Laser Treatment of Titanium Alloys

GIRZHON V.V.$^1$, SMOLYAKOV O.V.$^1$, GRESHTA V.L.$^1$, YEMELIANCHENKO V.V.$^1$, and RAZZOKOV A.Sh.$^2$

$^1$National University ‘Zaporizhzhia Polytechnic’, 64 Zhukovsky Str., UA-69063 Zaporizhzhia, Ukraine
$^2$Urgench State University, 14 Khamid Alimzhan Str., UZ-220100 Urgench City, Uzbekistan

Received 22.04.2024, final version 02.11.2024 Download PDF logo PDF

Abstract
The structural and phase states of surface layers of the titanium VT1-0, VT3-1, VT-6 and VT-8 alloys after laser treatment in various gas environments, VT25-U alloy after twist extrusion and subsequent laser treatment, and VT1-0 alloy after laser alloying with powders of pure elements Fe, Co, Ni are investigated. As shown, the mentioned types of treatments lead to an increase in the surface-layers’ microhardness values. The influence of the surrounding gas atmosphere and the titanium-alloy chemical composition on the structure-formation processes during their laser melting and on the microhardness value of the treated layers is analysed. The effect of laser treatment of the surface of sintered single-phase powder titanium VT1-0-type alloys on the porosity level in the melting zone is investigated. As established, the microhardness in the laser-melting zone of the VT25U alloy exceeds the samples’ microhardness after heat treatments and twist extrusion. Therefore, the presented laser surface-treatment modes act as an effective method of titanium-alloy surface treatment, since they have a qualitative effect on structure that, in turn, leads to an improvement in the mechanical characteristics of the surface layers.

Keywords: laser treatment, laser alloying, melting zone, martensitic transformation, microhardness, phase composition.

DOI: https://doi.org/10.15407/ufm.25.04.787

Citation: V.V. Girzhon, O.V. Smolyakov, V.L. Greshta, V.V. Yemelianchenko, and A.Sh. Razzokov, Laser Treatment of Titanium Alloys, 25, No. 4: 787–821 (2024)


References  
  1. G.D. Revankar, R. Shetty, S.S. Rao, and V.N. Gaitonde, J. Mater. Res. Technol., 6, No. 1: 13 (2017); https://doi.org/10.1016/j.jmrt.2016.03.007
  2. O.M. Ivasishin, P.E. Markovsky, S.L. Semiatin, and C.H. Ward, Mater. Sci. Eng. A, 405, No. 1-2: 296 (2005); https://doi.org/10.1016/j.msea.2005.06.027
  3. O.M. Ivasishin, P.E. Markovsky, Yu.V. Matviychuk, S.L. Semiatin, C.H. Ward, and S. Fox, J. Alloys Comp., 457, Nos. 1–2: 296 (2008); https://doi.org/10.1016/j.jallcom.2007.03.070
  4. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato and T. Yashiro, Mater. Sci. Eng. A, 243, Nos. 1–2: 244 (1998); https://doi.org/10.1016/S0921-5093(97)00808-3
  5. T. Saito, T. Furuta, J.W. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Nonaka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, and T. Sakuma, Science, 300, No. 5618: 464 (2003); https://doi.org/10.1126/science.1081957
  6. M.A.H. Gepreel and M. Niinimi, J. Mech. Behav. Biomed. Mater., 20: 407 (2013); https://doi.org/10.1016/j.jmbbm.2012.11.014
  7. M. Motyka, W. Ziaja, and J. Sieniawski, Titanium Alloys — Novel Aspects of Their Manufacturing and Processing (London: Intechopen: 2019), p. 154; https://doi.org/10.5772/intechopen.83722
  8. A. Yamashita, D. Yamaguchi, Z. Horita, and T. G. Langdon, Mater. Sci. Eng. A, 287, No. 1: 100 (2000); https://doi.org/10.1016/S0921-5093(00)00836-4
  9. Y.G. Kо, D.Y. Hwang, D.H. Shin, S. Lee, and C. S. Lee, Mater. Sci. Eng. A, 493, Nos. 1–2: 164 (2008); https://doi.org/10.1016/j.msea.2007.06.091
  10. R. Lapovok, D. Tomus, and B.C. Muddle, Mater. Sci. Eng. A, 490, Nos. 1–2: 171 (2008); https://doi.org/10.1016/j.msea.2008.01.075
  11. H.P. Ng, C. Haase, R. Lapovok, and Y. Estrin, Mater. Sci. Eng. A, 565: 369 (2013); https://doi.org/10.1016/j.msea.2012.12.071
  12. V.S. Trush, І.М. Pohreliuk, and V.M. Fedirko, Physical Metallurgy and Heat Treatment of Metals, 94, No. 3: 65 (2021); https://doi.org/10.30838/J.PMHTM.2413.010721.65.783
  13. D. Nolan, S.W. Huang, V. Leskovsek, and S. Braun, Surf. Coat. Technol., 200, Nos. 20–21: 5698 (2006); https://doi.org/10.1016/j.surfcoat.2005.08.110
  14. I.M. Pohrelyuk, M.V. Kindrachuk, and S.M. Lavrys’, Physicochemical Mechanics of Materials, No. 1: 56 (2016) (in Ukrainian).
  15. A. Zhecheva, S. Malinov, and W. Sha, Surf. Coat. Technol., 201, No. 6: 2467 (2006); https://doi.org/10.1016/j.surfcoat.2006.04.019
  16. K. Tokaji, T. Ogawa, and H. Shibata., J. of Mater. Eng. Perform., 8, No. 2: 159 (1999); https://doi.org/10.1361/105994999770346990
  17. A. Zhecheva, W. Shaa, S. Malinov, and A. Long., Surf. Coat. Technol., 200, No. 7: 2192 (2005); https://doi.org/10.1016/j.surfcoat.2004.07.115
  18. O. Tisov, M. Lepicka, Yu. Tsybrii, A. Yurchuk, M. Kindrachuk, and O. Dukhota, Metals, 12, No. 1: 100 (2022); https://doi.org/10.3390/met12010100
  19. S. Madhukar, P.V. Sai, S. Kumar, and D.J. Prakash, Int. J. Curr. Eng. Technol., 7, No. 1: 238 (2017).
  20. A.F. Yetim, A. Alsaran, I. Efeoglu, and A. Celik, Surf. Coat. Technol., 202, No. 11: 2428 (2008); https://doi.org/10.1016/j.surfcoat.2007.08.027
  21. D. Ferro, M. Barinov, J.V. Ran, A. Latini, R. Scandurra, and B. Brunetti, Surf. Coat. Technol., 200, No. 16: 4701 (2006); https://doi.org/1016/j.surfcoat.2005.02.150
  22. D. Ferro, J.V. Rau, A. Generosi, V. Rossi Albertini, A. Latini, and S.M. Barinov, Surf. Coat. Technol., 202, No. 10: 2162 (2008); https://doi.org/10.1016/j.surfcoat.2007.09.008
  23. Y.Y. Liu, Z.K. Yao, H.Z. Guo, and H.H. Yang, Int. J. Min. Met. Mater., 16, No. 5: 568 (2009); https://doi.org/10.1016/S1674-4799(09)60098-4
  24. T. Mohandas, D. Banerjee, and V. V. Kutumbarao, Mater. Sci. Eng. A, 269, Nos. 1–2: 217 (1999); http://doi.org/10.1016/S0921-5093(99)00172-0
  25. V.P. Rotshtein, D. I. Proskurovsky, G. E. Ozur, Yu. F. Ivanov, and A.B. Markov, Surf. Coat. Technol., 180–181: 377 (2004); https://doi.org/10.1016/j.surfcoat.2003.10.085
  26. D. Utu, G. Marginean, C. Pogan, W. Brandi, and V A. Serban, Surf. Coat. Technol., 201, No. 14: 6387 (2007); https://doi.org/10.1016/j.surfcoat.2006.12.012
  27. V.F. Bashev., O.E. Beletskaya, N.A. Korovina, N.A. Kutseva, and A.A. Lysenko, Phys. Chem. Solid State, 6, No. 1: 141 (2005) (in Ukrainian).
  28. B. Courant, J.J. Hantzpergue, L. Avril, and S. Benayoun, J. Mater. Proces. Technol., 160, No. 3: 374 (2005); https://doi.org/10.1016/j.jmatprotec.2004.06.025
  29. Y. Tian, C. Chen, S. Li, and Q. Huo, Appl. Surf. Sci., 242, Nos. 1–2: 177 (2005); https://doi.org/10.1016/j.apsusc.2004.08.011
  30. G. Luo, G. Wu, Z. Huang, and Z. Ruan, Mater. Charact., 60, No. 6: 525 (2009); https://doi.org/10.1016/j.matchar.2008.12.009
  31. A. Poulon-Quintin, I. Watanabe, E. Watanabe, and C. Bertrand, Dent. Mater., 28, No. 9: 945 (2012); https://doi.org/10.1016/j.dental.2012.04.008
  32. Q. Qiao, V.A.M. Cristino, L.M. Tam, and C.T. Kwok, Surf. Coat. Technol., 458: 129357 (2023); https://doi.org/10.1016/j.surfcoat.2023.129357
  33. Z. D. Liu, X.C. Zhang, F.Z. Xuan, Z.D. Wang, and S.T. Tu, Mater. Design, 37: 268 (2012); https://doi.org/10.1016/j.matdes.2011.12.008
  34. X.B. Liu, X.J. Meng, H.Q. Liu, G.L. Shi, S.H. Wu, C.F. Sun, M.D. Wang, and L.H. Qi, Mater. Design., 55: 404 (2014); https://doi.org/10.1016/j.matdes.2013.09.038
  35. B. Ruiliang, Y. Huijun, C. Chuanzhong, Q. Biao, and Z. Lijian, Surf. Rev. Lett., 13, No. 5: 645 (2006); https://doi.org/10.1142/S0218625X06008608
  36. B.F. Mohazzab, B. Jaleh, A. Fattah-alhosseini, F. Mahmoudi and A. Momeni, Surfaces and Interfaces, 20, 100597 (2020); https://doi.org/10.1016/j.surfin.2020.100597
  37. D.I. Anpilogov and V.V. Girzhon, Ukr. J. Phys., 3, No. 42: 301 (1997) (in Ukrainian).
  38. R. Filip, J. Achiev. Mater. Manuf. Eng., 15, No. 2: 174 (2006).
  39. V.V. Girzhon, V.V. Yemelianchenko, O.V. Kushch, and I.O. Bykov, Metallofiz. Noveishie Tekhnol., 42, No. 4: 553 (2020) (in Ukrainian); https://doi.org/10.15407/mfint.42.04.0553
  40. H. Okamoto, J. Phase Equilib. Diffus., 32: 473 (2011); https://doi.org/10.1007/s11669-011-9935-5
  41. H. Okamoto, J. Phase Equilib. Diffus., 34: 151 (2013); https://doi.org/10.1007/s11669-012-0153-6
  42. V.V. Girzhon and O.V. Kushch, Sposib Zmitsnennya Detalei z Legovanoho Tytanovoho Splavu [Method of Strengthening Details Made from Alloyed Titanium Alloy] (2021) (in Ukrainian); https://web.znu.edu.ua/NIS/2021/getdocument__7_.pdf
  43. X. Chen, G. Wu, R. Wang, W. Guo, J. Yang, S. Cao, Y. Wang, and W. Han, Surf. Coat.Tech., 201, Nos. 9–11: 4843 (2007); https://doi.org/10.1016/j.surfcoat.2006.07.186
  44. U. Zwicker, Titan und Titanlegierungen (Heidelberg: Springer Berlin: 2013); https://doi.org/10.1007/978-3-642-80587-5
  45. S. Gokul Lakshmi, D. Arivuoli, and B. Ganguli, Mater. Chem. Phys., 76, No. 2: 187 (2002); https://doi.org/10.1016/S0254-0584(01)00517-X
  46. A.S. Gornakova, B.B. Straumal, and S.I. Prokofiev, Adv. Eng. Mater., 2018, 1800510 (2018); https://doi.org/10.1002/adem.201800510
  47. M. Sujata, M. Madan, K. Raghavendra, and S.K. Bhaumik, Procedia Eng., 55: 481 (2013); https://doi.org/10.1016/j.proeng.2013.03.284
  48. Titanium and Titanium Alloys: Fundamentals and Applications (Eds. C. Leyens and M. Peters) (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA: 2003); https://doi.org/10.1002/3527602119
  49. C. Carson, Heat Treating of Titanium and Titanium Alloys (Eds. G.E. Totten) (ASM International: 2016), p. 511; https://doi.org/10.31399/asm.hb.v04e.a0006283
  50. P. Yadav and K. K. Saxena, Mater. Today Proc., 18, No. 2: 245 (2022); https://doi.org/10.1016/j.jmrt.2022.02.106
  51. V.V. Girzhon, O.V.Smolyakov, O.V. Ovchinnikov, and O.V. Zavgorodny, Metallofiz. Noveishie Tekhnol., 44, No. 3: 383 (2022); https://doi.org/10.15407/mfint.44.03.0383
  52. H.A. Wriedt and J.L. Murray, Bull. Alloy Phase Diagrams, 8, No. 4: 378 (1987); https://doi.org/10.1007/BF02869274
  53. V.V. Girzhon, O.V. Smolyakov, and T.A. Dmitrenko, Metallofiz. Noveishie Tekhnol., 39, No. 8: 1087 (2017) (in Russian); https://doi.org/10.15407/mfint.39.08.1087
  54. U. Mahajan, M. Dhonde, K. Sahu, P. Ghoshc, and P.M. Shirage, Mater. Adv., 5, 846 (2024); https://doi.org/10.1039/D3MA00965C
  55. Z. Wang, Y. Tan, and N. Li, J. Alloys Compd., 965: 171030 (2023); https://doi.org/10.1016/j.jallcom.2023.171030
  56. A. Salihua, Y.I. Suleimanb, and A. I. Eyinavia, AJER, 8, No. 8: 92 (2019).
  57. Z.Z. Fang, J.D. Paramore, P. Sun, K.S. Ravi Chandran, Y. Zhang, Y. Xia, F. Cao, M. Koopman, and M. Free, Int. Mater. Rev., 63, No. 7: 407 (2018); https://doi.org/10.1080/09506608.2017.1366003
  58. Titanium Powder Metallurgy: Science, Technology and Applications (Eds. M. Qian and F.H. Froes) (Butterworth-Heinemann: 2015), p. 628; https://doi.org/10.1016/C2013-0-13619-7
  59. F.H. Froes, S.J. Mashl, J.C. Hebeisen, V.S. Moxson, and V.A. Duz, JOM, 56: 46 (2004); https://doi.org/10.1007/s11837-004-0252-x
  60. I.V. Gaivoronskii, V.V. Girzhon, A.A. Skrebtsov, and A.V. Ovchinnikov, Met. Sci. Heat Treat., 56, Nos. 1–2: 57 (2014); https://doi.org/10.1007/s11041-014-9703-3
  61. G.A. Salishchev, R.M. Galeev, S.P. Malysheva, S.V. Zherebtsov, S.Yu. Mironov, O.R. Valiakhmetov, and É.I. Ivanisenko, Met. Sci. Heat Treat., 48, Nos. 1–2: 63 (2006); https://doi.org/10.1007/s11041-006-0045-7
  62. V.E. Olshanetskii, L.P. Stepanova, V.L. Greshta, D.V. Pavlenko, and D.V. Tkach, Met. Sci. Heat Treat., 55, Nos. 11–12: 603 (2014); https://doi.org/10.1007/s11041-014-9676-2
  63. R.A. Gaisin, V.M. Imayev, and R.M. Imayev, Lett Mater., 7, No. 2: 186 (2017); https://doi.org/10.22226/2410-3535-2017-2-186-192
  64. V.V. Girzhon and A.V. Ovchinnikov, Met. Sci. Heat Treat., 58, Nos. 11–12: 719 (2017); https://doi.org/10.1007/s11041-017-0084-2
  65. Y. Beygelzimer, Mechan. Mater., 37, No. 7: 735 (2005); https://doi.org/10.1016/j.mechmat.2004.07.006
  66. R.Z. Valiev, A.V. Sergueeva, and A.K. Mukherjee, Scr. Mater., 49, No. 7: 669 (2003); https://doi.org/10.1016/S1359-6462(03)00395-6
  67. V.V. Girzhon and I.V. Tahtsiura, Metallofiz. Noveishie Tekhnol., 27, No. 11: 1519 (2005).
  68. I.P. Volchok, V.V. Girzhon, and I.V. Tantsiura, Metallofiz. Noveishie Tekhnol., 33, No. 8: 1111 (2011).
  69. M.Kh. Abbas and A.K. Mahmoud, Mater. Today Proc., 4, No. 9: 9992 (2017); https://doi.org/10.1016/j.matpr.2017.06.308
  70. C. Dong, Z.K. Hei, L.B. Wang, Q.H. Song, Y.K. Wu, and K.H. Kuo, Scr. Metal., 20, No. 8: 1155 (1986); https://doi.org/10.1016/0036-9748(86)90194-8
  71. V.V. Gіrzhon, O.V. Smolyakov, and O.F. Zdorovets, Metallofiz. Noveishie Tekhnol., 39, No. 4: 507 (2017); https://doi.org/10.15407/mfint.39.04.0507
  72. H. Okamoto, M.E. Schlesinger, and E.M. Mueller, Alloy Phase Diagrams (ASM International: 2016), p. 1741; https://doi.org/10.31399/asm.hb.v03.9781627081634
  73. M. Bignon, E. Bertrand, P.E.J. Rivera-Díaz-del-Castillo, and F. Tancret, J. Alloys Compd., 872: 159636 (2021); https://doi.org/10.1016/j.jallcom.2021.15963