Ultrasonic Surface Finishing of AISI 1045 Steel Hardened by Laser Heat Treatment with Fibre Laser and Scanning Optics: Layered-Structure-Induced Hardening and Enhanced Surface Morphology

LESYK D.A.$^{1,2,3}$, MORDYUK B.M.$^{2,4}$, ALNUSIRAT W.$^5$, MARTINEZ S.$^3$, DZHEMELINSKYI V.V.$^1$, HONCHARUK O.O.$^1$, KONDRASHEV P.V.$^1$, KLIUCHNYKOV Yu.V.$^1$, and LAMIKIZ A.$^3$

$^1$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Prospect Beresteiskyi, UA-03056 Kyiv, Ukraine
$^2$G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^3$University of the Basque Country, 1 Plaza Ingeniero Torres Quevedo, SP-48013 Bilbao, Spain
$^4$E.O. Paton Electric Welding Institute of the N.A.S. of Ukraine, 11 Kazymyr Malevych Str., UA-03150 Kyiv, Ukraine
$^5$Al-Balqa Applied University, 33 Salt St., JO-19117 Al-Salt, Jordan

Received 07.08.2024, final version 04.11.2024 Download PDF logo PDF

Abstract
Nowadays, emerging of new technologies causes implicitly the increased requirements for conventional methods and materials. Literature survey shows that combined thermomechanical processes of surface hardening and finishing using highly-concentrated energy sources are promising to enhance the surface integrity and operational properties of structural steels. Some surface-related and microstructural factors can be considered crucial for properties’ enhancement, viz., surface roughness and waviness, grain size and phase composition, residual macrostresses, and microhardness. In this work, a laser heat treatment (LHT) followed by an ultrasonic impact treatment (UIT) also known as high-frequency mechanical impact (HFMI) treatment is sequentially applied to the AISI 1045 steel to demonstrate the efficiency of their combined influence. The near-surface microstructure formed after the combined LHT+UIT process is observed by optical microscopy, transmission electron microscopy, and x-ray diffraction analysis. The surface residual macrostresses, microhardness, roughness, and waviness are also evaluated. The results show that the combined LHT+UIT-treatment induces phase transformation and severe plastic deformation, forming layered hardening and grain structure refinement in the near-surface layers of medium-carbon steel. The subsurface microhardness at a depth up to ≈50 µm after the combined treatment is significantly increased (>10 GPa) due to the severe plastic deformation of the LHT-formed martensitic lamellas, providing the nanoequiaxed grain microstructure in the subsurface layer. The hardening depth (of 140–440 µm) in the LHT+UIT-treated samples depends on the LHT speed (of 40–140 mm/min) and the heating temperature (1200–1300 °C) by scanning laser beam. Additionally, taking into account the surface residual compressive macrostresses (>400 MPa), smoother microrelief on the surface, and reduced roughness parameters (Ra < 0.5 µm) formed by UIT, the studied steel functionality is expected to be improved. The combined laser–ultrasonic surface hardening and finishing process can be used for large-size steel product treatment.

Keywords: AISI 1045, combined surface treatment, laser phase-transformation hardening, ultrasonic finishing, gradient structure, surface nanostructuring, surface morphology.

DOI: https://doi.org/10.15407/ufm.25.04.822

Citation: D.A. Lesyk, B.M. Mordyuk, W. Alnusirat, S. Martinez, V.V. Dzhemelinskyi, O.O. Honcharuk, P.V. Kondrashev, Yu.V. Kliuchnykov, and A. Lamikiz, Ultrasonic Surface Finishing of AISI 1045 Steel Hardened by Laser Heat Treatment with Fibre Laser and Scanning Optics: Layered-Structure-Induced Hardening and Enhanced Surface Morphology, 25, No. 4: 822–867 (2024)


References  
  1. J. Alcantara, D. de la Fuente, B. Chico, J. Simancas, I. Diaz, and M. Morcillo, J. Manuf. Syst., 10, No. 4: 406 (2017); https://doi.org/10.3390/ma10040406
  2. W. Zhai, L. Bai, R. Zhou, X. Fan, G. Kang, Y. Liu, and K. Zhou, Adv. Sci., 9: 2003739 (2021); https://doi.org/10.1002/advs.202003739
  3. M. Morcillo, I. Diaz, B. Chico, H. Cano, and D. de la Fuente, Corros. Sci., 83: 6–31 (2014); https://doi.org/10.1016/j.corsci.2014.03.006
  4. L. Tan, L.L. Snead, and Y. Katoh, J. Nucl. Mater., 478: 42–49 (2016); https://doi.org/10.1016/j.jnucmat.2016.05.037
  5. E. Mokhtari, A. Heidarpour, and F. Javidan, J. Constr. Steel Res., 220: 108840 (2024); https://doi.org/10.1016/j.jcsr.2024.108840
  6. V.V. Tsyganov, R.E. Mokhnach, and S.P. Sheiko, Steel Transl., 51: 144–147 (2021); https://doi.org/10.3103/S096709122102011X
  7. A. Mukherjee, C. Biswas, A. Majumder, M. Barik, and S. Banerjee, Mater. Today, 67: 536–542 (2022); https://doi.org/10.1016/j.matpr.2022.07.257
  8. A.R. Khalifeh, A.D. Banaraki, H.D. Manesh, and M.D. Banaraki, Mater. Sci. Eng. A, 712: 232-239 (2018); https://doi.org/10.1016/j.msea.2017.11.025
  9. N.-V. Nguyen, T.-H. Pham, and S.-E. Kim, Mech. Mater., 137: 103089 (2019); https://doi.org/10.1016/j.mechmat.2019.103089
  10. J. Zheng, X. Zhou, Y. Yu, J. Wu, W. Ling, and H. Ma, J. Clean. Prod., 253: 119917 (2020); https://doi.org/10.1016/j.jclepro.2019.119917
  11. S. Valkov, M. Ormanova, and P. Petrov, Metals, 10: 1219 (2020); https://doi.org/10.3390/met10091219
  12. R. Zenker, G. Sacher, A. Buchwalder, J. Liebich, A. Reiter, and R. Häßler, Surf. Coat. Technol., 202: 804–808 (2007); https://doi.org/10.1016/j.surfcoat.2007.05.089
  13. K. Wang, Q. Ma, J. Xu, C. Liu, P. Wang, R. Chen, Y. Gao, and L. Li, Mater. Today Commun., 31: 103773 (2022); https://doi.org/10.1016/j.mtcomm.2022.103773
  14. L.J. Yang, J. Mater. Process. Technol., 113: 521–526 (2001); https://doi.org/10.1016/S0924-0136(01)00583-0
  15. D. Saha and S. Pal, J. Mater. Eng. Perform., 25: 2588–2599 (2015); https://doi.org/10.1007/s11665-019-04064-5
  16. D. Guo, P. Zhang, Y. Jiang, C. Song, D.-Q. Tan, and D. Yu, Tribol. Int., 169: 107465 (2022); https://doi.org/10.1016/j.triboint.2022.107465
  17. S. Guarino, M. Barletta, and A. Afilal, J. Manuf. Process., 28: 266–271 (2017); https://doi.org/10.1016/j.jmapro.2017.06.015
  18. D.A. Lesyk, M. Hruska, B.N. Mordyuk, P. Kochmanski, and B. Powalka, Lect. Notes Netw. Syst., 687: 45–53 (2023); https://doi.org/10.1007/978-3-031-31066-9_5
  19. V. Kostov, J. Gibmeier, and A. Wanner, J. Mater. Process. Technol., 239: 326–335 (2017); https://doi.org/10.1016/j.jmatprotec.2016.08.035
  20. D.A. Lesyk, M. Hruska, О.О. Dаnylеikо, M. Honner, and V.V. Dzhemelinskyi, Lect. Notes Netw. Syst., 472: 30–36 (2022); https://doi.org/10.1007/978-3-031-05230-9_3
  21. N. Maharjan, W. Zhou, Y. Zhou, Y. Guan, and N. Wu, Surf. Coat. Technol., 366: 311–320 (2019); https://doi.org/10.1016/j.surfcoat.2019.03.036
  22. D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, and O.O. Dаnylеikо, Lect. Notes Mech. Eng.: 97–107 (2019); https://doi.org/10.1007/978-3-319-93587-4_11
  23. E.M. Aragaw, E. Gärtner, and A. Schubert, Procedia CIRP, 94: 914–918 (2020); https://doi.org/10.1016/j.procir.2020.09.072
  24. M. Chemkhi, D. Retraint, A. Roos, C. Garnier, L. Waltz, C. Demangel, and G. Proust, Surf. Coat. Technol., 221: 191–195 (2013); http://dx.doi.org/10.1016/j.surfcoat.2013.01.047
  25. D.A. Lesyk, W. Alnusirat, S. Martinez, B.N. Mordyuk, and V.V. Dzhemelinskyi, Lect. Notes Mech. Eng.: 313–322 (2022); https://doi.org/10.1007/978-3-030-91327-4_31
  26. N. Maharjan, W. Zhou, Y. Zhou, Y. Guan, and N. Wu, Surf. Coat. Technol., 366: 311–320 (2019); https://doi.org/10.1016/j.surfcoat.2019.03.036
  27. B. Wu, P. Wang, Y.-S. Pyoun, J. Zhang, and R. Murakami, Surf. Coat. Technol., 213: 271–277 (2012); https://doi.org/10.1016/j.surfcoat.2012.10.063
  28. Y. Morisada, H. Fujii, T. Mizuno, G. Abe, T. Nagaoka, and M. Fukusumi, Mater. Sci. Eng. A, 505: 157–162 (2009); https://doi.org/10.1016/j.msea.2008.11.006
  29. U. Prisco, Int. J. Adv. Manuf. Tech., 98: 2619–2637 (2018); https://doi.org/10.1007/s00170-018-2412-0
  30. M.K. Lee, G.H. Kim, K.H. Kim, and W.W. Kim, J. Mater. Process. Technol., 176: 140–145 (2006); https://doi.org/10.1016/j.jmatprotec.2006.03.119
  31. Y. Xiang, D. Yu, X. Cao, Y. Liu, and J. Yao, Proc. IMechE Part J: J. Eng. Tribol., 232: 103773 (2017); https://doi.org/10.1177/1350650117729073
  32. D. Guo, D. Yu, P. Zhang, Y. Duan, B. Zhang, Y. Zhong, and J. Qiu, Surf. Coat. Technol., 394: 125857 (2020); https://doi.org/10.1016/j.surfcoat.2020.125857
  33. J. Xu, K. Wang, R. Zhang, Q.Guo, P. Wang, R. Chen, D. Zeng, F. Li, J. Guo, and L. Li, Tribol. Int., 146: 106032 (2020); https://doi.org/10.1016/j.triboint.2019.106032
  34. A.T. Kanaev, A.V. Bogomolov, and T.E. Sarsembaeva, Steel Transl., 42: 544–547 (2012); https://doi.org/10.3103/S0967091212060083
  35. P. Śliwiński, M.S. Węglowski, A.N. Wieczorek, and E. Skołek, Surf. Eng., 40, Iss. 3: 276–283 (2024); https://doi.org/10.1177/02670844241249728
  36. Y. Fu, J. Hu, X. Shen, Y. Wang, and W. Zhao, Nucl. Instrum. Methods Phys. Res. B, 410: 207–214 (2017); http://dx.doi.org/10.1016/j.nimb.2017.08.014
  37. J. Yu, R. Wang, D. Wei, C. Meng, and H. Wu, Nucl. Instrum. Methods Phys. Res. B, 467: 102–107 (2020); https://doi.org/10.1016/j.nimb.2020.02.006
  38. D. Wei, X. Wang, R. Wang, and H. Cui, Vacuum, 149: 118–123 (2018); https://doi.org/10.1016/j.vacuum.2017.12.032
  39. P. Sentil Kumar, C. Jegadheesan, P. Somasundaram, S. Praveen Kumar, A. Vivek Anand, Ajit Pal Singh, and N. Jeyaprakash, State of art: review on laser surface hardening of alloy metals, Mater. Today Proc. (2023); https://doi.org/10.1016/j.matpr.2023.04.259
  40. S. Guarino and G.S. Ponticelli, Metals, 7: 447 (2017); https://doi.org/10.3390/met7100447
  41. D.A. Lesyk, S. Martinez, B.M. Mordyuk, V.V. Dzhemelinskyi, А. Lamikiz, D. Grzesiak, А.V. Kotko, and W. Alnusirat, MRS Adv., 8: 988–995 (2023); https://doi.org/10.1557/s43580-023-00648-5
  42. A.F. I. Idan, O. Akimov, L. Golovko, O. Goncharuk, and K. Kostyk, Eastern-European J. Eenter. Technol., 80: 447 (2016); https://doi.org/10.15587/1729-4061.2016.65455
  43. D.A. Lesyk, W. Alnusirat, S. Martinez, V.V. Dzhemelinskyi, B.N. Mordyuk, and А. Lamikiz, Lasers Manuf. Mater. Process., 9: 292–311 (2022); https://doi.org/10.1007/s40516-022-00178-2
  44. S. Martinez, D.A. Lesyk, A. Lamikiz, E. Ukar, and V.V. Dzhemelinskyi, Phys. Procedia, 83: 1357–1366 (2016); https://doi.org/10.1016/j.phpro.2016.08.143
  45. G. Muthukumaran and P.D. Babu, Braz. Soc. Mech. Sci. Eng., 43: 103 (2021); https://doi.org/10.1007/s40430-021-02854-4
  46. D.A. Lesyk, S. Martinez, V.V. Dzhemelinskyi, A. Lamikiz, B.N. Mordyuk, and G.I. Prokopenko, Surf. Coat. Technol., 278: 108–120 (2015); https://doi.org/10.1016/j.surfcoat.2015.07.049
  47. S. Santhanakrishnan, F. Kong, and R. Kovacevic, Int. J. Adv. Manuf. Technol., 64: 219–238 (2013); https://doi.org/10.1007/s00170-012-4029-z
  48. M. Karamimoghadam, M. Rezayat, M. Moradi, A. Mateo, and G. Casalino, Metals, 14: 339 (2024); https://doi.org/10.3390/met14030339
  49. B. Dinesh and P. Marimuthu, Emerg. Mater. Res., 8: 188–205 (2019); https://doi.org/10.15587/1729-4061.2018.124031
  50. V.V. Dzhemelinskyi, D.A. Lesyk, O.O. Goncharuk, and О.О. Dаnylеikо, Eastern-European J. Eenter. Technol., 91: 35–42 (2018); https://doi.org/10.15587/1729-4061.2018.124031
  51. P. Schußler, J. Damon, F. Muhl, S. Dietrich, and V. Schulze, Comput. Mater. Sci., 221: 112079 (2023); https://doi.org/10.1016/j.surfcoat.2020.126275
  52. D.A. Lesyk, B.N. Mordyuk, S. Martinez, M.O. Iefimov, V.V. Dzhemelinskyi, and A. Lamikiz, Surf. Coat. Technol., 401: 126275 (2020); https://doi.org/10.1016/j.surfcoat.2020.126275
  53. F. Qiu, J. Uusitalo, and V. Kujanpaa, Surf. Coat. Technol., 29: 34–40 (2013); https://doi.org/10.1179/1743294412Y.0000000049
  54. M. Babic, G. Lesiuk, D. Marinkovic, and M. Cali, Procedia Manuf., 55: 253–259 (2021); https://doi.org/10.1016/j.promfg.2021.10.036
  55. H. Ki, S. So, and S. Kim, J. Mater. Process. Technol., 214: 2693–2705 (2014); http://dx.doi.org/10.1016/j.jmatprotec.2014.06.013
  56. D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, A. Lamikiz, G.I. Prokopenko, Yu.V. Milman, and K.E. Grinkevych, Surf. Coat. Technol., 328: 344–354 (2017); https://doi.org/10.1016/j.surfcoat.2017.08.045
  57. S. Santhanakrishnan and R. Kovacevic, J. Mater. Process. Technol., 214: 226–2271 (2012); http://dx.doi.org/10.1016/j.jmatprotec.2012.06.002
  58. S. Oh and H. Ki, Appl. Therm. Eng., 153: 583–595 (2019); https://doi.org/10.1016/j.applthermaleng.2019.01.050
  59. D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, and O.O. Dаnylеikо, Lect. Notes Mech. Eng. (2020), p. 188–198; https://doi.org/10.1007/978-3-030-22365-6_19
  60. M.H. Farshidianfar, A. Khajepouhor, and A. Gerlich, Surf. Coat. Technol., 315: 326–334 (2017); https://doi.org/10.1016/j.surfcoat.2017.02.055
  61. D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, A. Lamikiz, and G.I. Prokopenko, Opt. Laser Technol., 111: 424–438 (2019); https://doi.org/10.1016/j.optlastec.2018.09.030
  62. D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, and A. Lamikiz, Lect. Notes Mech. Eng. (2021), p. 62–72; https://doi.org/10.1007/978-3-030-77719-7_7
  63. M.I. S. Ismail and Z. Taha, Int. J. Technol., 1: 79–87 (2014); https://doi.org/10.14716/ijtech.v5i1.156
  64. Q. Yang, P. Zhang, Q. Lu, H. Yan, H. Shi, Z. Yu, T. Sun, R. Li, Q. Wang, Y. Wu, and J. Chen, Opt. Laser Technol., 170: 110202 (2024); https://doi.org/10.1016/j.optlastec.2023.110202
  65. О.О. Dаnylеikо, V.V. Dzhemelinskyi, and D.A. Lesyk, Eastern-European J. Enterprise Technol., 114: 72–80 (2021); https://doi.org/10.15587/1729-4061.2021.247552
  66. L. Orazi, A. Rota, and B. Reggiani, Int. J. Mech. Mater. Eng., 16: 2 (2021); https://doi.org/10.1186/s40712-020-00124-0
  67. T.-P. Hung, H.-E. Shi, and J.-H. Kuang, Materials. Eng., 11: 1815 (2018); https://doi.org/10.3390/ma11101815
  68. L. Orazi, A. Fortunato, G. Cuccolini, and G. Tani, Appl. Surf. Sci., 256: 1913–1919 (2010); https://doi.org/10.1016/j.apsusc.2009.10.037
  69. X. Han, C. Li, Z. Liu, X. Chen, and S. Deng, Opt. Laser Technol., 156: 108613 (2022); https://doi.org/10.1016/j.optlastec.2022.108613
  70. G. Muthukumaran and P.D. Babu, Arab. J. Sci. Eng., 47: 8785–8803 (2022); https://doi.org/10.1007/s13369-021-06350-8
  71. Z. Liu, J. Zhou, H. Wang, Q. Wang, Q. Liang, and Y. Li, Int. J. Adv. Manuf. Technol., 122: 499–512 (2022); https://doi.org/10.1007/s00170-022-09361-3
  72. B. Tarchoun, A. El Ouafi, and A. Chebak, J. Miner. Mater. Charact. Eng., 8: 9–26 (2020); https://doi.org/10.4236/jmmce.2020.82002
  73. C. Chen, X. Zeng, Q. Wang, G. Lian, X. Huang, and Y. Wang, Opt. Laser Technol., 124: 105976 (2020); https://doi.org/10.14716/ijtech.v5i1.156
  74. N. Barka, S.S. Karganroudi, R. Fakir, P. Thibeault, and V.B.F. Kemda, Coatings, 10: 342 (2020); https://doi.org/10.3390/coatings10040342
  75. F. Frerichs, Y. Lu, T. Lubben, and T. Radel, Opt. Laser Technol., 11: 465 (2021); https://doi.org/10.3390/met11030465
  76. V.V. Dzhemelinskyi, M. Hruska, B.N. Mordyuk, D. Grochala, and D.A. Lesyk, Lect. Notes Netw. Syst. (2024), p. 178–187; https://doi.org/10.1007/978-3-031-61797-3_15
  77. Y. Lu, L.C. Ehle, S. Richter, and T. Radel, Surf. Coat. Technol., 421: 127434 (2021); https://doi.org/10.1016/j.surfcoat.2021.127434
  78. M. Babic, J. Balic, M. Milfelner, I. Belic, P. Kokol, M. Zorman, and P. Panjan, Adv. Prod. Eng. Manag., 8: 25–32 (2013); https://doi.org/10.14743/apem2013.1.150
  79. D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, A. Lamikiz, G.I. Prokopenko, M.O. Iefimov, and K.E. Grinkevych, Wear, 462–463: 203494 (2020); https://doi.org/10.1016/j.wear.2020.203494
  80. D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, A. Lamikiz, G.I. Prokopenko, K.E. Grinkevych, and I.V. Tkachenko, J. Mater. Eng. Perform., 27: 764–776 (2018); https://doi.org/10.1007/s11665-017-3107-7
  81. S. Roy, J. Zhao, P. Shrotriya, and S. Sundararajan, Tribol. Int., 112: 94–102 (2017); https://doi.org/10.1016/j.triboint.2017.03.036
  82. O. Yazici and S. Yilmaz, Tribol. Int., 119: 222–229 (2018); https://doi.org/10.1016/j.triboint.2017.11.006
  83. S. Lei, Q.K. Liu, Y.P. Liu, and H. Li, Mater. Sci. Forum, 628–629: 697–702 (2009); https://doi.org/10.4028/www.scientific.net/MSF.628-629.697
  84. D.I. Pantelis, E. Bouyiouri, N. Kouloumbi, P. Vassiliou, and A. Koutsomichalis, Surf. Coat. Technol., 298: 125–134 (2002); https://doi.org/10.1016/j.triboint.2017.03.036
  85. R. Sola, R. Giovanardi, P. Veronesi, and G. Poli, Met. Sci. Heat Treat., 54: 644–647 (2012); https://doi.org/10.1007/s11041-013-9564-1
  86. G.S. Ponticelli, S. Guarino, and O. Giannini, Appl. Sci., 10: 1401 (2020); https://doi.org/10.3390/app10041401
  87. A. Buchwalder and R. Zenker, Surf. Coat. Technol., 375: 920–932 (2019); https://doi.org/10.1016/j.surfcoat.2019.07.084
  88. D. Heinze, A. Buchwalder, A. Jung, A. Weidner, C. Segel, A. Muller, R. Zenker, and H. Biermann, Metall. Mater. Trans. A, 47: 123–138 (2016); https://doi.org/10.1007/s11661-015-3017-y
  89. R. Zenker, A. Buchwalder, K. Ruthrich, W. Griesbach, and K. Nagel, and H. Biermann, Surf. Coat. Technol., 236: 58–62 (2013); https://doi.org/10.1016/j.surfcoat.2013.06.118
  90. M. Ormanova, P. Petrov, and D. Kovacheva, Vacuum, 135: 7–12 (2017); https://doi.org/10.1016/j.vacuum.2016.10.022
  91. Y. Morisada, H. Fujii, T. Mizuno, G. Abe, T. Nagaoka, and M. Fukusumi, Mater. Sci. Eng. A, 505: 157–162 (2009); https://doi.org/10.1016/j.msea.2008.11.006
  92. Y. Tian and Y.C. Shin, Int. J. Mach. Tools Manuf., 47: 14–22 (2007); https://doi.org/10.1016/j.ijmachtools.2006.03.002
  93. J. Radziejewska and S.J. Skrzypek, J. Mater. Process. Technol., 209: 2047–2056 (2009); https://doi.org/10.1016/j.jmatprotec.2008.04.067
  94. J. Radziejewska, Mater. Des., 32: 5073–5081 (2011); https://doi.org/10.1016/j.matdes.2011.06.035
  95. Z. Wang, C. Jiang, X. Gan, Y. Chen, and V. Ji, Int. J. Fatigue, 33: 549–556 (2011); https://doi.org/10.1016/j.ijfatigue.2010.10.010
  96. Z. Wang, C. Jiang, X. Gan, and Y. Chen, Appl. Surf. Sci., 257: 1154–1160 (2010); https://doi.org/10.1016/j.apsusc.2010.07.015
  97. Z. Wang, Y. Chen, and C. Jiang, Appl. Surf. Sci., 257: 9830–9835 (2011); https://doi.org/10.1016/j.apsusc.2011.06.032
  98. J. Liu, C. Ye, and Y. Dong, Adv. Ind. Manuf. Eng., 2: 100006 (2021); https://doi.org/10.1016/j.aime.2020.100006
  99. G.V. Inamke, L. Pellone, J. Ning, and Y.C. Shin, Int. J. Adv. Manuf. Technol., 104: 907–919 (2019); https://doi.org/10.1007/s00170-019-03868-y
  100. W. Zhao, D. Liu, J. Liu, X.H. Zhang, H. Zhang, R. Zhang, Y. Dong, and C. Ye, Adv. Ind. Manuf. Eng., 23: 2001203 (2021); https://doi.org/10.1002/adem.202001203
  101. S.A. Ojo, K. Manigandan, G.N. Morscher, and A.L. Gyekenyesi, J. Mater. Eng. Perform., 33: 10345–10359 (2024); https://doi.org/10.1007/s11665-024-09323-8
  102. X. Hu, S. Qu, Z. Chen, P. Zhang, Z. Lu, F. Lai, C. Duan, and X. Li, Opt. Laser Technol., 155: 108370 (2022); https://doi.org/10.1016/j.optlastec.2022.108370
  103. X. Hu, H. Guan, Z. Chen, X. He, M. Wang, and S. Qu, Mater. Sci. Eng. A, 862: 144495 (2023); https://doi.org/10.1016/j.msea.2022.144495
  104. J. Liu, S. Suslov, Z. Ren, Y. Dong, and C. Ye, Int. J. Mach. Tools Manuf., 136: 19–33 (2019); https://doi.org/10.1016/j.ijmachtools.2018.09.005
  105. D.A. Lesyk, V.V. Dzhemelinskyi, B.M. Mordyuk, S. Martinez, P.V. Kondrashev, D. Grzesiak, Yu.V. Klyuchnikov, and A. Lamikiz, Eastern-European J. Enter. Technol., 122: 17–26 (2023); https://doi.org/10.15587/1729-4061.2023.277252
  106. D.A. Lesyk, B.N. Mordyuk, S. Martinez, V.V. Dzhemelinskyi, and А. Lamikiz, Lect. Notes Mech. Eng. (2004), p. 296–306; https://doi.org/10.1007/978-3-031-42778-7_27
  107. G. Singh, Mater. Today Proc., 37: 2266–2268 (2021); https://doi.org/10.1016/j.matpr.2020.07.702
  108. S. Singh, S. Samir, K. Kumar, and S. Thapa, Mater. Today Proc., 45: 5097–5101 (2021); https://doi.org/10.1016/j.matpr.2021.01.590
  109. V.V. Knysh, B.N. Mordyuk, S.O. Solovei, P.Y. Volosevich, M.A. Skoryk, and D.A. Lesyk, Int. J. Fatigue, 177: 107926 (2023); https://doi.org/10.1016/j.ijfatigue.2023.107926
  110. D.A. Lesyk, B.N. Mordyuk, V.V. Dzhemelinskyi, S.M. Voloshko, and A.P. Burmak, J. Mater. Eng. Perform., 31: 8567–8584 (2022); https://doi.org/10.1007/s11665-022-06861-x
  111. D.A. Lesyk, W. Alnusirat, V.V. Dzhemelinskyi, A.P. Burmak, B.N. Mordyuk, Lect. Notes Mech. Eng. (2022), p. 435–444; https://doi.org/10.1007/978-3-031-06025-0_43
  112. D.A. Lesyk, H. Soyama, B.N. Mordyuk, O. Stamann, and V.V. Dzhemelinskyi, Metallofiz. Noveishie Tekhnol., 44, No. 1: 79–95 (2022); https://doi.org/10.15407/mfint.44.01.0079
  113. S.P. Chenakin, B.N. Mordyuk, and N.I. Khripta, Vacuum, 210: 111889 (2023); https://doi.org/10.1016/j.vacuum.2023.111889
  114. H. Nikiforchyn, V. Kyryliv, O. Maksymiv, Z. Slobodyan, and O. Tsyrulnyk, Nanoscale Res. Lett., 11: 51 (2016); https://doi.org/10.1186/s11671-016-1266-3
  115. R. Hossain, F. Pahlevani, E. Witteveen, A. Banerjee, B. Joe, B.G. Prusty, R. Dippenaar, and V. Sahajwalla, Sci. Rep., 7: 13288 (2017); https://doi.org/10.1038/s41598-017-13749-7
  116. H. Nikiforchyn, V. Kyryliv, and O. Maksymiv, Nanoscale Res. Lett., 12: 150 (2017); https://doi.org/10.1186/s11671-017-1917-z
  117. J. Du, L. Chen, H. Li, Y. Tan, T. Sun, Y. Yang, C. Hua, W.J. Yu, and X. Huang, Mater. Today Commun., 36: 106886 (2023); https://doi.org/10.1016/j.mtcomm.2023.106886
  118. L. Nánai, R. Vajtai, and T.F. George, Thin Solid Films, 298: 160–164 (1997); https://doi.org/10.1016/S0040-6090(96)09390-x
  119. H. Hagino, S. Shimizu, H. Ando, and H. Kikuta, Precis. Eng., 34: 446–452 (2010); https://doi.org/10.1016/j.precisioneng.2009.11.001
  120. F. Klocke, M. Schulz, and S. Grafe, Coatings, 7: 1357–1366 (2017); https://doi.org/10.3390/coatings7060077
  121. K. Obergfell, V. Schulze, and O. Vohringer, Mater. Sci. Eng., 355: 348–356 (2003); https://doi.org/10.1016/S0921-5093(03)00099-6
  122. H.W. Zhang, S. Ohsaki, S. Mitao, M. Ohnuma, and K. Hono, Mater. Sci. Eng. A, 421: 191–199 (2006); https://doi.org/10.1016/j.msea.2007.11.081
  123. M. Freisinger, H. Rojacz, A. Trausmuth, and P. H. Mayrhofer, Metallogr. Microstruct. Anal., 12: 515–527 (2023); https://doi.org/10.1007/s13632-023-00967-x
  124. V.A. Lobodyuk, Y.Y. Meshkov, and E.V. Pereloma, Metall. Mater. Trans. A, 50: 97–103 (2019); https://doi.org/10.1007/s11661-018-4999-z
  125. P.D. Babu and P. Marimuthu, Emerg. Mater. Res., 8: 1–18 (2019); https://doi.org/10.1680/jemmr.16.00145
  126. K. Bhattacharya, S. Conti, G. Zanzotto, and J. Zimmer, Nature, 428: 55–59 (2004); https://doi.org/10.1038/nature02378
  127. J.-S. Chen, Z.-X. Li, Y.-J. Chu, J. Chen, and X.-J. Shen, Met. Mater. Int., 28: 2318–2329 (2022); https://doi.org/10.1007/s12540-021-01148-7
  128. R. Li, Y. Jin, Z. Li, and K. Qi, J. Mater. Eng. Perform., 23: 3085–3091 (2014); https://doi.org/10.1007/s11665-014-1146-x
  129. F. Lusquiños, J.C. Conde, S. Bonss, A. Riveiro, F. Quintero, R. Comesaña, and J. Pou, Appl. Surf. Sci., 254: 948–954 (2007); https://doi.org/10.1016/j.apsusc.2007.07.200
  130. B. Peeters, J. Bouquet, O. Malek, A. Van Vlierberghe, and B. Lauwers, Procedia Manuf., 43: 103–110 (2020); https://doi.org/10.1016/j.promfg.2020.02.120
  131. T. Arai, Int. J. Autom. Technol., 14: 534–545 (2020); https://doi.org/10.20965/ijat.2020.p0534
  132. C. Chena, X. Zeng, Q. Wang, G. Liana, X. Huanga, and Y. Wang, Opt. Laser Technol., 124: 105976 (2020); https://doi.org/10.1016/j.optlastec.2019.105976
  133. K.-H. Lee, S.-W. Choi, T.-J. Yoon, and C.-Y. Kang, J. Weld. Join., 34: 75–81 (2016); https://doi.org/10.5781/JWJ.2016.34.1.75
  134. G. Tani, A. Fortunato, A. Ascari, and G. Campana, CIRP Ann. Manuf. Technol., 59: 207–210 (2010); https://doi.org/10.1016/j.cirp.2010.03.077
  135. M.H. Farshidianfar, A. Khajepouhor, and A. Gerlich, Surf. Coat. Technol., 315: 326–334 (2017); https://doi.org/10.1016/j.surfcoat.2017.02.055
  136. F. Qiu and V. Kujanpää, Mechanika, 17, No. 3: 318–323 (2011); https://doi.org/10.5755/j01.mech.17.3.510
  137. R.J.B. De Oliveira, R.H.M. de Siqueira, and M.S.F. de Lima, Int. J. Surf. Sci. Eng., 12: 161–170 (2018); https://doi.org/10.1504/IJSURFSE.2018.091231
  138. F. Qiu and V. Kujanpää, Surf. Eng., 28, No. 8: 569–575 (2012); https://doi.org/10.1179/1743294412Y.0000000034
  139. P. Sancho, M.A. Montealegre, J. Dominguez, P. Alvarez, and J. Isaza, J. Laser Appl., 30: 032507 (2018); https://doi.org/10.2351/1.5040647
  140. S. Martínez, A. Lamikiz, E. Ukar, I. Tabernero, and I. Arrizubieta, Appl. Therm. Eng., 98: 49–60 (2016); https://doi.org/10.1016/j.applthermaleng.2015.12.037
  141. M.S. Raza, S. Datta, K. Vivekanand, and P. Saha, J. Mater. Eng. Perform., 28: 1873–1883 (2019); https://doi.org/10.1007/s11665-019-03943-1
  142. S. Liu, J. Zhu, X. Lin, X. Wang, and G. Wang, Mater. Sci. Eng. A, 799: 140164 (2021); https://doi.org/10.1016/j.msea.2020.140164