Ordering Alloys with Micro- and Nanoscale Structures Based on Cubic Lattices: Mechanical and Thermodynamic Properties

LATYPOVA M.A. and GELMANOVA Z.S.

Karaganda Industrial University, 30 Republic Ave., 101400 Temirtau, Kazakhstan

Received 14.10.2024, final version 31.01.2025 Download PDF logo PDF

Abstract
The development of the transport, chemical, and energy industries, aerospace engineering, and shipbuilding dictates the need to develop and create new materials capable of functioning in various conditions. These materials include atomically ordered alloys based on the noble metals with specific properties such as high corrosion resistance, low electrical resistance, and suitable magnetic and optical properties. At the same time, for their practical application, an integrated combination of the necessary operational characteristics is becoming increasingly in demand, providing sufficient electrical resistive and electrical contact properties, high strength and plasticity in addition to the corrosion resistance. Simultaneously, the simplicity of the chemical composition of the materials being created or improved, the manufacturability of the metallurgical process, and subsequent production conversions on existing equipment remain undoubtedly important.

Keywords: long-range atomic order, ordered alloys, kinetics, deformation mechanism, microstructure.

DOI: https://doi.org/10.15407/ufm.26.01.***

Citation: M.A. Latypova and Z.S. Gelmanova, Ordering Alloys with Micro- and Nanoscale Structures Based on Cubic Lattices: Mechanical and Thermodynamic Properties, Progress in Physics of Metals, 25, No. 1: ***–*** (2025)


References  
  1. C.-C. Tung, J.-W. Yeh, T.-T. Shun, S.-K. Chen, Y.-S. Huang, and H.-C. Chen, On the elemental effect of AlCoCrCuFeNi high-entropy alloy system, Mat. Letters, 61: 1–5 (2007); https://doi.org/10.1016/j.matlet.2006.03.140
  2. B.S. Li, Y.P. Wang, M.X. Ren, C. Yang, and H.Z. Fu, Effects of Mn, Ti and V on the microstructure and properties of AlCrFeCoNiCu high entropy alloy, Mater. Sci. Eng. A, 498, Nos. 1–2: 482–486 (2008); https://doi.org/10.1016/j.msea.2008.08.025
  3. B. Jang, S. Riemer, and G.M. Pastor, Chiral magnetic interactions in small fe clusters triggered by symmetry-breaking adatoms, Symmetry, 15, No. 2: 397 (2023); https://doi.org/10.3390/sym15020397
  4. Z. Liu, S. Guo, X. Liu, J. Ye, Y. Yang, X.-L. Wang, L. Yang, K. An, and C.T. Liu, Micromechanical characterization of casting-induced inhomogeneity in an Al0.8CoCrCuFeNi high-entropy alloy, Scripta Mater., 64: 868–871 (2011); https://doi.org/10.1016/j.scriptamat.2011.01.020
  5. I.E. Volokitina, A.V. Volokitin, and E.A. Panin, Martensitic transformations in stainless steels, Prog. Phys. Met., 23, No. 4: 684–728 (2022); https://doi.org/10.15407/ufm.23.04.684
  6. I.E. Volokitina, A.V. Volokitin, A. Bychkov, and A. Kolesnikov, Natural aging of aluminum alloy 2024 after severe plastic deformation, Metallography, Microstructure, and Analysis, 12, No. 3: 564–566 (2023); https://doi.org/10.1007/s13632-023-00966-y
  7. N. Zhangabay, I. Baidilla, A. Tagybayev, U. Suleimenov, Z. Kurganbekov, M. Kambarov, A. Kolesnikov, G. Ibraimbayeva, K. Abshenov, I. Volokitina, B. Nsanbayev, Y. Anarbayev, and P. Kozlov, Thermophysical indicators of elaborated sandwich cladding constructions with heat-reflective coverings and air gaps, Case Studies Construct. Mater., 18: e02161 (2023); https://doi.org/10.1016/j.cscm.2023.e02161
  8. Z. Hu, Y. Zhan, G. Zhang, J. She, and C. Li, Effect of rare earth Y addition on the microstructure and mechanical properties of high entropy AlCoCrCuNiTi alloys, Materials and Design, 31: 1599–1602 (2010); https://doi.org/10.1016/j.matdes.2009.09.016
  9. M.-I. Lin, M.-H. Tsai, W.-J. Shen, and J.-W. Yeh, Evolution of structure and properties of multi-component (AlCrTaTiZr)Ox films, Thin Solid Films, 518: 2732–2737 (2010); https://doi.org/10.1016/j.tsf.2009.10.142
  10. I. E. Volokitina, Structural and phase transformations in alloys under the severe plastic deformation, Prog. Phys. Met., 24: No. 3: 593–622 (2023); https://doi.org/10.15407/ufm.24.03.593
  11. S. Singh, N. Wanderka, K. Kiefer, K. Siemensmeyer, and J. Banhart, Effect of decomposition of the Cr–Fe–Co rich phase of AlCoCrCuFeNi high entropy alloy on magnetic properties, Ultramicroscopy, 111: 619–622 (2011); https://doi.org/10.1016/j.ultramic.2010.12.001
  12. O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloys and Compounds, 509: 6043–6048 (2011); https://doi.org/10.1016/j.jallcom.2011.02.171
  13. X. Ye, M. Ma, Y. Cao, W. Liu, X. Ye, and Y. Gu, The property research on high-entropy alloy alxfeconicucr coating by laser cladding, Physics Procedia, 12: 303–312 (2011); https://doi.org/10.1016/j.phpro.2011.03.039
  14. C.-M. Lin and H.-L. Tsai, Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy, Intermetallics, 19: 288–294 (2011); https://doi.org/10.1016/j.intermet.2010.10.008
  15. K.G. Pradeep, N. Wanderka, P. Choi, J. Banhart, B.S. Murty, and D. Raabe, Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography, Acta Mater., 6: 4696–4706 (2013); https://doi.org/10.1016/j.actamat.2013.04.059
  16. K.M. Youssef, A.J. Zaddach, C. Niu, D.L. Irving, and C.C. Koch, A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures, Mater. Res. Lett., 3, No. 2: 95–99 (2015); https://doi.org/10.1080/21663831.2014.985855
  17. N. Nayan, G. Singh, S.V.S.N. Murty, A.K. Jha, B. Pant, K.M. George, and U. Ramamurty, Hot deformation behaviour and microstructure control in AlCrCuNiFeCo high entropy alloy, Intermetallics, 55: 145–153 (2014); https://doi.org/10.1016/j.intermet.2014.07.019
  18. C.S. Babu, N.T.B.N. Koundinya, K. Sivaprasad, and J.A. Szpunar, Thermal analysis and nanoindentaion studies on nanocrystalline AlCrNiFeZn high entropy alloy, Procedia Materials Science, 6: 641–647 (2014); https://doi.org/10.1016/j.mspro.2014.07.079
  19. I. Volokitina, J. Chemical Technology and Metallurgy, 57, No. 3: 631–636 (2022).
  20. I.E. Volokitinа and A.V. Volokitin, Changes in microstructure and mechanical properties of steel-copper wire during deformation, Metallurgist, 67: 232–239 (2023); https://doi.org/10.1007/s11015-023-01510-7
  21. A.V. Volokitin, I.E. Volokitina, and E.A. Panin, Thermomechanical treatment of stainless steel piston rings, Prog. Phys. Met., 23, No. 3: 411–437 (2022); https://doi.org/10.15407/ufm.23.03.411
  22. A. Nurumgaliyev, T. Zhuniskaliyev, V. Shevko, Y. Mukhambetgaliyev, B. Kelamanov, Y. Kuatbay, A. Badikova, G. Yerekeyeva, and I. Volokitina, Scientific Reports, 14, No. 1: 7456 (2024); https://doi.org/10.1038/s41598-024-57529-6
  23. G. Kurapov, E. Orlova, I. Volokitina, and A. Turdaliev, J. Chem. Technol. Metallurgy., 51, No. 4: 451–457 (2016).
  24. S. Lezhnev, I. Volokitina, and T. Koinov, J. Chem. Technol. Metallurgy., 49, No. 6: 621 (2014).
  25. I.E. Volokitinа, A. V. Volokitin E. Panin, T. Fedorova, D. Lawrinuk, A. Kolesnikov, A. Yerzhanov, Z. Gelmanova, and Y. Liseitsev, Case Studies in Construction Materials, 19: e02609 (2023); https://doi.org/10.1016/j.cscm.2023.e02609
  26. S.V. Starenchenko, Eh.V. Kozlov, and V.A. Starenchenko, Zakonomernosti Termicheskogo Fazovogo Perekhoda Poryadok–Besporyadok v Splavakh so Sverkhstrukturami L12, L12(M), L12(MM), D1a (Tomsk: NTL: 2007) (in Russian).
  27. A.A. Smirnov, Uporyadochenie Splavov pri Vysokikh Davleniyakh. Metally, Elektrony, Reshyotka (Kiev: Naukova Dumka: 1975), pp. 28–47 (in Russian).
  28. F.Ch. Niks and V. Shokli, Prevrashcheniya v splavakh, Uspekhi Fizicheskikh Nauk, 20, No. 3: 344–409 (1938) (in Russian); https://doi.org/10.3367/UFNr.0020.193807c.0344
  29. F.Ch. Niks and V. Shokli, Prevrashcheniya v splavakh, Uspekhi Fizicheskikh Nauk, 20, No. 4: 536–586 (1938) (in Russian); https://doi.org/10.3367/UFNr.0020.193808c.0536
  30. M.A. Krivoglaz and A.A. Smirnov, Teoriya Uporyadochivayushchikhsya Splavov (Moskva: Fizmatgiz: 1958) (in Russian).
  31. T. Muto and Yu. Takagi, The theory of order–disorder transitions in alloys, Solid State Physics, 1: 193–282 (1955); https://doi.org/10.1016/S0081-1947(08)60679-7
  32. A.A. Smirnov, Molekulyarno-Kineticheskaya Teoriya Metallov (Moskva: Nauka: 1966) (in Russian).
  33. A.A. Smirnov, Obobshchennaya Teoriya Uporyadocheniya Splavov (Kiev: Naukova Dumka: 1986) (in Russian).
  34. A.A. Smirnov, Teoriya Vakansiy v Metallakh i Splavakh i Yeyo Primenenie k Splavam Vychitaniya (Kiev: Naukova Dumka: 1993) (in Russian).
  35. N.S. Stoloff and R.G. Davies, The mechanical properties of ordered alloys, Prog. Mater. Sci., 13: 1–84 (1968); https://doi.org/10.1016/0079-6425(68)90018-2
  36. N.S. Stoloff, Ordered alloys — physical metallurgy and structural applications, Int. Metals Reviews, 29, No. 1: 123–135 (1984); https://doi.org/10.1179/imtr.1984.29.1.123
  37. V.I. Iveronova and A.A. Katsnel’son, Blizhniy Poryadok v Tverdykh Rastvorakh (Moskva: Nauka: 1977) (in Russian).
  38. A.G. Khachaturyan, Ordering in substitutional and interstitial solid solutions, Prog. Mater. Sci., 22, Nos. 1–2: 1–150 (1978); https://doi.org/10.1016/0079-6425(78)90003-8
  39. A.G. Khachaturyan, Theory of Structural Transformations in Solids (Mineola, NY: Dover Publications, Inc.: 2008).
  40. D.A. Porter, K.E. Easterling, and M.Y. Sherif, Phase Transformations in Metals and Alloys (Boca Raton–London–New York: Taylor & Francis–CRC Press: 2009).
  41. N.M. Matveeva and Eh.V. Kozlov, Uporyadochennyye Fazy v Metallicheskikh Sistemakh (Moskva: Nauka: 1989) (in Russian).
  42. Eh.V. Kozlov, V.M. Dementyev, N.M. Kormin, and D.M. Shtern, Struktury i Stabil’nost’ Uporyadochennykh Faz (Tomsk: Izd-vo Tomskogo Universiteta: 1994) (in Russian).
  43. F. Reynaud, Order–disorder transitions in substitutional solid solutions, physica status solidi A, 72: 11–60 (1982); https://doi.org/10.1002/pssa.2210720102
  44. L.E. Tanner and H.J. Leamy, The microstructure of order–disorder transitions, Order–Disorder Transformation in Alloys (Ed. H. Warlimont) (Berlin: 1974), pp. 180–239; https://doi.org/10.1007/978-3-642-80840-1_8
  45. A.I. Potekaev, I.I. Naumov, V.V. Kulagina, V.N. Udodov, O.I. Velikokhatnyy, and S.V. Eremeev, Estestvennyye Dlinnoperiodicheskie Nanostruktury (Tomsk: NTL: 2002) (in Russian).
  46. L. Guttman, Order–disorder phenomenon in metals, Solid State Physics (Eds. F. Seitz and D. Turnbull) (New York: Academic Press Inc.: 1956), p. 145; https://doi.org/10.1016/S0081-1947(08)60133-2
  47. S. Ogawa, M. Hirabayashi, D. Watanabe, and H. Iwasaki, Long-Period Ordered Alloys (Tokyo: Agne Gijutsu Center Inc.: 1997).
  48. V.G. Vaks, Kinetics of phase separation and ordering in alloys, Physics Reports, 391, Nos. 3–6: 157–242 (2004); https://doi.org/10.1016/j.physrep.2003.10.005
  49. V.N. Bugaev and V.A. Tatarenko, Interaction and Arrangement of Atoms in Interstitial Solid Solutions Based on Close-Packed Metals (Kiev: Naukova Dumka: 1989) (in Russian).
  50. V.A. Tatarenko and T.M. Radchenko, Direct and indirect methods of the analysis of interatomic interaction and kinetics of a relaxation of the short-range order in close-packed substitutional (interstitial) solid solutions, Usp. Fiz. Met., 3, No. 2: 111–236 (2002) (in Ukrainian); https://doi.org/10.15407/ufm.03.02.111
  51. Т.М. Radchenko and V.А. Tatarenko, Fe–Ni alloys at high pressures and temperatures: statistical thermodynamics and kinetics of the L12 or D019 atomic order, Usp. Fiz. Met., 9, No. 1: 1–170 (2008) (in Ukrainian); https://doi.org/10.15407/ufm.09.01.001
  52. V.A. Tatarenko, T.M. Radchenko, A.Yu. Naumuk, and B.M. Mordyuk, Statistical-thermodynamic models of the Ni–Al-based ordering phases (L12, L10, B2): role of magnetic Ni-atoms’ contribution, Prog. Phys. Met., 25, No. 1: 3–26 (2024); https://doi.org/10.15407/ufm.25.01.003
  53. V.A. Tatarenko, T.M. Radchenko, A.Yu. Naumuk, and B.M. Mordyuk, Parameterization of the diffusion characteristics of atomic-order relaxation kinetics in Ni–Al alloys, Prog. Phys. Met., 26, No. 1: 3–28 (2025); https://doi.org/10.15407/ufm.26.01.3
  54. An.D. Zolotarenko, Ol.D. Zolotarenko, Z.A. Matysina, N.A. Shvachko, N.Y. Akhanova, M. Ualkhanova, D.V. Schur, M.T. Gabdullin, M.T. Kartel, Yu.M. Solonin, Yu.I. Zhirko, D.V. Ismailov, A.D. Zolotarenko, and I.V. Zagorulko, Hydrogen in compounds and alloys with A15 Structure, Prog. Phys. Met., 24, No. 4: 654–685 (2023); https://doi.org/10.15407/ufm.24.04.654
  55. An.D. Zolotarenko, Ol.D. Zolotarenko, Z.A. Matysina, N.A. Shvachko, N.Y. Akhanova, M. Ualkhanova, D.V. Schur, M.T. Gabdullin, Yu.I. Zhirko, Yu.M. Solonin, V.V. Lobanov, D.V. Ismailov, A.D. Zolotarenko, and I.V. Zagorulko, On the solubility of hydrogen in metals and alloy, Prog. Phys. Met., 24, No. 3: 415–445 (2023); https://doi.org/10.15407/ufm.24.03.415
  56. G.C. Kuczynski, R.E. Hochman, and M. Doyama, Study of the kinetics of ordering in the alloy AuCu, J. Appl. Phys., 26: 871–878 (1955); https://doi.org/10.1063/1.1722112
  57. A. Kussman and K. Jessen, Magnetische und dilatometrische messungen zur umwandlungskinetik der eisen–palladium legierungen, Zeitschrift für Metallkunde, 54: 504–510 (1963); https://doi.org/10.1515/ijmr-1963-540902
  58. E. Raub and G. Worwag, Über Gold–Palladium–Kupfer Legierungen, Zeitschrift für Metallkunde, 46: 119–128 (1955); https://doi.org/10.1515/ijmr-1955-460208
  59. H. Mughrabi, Т. Ungar, W. Kienle, and M. Wilkens, Long-range internal stresses and asymmetric X-ray line-broadening in tensile-deformed [001]-orientated copper single crystals, Phil. Mag. A, 53: 793–815 (1986); https://doi.org/10.1080/01418618608245293
  60. B.A. Greenberg, O.V. Antonova, L.E. Karkina, A.B. Notkin, and M.V. Ponomarev, Dislocation transformation and the anomalies of deformation characteristics in TiAl—IV. Observation of blocked dislocations, Acta Met. Matter., 40: 815–830 (1992); https://doi.org/10.1016/0956-7151(92)90024-9
  61. C. Creatu and E. Lingen, Coloured gold alloys, Gold Bulletin, 32: 115–126 (1999); https://doi.org/10.1007/BF03214796
  62. K. Ohshima and D. Watanabe, Electron diffraction study of short-range-order diffuse scattering from disordered Cu–Pd and Cu–Pt alloys, Acta Cryst. A, 29: 520–526 (1973); https://doi.org/10.1107/S0567739473001300
  63. A. Naizabekov, A. Arbuz, S. Lezhnev, E. Panin, and I. Volokitina, The development and testing of a new method of qualitative analysis of the microstructure quality, for example of steel AISI 321 subjected to radial shear rolling, Physica Scripta, 94, No. 10: 105702 (2019); https://doi.org/10.1088/1402-4896/ab1e6e
  64. I.E. Volokitina and G.G. Kurapov, Metal Sci. Heat Treat., 59, Nos. 11–12: 786 (2018); https://doi.org/10.1007/s11041-018-0227-0
  65. A.V. Volokitin, M.A. Latypova, A.T. Turdaliev, and О.G. Kolesnikova, Progress in additive manufacturing, Prog. Phys. Met., 24, No. 4: 686–714 (2023); https://doi.org/10.15407/ufm.24.04.686
  66. A.T. Turdaliev, M.A. Latypova, and E.N. Reshotkina, Synthetic-hydroxyapatite-based coatings on the ultrafine-grained titanium and zirconium surface, Prog. Phys. Met., 24, No. 4: 792–818 (2023); https://doi.org/10.15407/ufm.24.04.792
  67. I.E. Volokitina and A.V. Volokitin, Phys. Metals Metallogr., 119, No. 9: 917–921 (2018); https://doi.org/10.1134/S0031918X18090132
  68. I.E. Volokitina, A.V. Volokitin, M.A. Latypova, V.V. Chigirinsky, and A.S. Kolesnikov, Effect of controlled rolling on the structural and phase transformations, Prog. Phys. Met., 24, No. 1: 132–156 (2023); https://doi.org/10.15407/ufm.24.01.132
  69. I. Volokitina, B. Sapargaliyeva, A. Agabekova, A. Volokitin, S. Syrlybekkyzy, A. Kolesnikov, G. Ulyeva, A. Yerzhanov, and P. Kozlov, Study of changes in microstructure and metal interface Cu/Al during bimetallic construction wire straining, Case Studies Construct. Mater., 18: e02162 (2023); https://doi.org/10.1016/j.cscm.2023.e02162
  70. A. Volokitin, I. Volokitina, and E. Panin, Martensitic transformation in aisi-316 austenitic steel during thermomechanical processing, Metallography, Microstructure, and Analysis, 11, No. 4: 673–675 (2022); https://doi.org/10.1007/s13632-022-00877-4
  71. A. Volokitin, A. Naizabekov, I. Volokitina, and A. Kolesnikov, J. Chemical Technology and Metallurgy, 57: 809 (2022).
  72. A.B. Naizabekov, S.N. Lezhnev, and I. Volokitina, Change in copper microstructure and mechanical properties with deformation in an equal channel stepped die, Metal Sci. Heat Treat., 57, Nos. 5–6: 254–260 (2015); https://doi.org/10.1007/s11041-015-9870-x
  73. I. Volokitina, B. Sapargaliyeva, A. Agabekova, S. Syrlybekkyzy, A. Volokitin, L. Nurshakhanova, F. Nurbaeva, A. Kolesnikov, G. Sabyrbayeva, A. Izbassar, O. Kolesnikova, Y. Liseitsev, and S. Vavrenyuk, Case Studies Construct. Mater., 19: e02256 (2023); https://doi.org/10.1016/j.cscm.2023.e02256
  74. S.N. Lezhnev, I. Volokitina, and A.V. Volokitin, Evolution of microstructure and mechanical properties of steel in the course of pressing–drawing, Phys. Metals Metallogr., 118, No. 11: 1167–1170 (2017); https://doi.org/10.1134/S0031918X17110072
  75. S. Lezhnev, E. Panin, and I. Volokitina, Research of combined process “rolling-pressing” influence on the microstructure and mechanical properties of aluminium, Adv. Mater. Res., 814: 68–75 (2013); https://doi.org/10.4028/www.scientific.net/AMR.814.68
  76. S. Bärthlein, E. Winning, G.L. Hart, and S. Müller, Stability and instability of long-period superstructures in binary Cu–Pd alloys: a first principles study, Acta Mater., 57: 1660–1665 (2009); https://doi.org/10.1016/j.actamat.2008.12.013
  77. H. Okamoto, D. Chakrabarti, D. Laughlin, and T. Massalski, The Au–Cu (gold–copper) system, J. Phase Equilibria, 8: 454–474 (1987); https://doi.org/10.1007/BF02893155
  78. A. Verma, J. Singh, M. Sundararaman, and N. Wanderka, Resistivity and transmission electron microscopy investigations of ordering transformation in stoichiometric Ni2(Cr0.5Mo0.5) alloy, Metallurgical and Materials Transactions A, 43: 3078–3085 (2012); https://doi.org/10.1007/s11661-012-1145-1
  79. D. Broddin, G.V. Tendeloo, J.V. Landuyt, and S. Amelinckx, Two-dimensional long period structures in Cu–Pd. A study of the mechanism of the transition from a one-dimensional LPS to a two-dimensional LPS, Philosophical Magazine A, 59: 47–61 (1989); https://doi.org/10.1080/01418618908220330
  80. M.E. Fisher and W. Selke, Infinitely many commensurate phases in a simple ising model, Phys. Rev. Lett., 44: 1502–1505 (1980); https://doi.org/10.1103/PhysRevLett.44.1502
  81. S. Ogawa and D. Watanabe, Electron diffraction study on the ordered alloy CuAu, J. Phys. Soc. Jpn., 9: 475–488 (1954); https://doi.org/10.1143/JPSJ.9.475
  82. S. Yamaguchi, D. Watanabe, and S. Ogawa, J. Phys. Soc. Jpn., 17: 1030–1041 (1962); https://doi.org/10.1143/JPSJ.17.1030
  83. H. Sato and R.S. Toth, Long-period superlattices in alloys. II, Phys. Rev., 127: 469–484 (1962); https://doi.org/10.1103/PhysRev.127.469
  84. O. Terasaki, Direct observation of ‘domain like’ atomic arrangement of incommensurate 2d Au3+Zn by high-voltage-high-resolution electron microscopy, J. Physics C: Solid State Physics, 14: L933 (1981); https://doi.org/10.1088/0022-3719/14/31/002
  85. D. Watanabe, M. Hirabayashi, and S. Ogawa, On the super-structure of the alloy Cu3Pd, Acta Crystallogr., 8: 510–512 (1955); https://doi.org/10.1107/S0365110X55001576
  86. M. Hirabayashi and S. Ogawa, On the superstructure of the ordered alloy Cu3Pd II. X-ray diffraction study, J. Phys. Soc. Jpn., 12: 259–271 (1957); https://doi.org/10.1143/JPSJ.12.259
  87. H. Sato and R.S. Toth, Effect of additional elements on the period of CuAu II and the origin of the long-period superlattice, Phys. Rev., 124: 1833–1847 (1961) https://doi.org/10.1103/PhysRev.124.1833
  88. C.H. Johansson and J.O. Linde, Gitterstruktur und elektrisches Leitvermögen der Mischkristallreihen Au–Cu, Pd–Cu und Pt–Cu, Annalen der Physik, 387: 449–478 (1927); https://doi.org/10.1002/andp.19273870402
  89. F.C. Nix and W. Shockley, Rev. Mod. Phys., 10: 1–71 (1938).
  90. F.W. Jones and C. Sykes, The superlattice in β brass, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 161: 440–446 (1937); https://doi.org/10.1098/rspa.1937.0154
  91. S. Ogawa and D. Watanabe, On the structure of CuAu II revealed by electron diffraction, Acta Crystallogr., 7: 377–378 (1954); https://doi.org/10.1107/S0365110X54001077
  92. J.B. Newkirk, Order–disorder transformation in Cu–Au alloys near the composition CuAu, JOM, 5: 823–826 (1953); https://doi.org/10.1007/BF03397552
  93. D. Watanabe, On the superstructure of the ordered alloy Cu3Pd. III. High temperature electron diffraction study, J. Phys. Soc. Jpn., 14: 436–443 (1959); https://doi.org/10.1143/JPSJ.14.436
  94. J.F. Jaumot and A. Sawatzky, Acta Metall., 4: 118–126 (1956); https://doi.org/10.1016/0001-6160(56)90130-4
  95. F.E. Jaumot and A. Sawatzky, An isothermal anneal study of quenched and cold-worked copper-palladium alloys, Acta Metall., 4: 118–126 (1956); https://doi.org/10.1016/0001-6160(56)90131-6
  96. K. Fujiwara, M. Hirabayashi, D. Watanabe, and S. Ogawa, Study on the Ordered Alloy Ag3Mg, J. Phys. Soc. Jpn., 13: 167–174 (1958); https://doi.org/10.1143/JPSJ.13.167
  97. K. Fujiwara, On the period of out-of-step of ordered alloys with anti-phase domain structure, J. Phys. Soc. Jpn., 12: 7–13 (1957); https://doi.org/10.1143/JPSJ.12.7
  98. J.A. Rayne, Heat capacity of Cu3Au below 4.2 K, Phys. Rev., 108: 649–651 (1957); https://doi.org/10.1103/PhysRev.108.649
  99. P. Pério and M. Tournarie, Diffraction par les antiphase périodiques à une et deux directions du type AuCu3, Acta Crystallogr., 12: 1032–1038 (1959); https://doi.org/10.1107/S0365110X59002882
  100. J.M. Cowley, Short- and long-range order parameters in disordered solid solutions, Phys. Rev., 120: 1648–1657 (1960); https://doi.org/10.1103/PhysRev.120.1648
  101. K. Okamura, Lattice Modulation in the long period ordered alloys studied by X-ray diffraction. III. Cu3Pd(α″), J. Phys. Soc. Jpn., 28: 1005–1014 (1970); https://doi.org/10.1143/JPSJ.28.1005
  102. A. Gangulee and S.C. Moss, Long range order in Ag3Mg, J. Applied Crystallography, 1: 61–67 (1968); https://doi.org/10.1107/S0021889868005017
  103. R. Kubiak and M. Wolcyrz, Twinning observed by x-ray diffraction in AuCu-ordered alloys, J. Less Common Metals, 160: 101–107 (1990); https://doi.org/10.1016/0022-5088(90)90111-V
  104. C. Gammer, C. Mangler, C. Rentenberger, and H. Karnthaler, Quantitative local profile analysis of nanomaterials by electron diffraction, Scripta Mater., 63: 312–315 (2010); https://doi.org/10.1016/j.scriptamat.2010.04.019
  105. M. Marcinkowski and L. Zwell, Transmission electron microscopy study of the off-stoichiometric Cu3Au superlattices, Acta Metall., 11: 373–390 (1963); https://doi.org/10.1016/0001-6160(63)90162-7
  106. H. Sato and R.S. Toth, Effect of additional elements on the period of CuAuII and the origin of the long-period superlattice, Phys. Rev., 124: 1833–1847 (1961); https://doi.org/10.1103/physrev.124.1833
  107. G. Vanderschaeve, Étude en microscopie électronique d’un alliage possédant une surstructure à longue période: Ag3Mg, physica status solidi, 36: 103–117 (1969); https://doi.org/10.1002/PSSB.19690360110
  108. K. Hanhi, J. Mäki, and P. Paalassalo, Electron microscopic investigation of long period order in Ag3Mg, Acta Metall., 19: 15–20 (1971); https://doi.org/10.1016/0001-6160(71)90156-8
  109. J. Kakinoki and T. Minagawa, The one-dimensional anti-phase domain structures. II. Refinement of Fujiwara’s method of the analysis of the structure with a non-integral value for the half period, M, Acta Crystallogr., 28: 120–133 (1972); https://doi.org/10.1107/S0567739472000282
  110. G. van Tendeloo and S. Amelinckx, Acta Crystallogr., 30: 431–440 (1974); https://doi.org/10.1107/S0567739474000933
  111. K. Mihama, Growth and structure of AuCu II particles, J. Phys. Soc. Jpn., 31: 1677–1682 (1971); https://doi.org/10.1143/JPSJ.31.1677
  112. L. Howe, M. Rainville, and E. Schulson, Transmission electron microscopy investigations of ordered Zr3Al, J. Nuclear Materials, 50: 139–154 (1974); https://doi.org/10.1016/0022-3115(74)90151-2
  113. R. De Ridder, G. van Tendeloo, and S. Amelinckx, A cluster model for the transition from the short-range order to the long-range order state in f.c.c. based binary systems and its study by means of electron diffraction, Acta Crystallogr., 32: 216–224 (1976); https://doi.org/10.1107/S0567739476000508
  114. C. Leroux, A. Loiseau, M.C. Cadeville, D. Broddin, and G.V. Tendeloo, Order-disorder transformation in Co30Pt70 alloy: evidence of wetting from the antiphase boundaries, J. Physics: Condensed Matter, 2: 3479 (1990); https://doi.org/10.1088/0953-8984/2/15/005
  115. S. Takeda, J. Kulik, and D. de Fontaine, One-dimensional long-period superstructures in Cu3Pd observed by high-resolution electron microscopy, J. Physics F, 18: 1387 (1988); https://doi.org/10.1088/0305-4608/18/7/009
  116. D. Geist, C. Gammer, C. Mangler, C. Rentenberger, and H. Karnthaler, Electron microscopy of severely deformed L12 intermetallics, Philosophical Magazine, 90: 4635–4645 (2010); https://doi.org/10.1080/14786435.2010.482178
  117. I. Volokitina, N. Vasilyeva, R. Fediuk, and A. Kolesnikov, Hardening of bimetallic wires from secondary materials used in the construction of power lines, Materials, 15, No. 11: 3975 (2022); https://doi.org/10.3390/ma15113975
  118. I.E. Volokitina, A.I. Denissova, A.V. Volokitin, and E.A. Panin, Methods for obtaining a gradient structure, Prog. Phys. Met., 25, No. 1: 132–160 (2024); https://doi.org/10.15407/ufm.25.01.132
  119. I. Volokitina, A. Volokitin, A. Denissova, T. Fedorova, D. Lawrinuk, A. Kolesnikov, A. Yerzhanov, Y. Kuatbay, and Y. Liseitsev, Effect of thermomechanical processing of building stainless wire to increase its durability, Case Studies Construct. Mater., 19: e02346 (2023); https://doi.org/10.1016/j.cscm.2023.e02346
  120. I. Volokitina, A. Volokitin, and D. Kuis, J. Chemical Technology and Metallurgy, 56: 643 (2021).
  121. I.E. Volokitina, Effect of cryogenic cooling after ecap on mechanical properties of aluminum alloy D16, Metal Sci. Heat Treat., 61: 234 (2019); https://doi.org/10.1007/s11041-019-00406-1
  122. A.B. Nayzabekov and I.E. Volokitina, Effect of the initial structural state of Cr–Mo high-temperature steel on mechanical properties after equal-channel angular pressinga, Phys. Metals Metallogr., 120, No. 2: 177–183 (2019); https://doi.org/10.1134/S0031918X19020133
  123. S. Lezhnev and A. Naizabekov, New Combined Process “Pressing-drawing” and Impact on Properties of Deformable Aluminum Wire, Procedia Engineering, 81: 1505–1510 (2014); https://doi.org/10.1016/j.proeng.2014.10.181
  124. S. Lezhnev, A. Naizabekov, and E. Panin, Influence of combined process “rolling-pressing” on microstructure and mechanical properties of copper, Procedia Engineering, 81: 1499–1504 (2014); https://doi.org/10.1016/j.proeng.2014.10.180.
  125. I.E. Volokitina, Effect of preliminary heat treatment on deformation of brass by the method of ECAP, Metal Sci. Heat Treat., 63, Nos. 3–4: 163–167 (2021); https://doi.org/10.1007/s11041-021-00664-y
  126. D.A. Sinitsin, A.E.M.M. Elrefaei, A.O. Glazachev, D.V. Kuznetsov, A.A. Parfenova, I.E. Volokitina, E.I. Kayumova, and I.V. Nedoseko, Construction Materials and Products, 6, No. 6: 2 (2023); https://doi.org/10.58224/2618-7183-2023-6-6-2
  127. Z.S. Gelmanova, B.A. Bazarov, A.V. Mezentseva, A.N. Konakbaeva, and A.K. Toleshov, Mining Informational and Analytical Bulletin, 2: 184–198 (2021); https://doi.org/10.25018/0236-1493-2021-21-0-184-198
  128. V.V. Chigirinsky, Yu.S. Kresanov, and I.Y. Volokitina, Study of kinematic and deformation parameters of rolling of compressor blade workpieces, Metallofiz. Noveishie Tekhnol., 45, No. 5: 631–646 (2023); https://doi.org/10.15407/mfint.45.05.0631
  129. I. Volokitina, A. Volokitin, E. Panin, and B. Makhmutov, Symmetrical martensite distribution in wire using cryogenic cooling, Symmetry, 16, No. 9: 1174 (2024); https://doi.org/10.3390/sym16091174
  130. V.V. Chigirinsky, Y.S. Kresanov, and I.E. Volokitina, Experimental study of energy-power parameters of billet rolling of compressor blades of aircraft engines, Metallofiz. Noveishie Tekhnol., 45, No. 4: 467–479 (2023); https://doi.org/10.15407/mfint.45.04.0467
  131. M.-R. Chen, S.-J. Lin, J.-W. Yeh, S.-K. Chen, Y.-S. Huang, and C.-P. Tu, Microstructure and properties of Al0.5CoCrCuFeNiTix (x = 0–2.0) high-entropy alloys, Materials Transactions, 47: 1395–1401 (2006); https://doi.org/10.2320/matertrans.47.1395
  132. M.-R. Chen, S.-J. Lin, J.-W. Yeh, M.-H. Chuang, S.-K. Chen, and Y.-S. Huang, Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy, Metallurgical and Materials Transactions A, 37: 1363–1369 (2006); https://doi.org/10.1007/s11661-006-0081-3
  133. A. Chbihi, X. Sauvage, C. Genevois, D. Blavette, D. Gunderov, and A. Popov, Optimization of the magnetic properties of FePd alloys by severe plastic deformation, Advanced Engineering Materials, 12: 708–713 (2010); https://doi.org/10.1002/adem.200900326
  134. A. Naizabekov, I. Volokitina, A. Volokitin, and E. Panin, Structure and mechanical properties of steel in the process “pressing–drawing”, J. Materials Engineering and Performance, 28, No. 3: 1762 (2019); https://doi.org/10.1007/s11665-019-3880-6
  135. I. Volokitina, A. Volokitin, and E. Panin, Gradient microstructure formation in carbon steel bars, J. Materials Research and Technology, 31: 2985–2993 (2024); https://doi.org/10.1016/j.jmrt.2024.07.038
  136. I.E. Volokitina, Evolution of the microstructure and mechanical properties of copper under ECAP with intense cooling, Metal Sci. Heat Treat., 62: 253–258 (2020); https://doi.org/10.1007/s11041-020-00544-x
  137. I. Volokitina, A. Volokitin, and B. Makhmutov, Formation of symmetric gradient microstructure in carbon steel bars, Symmetry, 16, No. 8: 997 (2024); https://doi.org/10.3390/sym16080997
  138. X.Z. Liao, Y.H. Zhao, Y.T. Zhu, R.Z. Valiev, and D.V. Gunderov, Grain-size effect on the deformation mechanisms of nanostructured copper processed by high-pressure torsion, J. Applied Physics, 96: 636–640 (2004); https://doi.org/10.1063/1.1757035
  139. A.V. Volokitin, I. Volokitina, T.D. Fedorova, M.A. Latypova, and D.N. Lavrinyuk, Analysis of the twisting effect in an equal-channel stepped die and drawing on copper wire mechanical properties, Metallurgist, 68, No. 4: 530–536 (2024); https://doi.org/10.1007/s11015-024-01756-9
  140. I.E. Volokitina and A.V. Volokitin, Effect of annealing temperature on microstructure and properties of stainless steel rings after high-pressure torsion, Metallurgist, 68, No. 1: 52–58 (2024); https://doi.org/10.1007/s11015-024-01703-8
  141. E.F. Talantsev, d-Wave superconducting gap symmetry as a model for Nb1−xMoxB2 (x = 0.25; 1.0) and WB2 diborides, Symmetry, 15, No. 4: 812 (2023); https://doi.org/10.3390/sym15040812
  142. M.M. Nofal, R. Sai, R.S. Shawish, and M.A. Alaqeel, An insight of the theoretical physics of Ru-alloyed iron pyrite studied for energy generation, Symmetry, 14, No. 11: 2252 (2022); https://doi.org/10.3390/sym14112252
  143. F. Yu and Y. Liu, Symmetry, 11, No. 8: 972 (2019); https://doi.org/10.3390/sym11080972
  144. J.E. Taylor, E.G. Teich, P.F. Damasceno, Y. Kallus, and M. Senechal, DFT calculations of the structural, mechanical, and electronic properties of TiV alloy under high pressure, Symmetry, 9, No. 9: 188 (2017); https://doi.org/10.3390/sym9090188
  145. B. Jang, S. Riemer, and G.M. Pastor, Chiral magnetic interactions in small Fe clusters triggered by symmetry-breaking adatoms, Symmetry, 15, No. 2: 397 (2023); https://doi.org/10.3390/sym15020397
  146. R. Valiev, A. Korznikov, and R. Mulyukov, Structure and properties of ultrafine-grained materials produced by severe plastic deformation, Mater. Sci. Eng. A, 168: 141–148 (1993); https://doi.org/10.1016/0921-5093(93)90717-S
  147. A. Zhilyaev, S. Lee, G. Nurislamova, R. Valiev, and T. Langdon, Microhardness and microstructural evolution in pure nickel during high-pressure torsion, Scripta Mater., 44: 2753–2758 (2001); https://doi.org/10.1016/S1359-6462(01)00955-1
  148. X. Zhang, Y. Li, M. Kaufman, and M. Loretto, The structure and origin of boundaries between antiphase regions in L10 intermetallics, Acta Mater., 44: 3735–3747 (1996); https://doi.org/10.1016/1359-6454(95)00454-8
  149. H. Rösner, N. Boucharat, J. Markmann, K. Padmanabhan, and G. Wilde, Mater. Sci. Eng. A, 525: 102–106 (2009); https://doi.org/10.1016/j.msea.2009.06.035
  150. T.M. Radchenko and V.A. Tatarenko, Statistical thermodynamics and kinetics of atomic order in doped graphene. I. Substitutional solution, Nanosistemi, Nanomateriali, Nanotehnologii, 6, No. 3: 867–910 (2008) (in Ukrainian).
  151. T.M. Radchenko and V.A. Tatarenko, Statistical thermodynamics and kinetics of atomic order in doped graphene. ІІ. Interstitial solution, Nanosistemi, Nanomateriali, Nanotehnologii, 8, No. 3: 619–650 (2010) (in Ukrainian).
  152. Т.М. Radchenko, Substitutional superstructures in the doped graphene lattice, Metallofiz. Noveishie Tekhnol., 30, No. 8: 1021–1026 (2008) (in Ukrainian).
  153. T.M. Radchenko and V.A. Tatarenko, Statistical thermodynamics and kinetics of long-range order in metal-doped graphene, Solid State Phenomena, 150: 43–72 (2009); https://doi.org/10.4028/www.scientific.net/SSP.150.43
  154. T.M. Radchenko and V.A. Tatarenko, Kinetics of atomic ordering in metal-doped graphene, Solid State Sci., 12, No. 2: 204–209 (2010); https://doi.org/10.1016/j.solidstatesciences.2009.05.027
  155. T.M. Radchenko and V.A. Tatarenko, A statistical-thermodynamic analysis of stably ordered substitutional structures in graphene, Physica E, 42, No. 8: 2047–2054 (2010); https://doi.org/10.1016/j.physe.2010.03.024
  156. I.Yu. Sagalyanov, Yu.I. Prylutskyy, T.M. Radchenko, and V.A. Tatarenko, Graphene systems: methods of fabrication and treatment, structure formation, and functional properties, Usp. Fiz. Met., 11, No. 1: 95–138 (2010) (in Ukrainian); https://doi.org/10.15407/ufm.11.01.095
  157. T.M. Radchenko and V.A. Tatarenko, Stable superstructures in a binary honeycomb-lattice gas, Int. J. Hydrogen Energy, 36, No. 1: 1338–1343 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.112
  158. T.M. Radchenko and V.A. Tatarenko, Ordering kinetics of dopant atoms in graphene lattice with stoichiometric compositions of 1/3 and 1/6, Materialwiss. Werkstofftech., 44, Nos. 2–3: 231–238 (2013); https://doi.org/10.1002/mawe.201300094
  159. T.M. Radchenko, V.A. Tatarenko, I.Yu. Sagalyanov, and Yu.I. Prylutskyy, Configurational effects in an electrical conductivity of a graphene layer with the distributed adsorbed atoms (K), Nanosistemi, Nanomateriali, Nanotehnologii, 13, No. 2: 201–214 (2015).
  160. T.M. Radchenko, I.Y. Sahalianov, V.A. Tatarenko, Y.I. Prylutskyy, P. Szroeder, M. Kempiński, and W. Kempiński, The impact of uniaxial strain and defect pattern on magnetoelectronic and transport properties of graphene, Handbook of Graphene, Vol. 1: Growth, Synthesis, and Functionalization (Eds. E. Celasco, A.N. Chaika) (Beverly, MA: John Wiley & Sons, Inc., Scrivener Publishing LLC: 2019), Ch. 14, p. 451–502; https://doi.org/10.1002/9781119468455.ch14
  161. T.M. Radchenko, V.A. Tatarenko, I.Yu. Sagalianov, and Yu.I. Prylutskyy, Configurations of structural defects in graphene and their effects on its transport properties, Graphene: Mechanical Properties, Potential Applications and Electrochemical Performance (Ed. Bruce T. Edwards) (New York: Nova Science Publishers, Inc.: 2014), Ch. 7, p. 219–259.
  162. A.G. Solomenko, R.M. Balabai, T.M. Radchenko, and V.A. Tatarenko, Functionalization of quasi-two-dimensional materials: chemical and strain-induced modifications, Prog. Phys. Met., 23, No. 2: 147–238 (2022); https://doi.org/10.15407/ufm.23.02.147
  163. S.P. Repetsky, I.G. Vyshyvana, S.P. Kruchinin, V.B. Molodkin, and V.V. Lizunov, Influence of the adsorbed atoms of potassium on an energy spectrum of graphene, Metallofiz. Noveishie Tekhnol., 39, No. 8: 1017–1022 (2017); https://doi.org/10.15407/mfint.39.08.1017
  164. O.S. Skakunova, S.I. Olikhovskii, T.M. Radchenko, S.V. Lizunova, T.P. Vladimirova, and V.V. Lizunov, X-ray dynamical diffraction by quasi-monolayer graphene, Scientific Reports, 13: 15950 (2023); https://doi.org/10.1038/s41598-023-43269-6
  165. V.A. Tatarenko, O.V. Sobol’, D.S. Leonov, Yu.A. Kunyts’kyy, and S.M. Bokoch, Statistical thermodynamics and physical kinetics of structural changes of quasi-binary solid solutions based on the close-packed simple lattices (according to the data about evolution of a pattern of scattering of waves of various kinds), Usp. Fiz. Met., 12, No. 1: 1–155 (2011) (in Ukrainian); https://doi.org/10.15407/ufm.12.01.001
  166. V.A. Tatarenko and T.M. Radchenko, Kinetics of the hydrogen-isotopes short-range order in interstitial solid solutions h.c.p.-Ln–H(D, T), Hydrogen Materials Science and Chemistry of Metal Hydrides: NATO Science Series, Series II: Mathematics, Physics and Chemistry (Eds. T.N. Veziroglu, S.Yu. Zaginaichenko, D.V. Schur, and V.I. Trefilov) (Dordrecht, The Netherlands: Kluwer Academic Publishers: 2002), vol. 82, p. 123–132.
  167. V.A. Tatarenko, T.M. Radchenko, and V.B. Molodkin, Microscopic characteristics of h diffusion and diffuse scattering of radiations in h.c.p.-Ln–H (from the data on electrical-resistivity relaxation), Hydrogen Materials Science and Chemistry of Carbon Nanomaterials (NATO Science Series, II: Mathematics, Physics and Chemistry) (Eds. T.N. Veziroglu, S.Yu. Zaginaichenko, D.V. Schur, B. Baranowski, A.P. Shpak, V.V. Skorokhod) (Dordrecht, The Netherlands: Kluwer Academic Publishers: 2004), vol. 172, p. 59–66; https://doi.org/10.1007/1-4020-2669-2_5
  168. D.S. Leonov, T.M. Radchenko, V.A. Tatarenko, and Yu.A. Kunitsky, Kinetic parameters of migration of atoms and relaxation of scattering of different-type waves in the ordering fcc-Ni–Al alloy, Metallofiz. Noveishie Tekhnol., 29, No. 12: 1587–1602 (2007) (in Russian).
  169. S.M. Bokoch, N.P. Kulish, T.M. Radchenko, S.P. Repetskiy, and V.A. Tatarenko, Parameters of a relaxation of an electrical resistance and diffuse scattering in binary substitutional solutions fcc-Ni–Mo, Metallofiz. Noveishie Tekhnol., 24, No. 5: 691–704 (2002) (in Russian).
  170. S.M. Bokoch, M.P. Kulish, T.M. Radchenko, and V.A. Tatarenko, Kinetics of short-range ordering of substitutional solid solutions (according to data on a scattering of various kinds of waves). I. Microscopic parameters of migration of atoms within f.c.c.-Ni–Mo in Fourier-representation, Metallofiz. Noveishie Tekhnol., 26, No. 3: 387–406 (2004) (in Russian).
  171. S.M. Bokoch, M.P. Kulish, V.A. Tatarenko, and T.M. Radchenko, Kinetics of short-range ordering of substitutional solid solutions (according to data on a scattering of various kinds of waves). II. Parameters of atomic microdiffusion within f.c.c.-Ni–Mo, Metallofiz. Noveishie Tekhnol., 26, No. 4: 541–558 (2004) (in Russian).
  172. D.S. Leonov, T.M. Radchenko, V.A. Tatarenko, and Yu.A. Kunitsky, Kinetics parameters of atomic migration and diffuse scattering of radiations within the f.c.c.-Ni–Al alloys, Defect and Diffusion Forum, 273–276: 520–524 (2008); https://doi.org/10.4028/www.scientific.net/DDF.273-276.520
  173. T.M. Radchenko and V.A. Tatarenko, Comments concerning parameters of the short-range order evolution determined from the data on kinetics of a heat-capacity relaxation for Lu–H alloy, Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. NATO Security through Science Series A: Chemistry and Biology (Eds. T.N. Veziroglu, S.Yu. Zaginaichenko, D.V. Schur, B. Baranowski, A.P. Shpak, V.V. Skorokhod, A. Kale) (Dordrecht: Springer: 2007), p. 229–234; https://doi.org/10.1007/978-1-4020-5514-0_28
  174. V.V. Lizunov, I.M. Melnyk, T.M. Radchenko, S.P. Repetsky, and V.A. Tatarenko, Influence of strong electron–electron correlations on the electrical conduction and magnetic properties of substitutional alloys as advanced functional spintronic materials, Functional Magnetic and Spintronic Nanomaterials, NATO Science for Peace and Security Series B: Physics and Biophysics (Eds. I. Vladymyrskyi, B. Hillebrands, A. Serha, D. Makarov, and O. Prokopenko) (Dordrecht: Springer: 2024), Ch. 1, p. 1–25; https://doi.org/10.1007/978-94-024-2254-2_1
  175. K. Schubert, Crystal structures of beta brass like alloy phases, Transactions of the Japan Institute of Metals, 14: 281–284 (1973); https://doi.org/10.2320/matertrans1960.14.281
  176. H. Sato, R.S. Toth, and T.B. Massalski, Alloying Behavior and Effects in Concentrated Solid Solutions (New York: Gordon Breach Sci. Publ.: 1965).
  177. J.C. Slater, Note on superlattices and brillouin zones, Phys. Rev., 84: 179–181 (1951); https://doi.org/10.1103/PhysRev.84.179
  178. J.F. Nicholas, Effect of the Fermi energy on the stability of superlattices, Proc. Physical Society. Section A, 66: 201 (1953); https://doi.org/10.1088/0370-1298/66/3/301
  179. R.G. Jordan, X. Xu, S.L. Qiu, P.J. Durham, and G.Y. Guo, The long-period superlattice in CuAu II, J. Physics: Condensed Matter, 8: 1503 (1996); https://doi.org/10.1088/0953-8984/8/10/020
  180. Y. Sato, J.M. Sivertsen, and L.E. Toth, Low-temperature specific-heat study of Cu–Pd alloys, Phys. Rev. B., 1: 1402–1410 (1970); https://doi.org/10.1103/PhysRevB.1.1402
  181. D. Watanabe, Study on the ordered alloys of gold–manganese system by electron diffraction. II. Au4Mn, J. Phys. Soc. Jpn., 15: 1251–1257 (1960); https://doi.org/10.1143/JPSJ.15.1251
  182. J.B. Cohen, A brief review of the properties of ordered alloys, J. Materials Science, 4: 1012–1021 (1969); https://doi.org/10.1007/BF00555319
  183. A. Zhilyaev, G. Nurislamova, B.-K. Kim, M. Baro, J. Szpunar, and T. Langdon, Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion, Acta Mater., 51: 753–765 (2003); https://doi.org/10.1016/S1359-6454(02)00466-4
  184. Y. Ivanisenko, W. Lojkowski, R. Valiev, and H.-J. Fecht, The mechanism of formation of nanostructure and dissolution of cementite in a pearlitic steel during high pressure torsion, Acta Mater., 51: 5555–5570 (2003); https://doi.org/10.1016/S1359-6454(03)00419-1
  185. G. Vanderschaeve, G. Coulon, and B. Escaig, Dislocation splitting in long period ordered Ag3Mg and related deformation behaviour, Physica Status Solidi, 9: 541–549 (1972); https://doi.org/10.1002/pssa.2210090217
  186. K. Okamura, H. Iwasaki, and S. Ogawa, Lattice modulation in the long period ordered alloys studied by X-ray diffraction. II. CuAu II, J. Phys. Soc. Jpn., 24: 569–579 (1968); https://doi.org/10.1143/JPSJ.24.569
  187. R.E. Scott, New complex phase in the copper–gold system, J. Applied Physics, 31: 2112–2117 (1960); https://doi.org/10.1063/1.1735509
  188. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci., 60: 130–207 (2014); https://doi.org/10.1016/j.pmatsci.2013.09.002