. Tseng, J. Chinese Inst. Eng., 45, No. 2: 109 (2022); https://doi.org/10.1080/02533839.2021.2012517
  93. H. Fu, H. Zhao, S. Song, Z. Zhang, and J. Xie, J. Alloys Compd., 686: 1008 (2016); https://doi.org/10.1016/j.jallcom.2016.06.273
  94. R. Chulist, M. Prokopowicz, W. Maziarz, P. Ostachowski, and N. Schell, Int. J. Mater. Res., 110, No. 1: 70 (2019); https://doi.org/10.3139/146.111688
  95. E.C. Andrade, H.H. Bernardi, and J. Otubo, Mater. Res., 17, No. 3: 583 (2014); https://doi.org/10.1590/S1516-14392014005000072
  96. G.S. Firstov, Yu.M. Koval, V.S. Filatova, V.V. Odnosum, G. Gerstein, and H.J. Maier, Prog. Phys. Met., 24, No. 4: 819 (2023); https://doi.org/10.15407/ufm.24.04.819
  97. Yu.M. Koval, V.V. Odnosum, Vyach. M. Slipchenko, V.S. Filatova, A.S. Filatov, O.A. Shcheretskyi, and G.S. Firstov, Metallofiz. Noveishie Tekhnol., 46, No. 9: 933 (2024); https://doi.org/10.15407/mfint.46.09.0933
  98. W. Zheng, P. Tan, J. Li, H. Wang, Y. Liu, and Z. Xian, Struct. Control Heal. Monit., 2023: 1 (2023); https://doi.org/10.1155/2023/5497731