Effect of Alloying on the Hydrogen Sorption in Ti–Zr–Mn-Based Alloys. Pt. 2: Eutectic Alloys with Laves Phase and B.C.C. Solid-Solution Structure

DEKHTYARENKO V.A.$^{1,2}$, PRYADKO T.V.$^1$, VLADIMIROVA T.P.$^1$, MAKSYMOVA C.V.$^2$, SEMYRGA O.M.$^1$, and BONDARCHUK V.I.$^1$

$^1$G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36, Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$E.O. Paton Electric Welding Institute of the N.A.S. of Ukraine, 11, Kazymyr Malevych Str., UA-03150 Kyiv, Ukraine

Received 27.06.2024, final version 30.10.2024 Download PDF logo PDF

Abstract
After reviewing and analysing literature data, the microstructure and phase composition of the Ti47.5Zr28Mn(22.5–х)V2Niх (where х = 5.0 and 17.5 at.%) eutectic alloys in the as-cast and annealed states as well as the phase composition of the hydrogenation products of these alloys are investigated using the x-ray phase analysis and scanning electron microscopy methods. As found, nickel is distributed in the alloy between the b.c.c. solid solution and the intermetallic compound with a significantly higher content in the latter. In addition, the phase composition of the initial alloy is changed with the substitution of Mn by 5.0–17.5 at.% of Ni: the ternary NiTiZr ψ-phase, which is isostructural to the Laves phase (C14), is formed. As shown, the size of the intermetallic crystallites is a critical factor for the activation of the H absorption at room temperature and a hydrogen pressure of 0.6 MPa. At a grain surface area of 1–10 µm2 in the initial eutectic microstructure, active interaction of the alloy with hydrogen at the first hydrogenation occurs exclusively during the heating and isobaric–isothermal exposure at 510±10 °C, whereas this process starts at room temperature, when the area of the crystallites is increased up to 100–300 µm2 after annealing. An increase in the size of each of the phase components cause greater volume misfits at the interphase boundaries between the adjacent crystallites at the initial stages of hydrogenation that leads to the cracking of the alloy surface and subsequent activation of interaction with hydrogen.

Keywords: nickel, eutectic, b.c.c. solid solution, intermetallic compound, hydrogenation, dehydrogenation, hydrogen capacity.

DOI: https://doi.org/10.15407/ufm.25.04.765

Citation: V.A. Dekhtyarenko, T.V. Pryadko, T.P. Vladimirova, C.V. Maksymova, O.M. Semyrga, and V.I. Bondarchuk, Effect of Alloying on the Hydrogen Sorption in Ti–Zr–Mn-Based Alloys. Pt. 2: Eutectic Alloys with Laves Phase and B.C.C. Solid-Solution Structure, 25, No. 4: 765–786 (2024)


References  
  1. D. Shaltiel, I. Jacob, and D. Davidov, Hydrogen Absorption and Desorption Properties of AB2 Laves-Phase Pseudobinary Compounds, J. Less-Common Met., 53: 117–131 (1977); https://doi.org/10.1016/0022-5088(77)90162-X
  2. D.P. Shoemaker and C.B. Shoemaker, Concerning Atomic Sites and Capacities for Hydrogen Absorption in the AB2 Friauf-Laves Phases, J. Less-Common Met., 68: 43–58 (1979); https://doi.org/10.1016/0022-5088(79)90271-6
  3. M. Piao, X. Xiao, L. Zhan, Z. Cao, P. Zhou, J. Qi, M. Lu, Z. Li, L. Jiang, F. Fang, and L. Chen, Laves Phase Double Substitution Alloy Design and Device Filling Modification for Ti-Based Metal Hydride Hydrogen Compressors, Int. J. Hydrogen Energy, 50: 1358–1368 (2024); https://doi.org/10.1016/j.ijhydene.2023.09.228
  4. V.A. Dekhtyarenko, Hydrogen-Sorption Properties of the Alloy Ti15.5Zr30Mn38V5.5Cr5.5Co5.5 Based on the Laves Phase (Type C14), Metallofiz. Noveishie Tekhnol., 45, No. 6: 743–755 (2023); https://doi.org/10.15407/mfint.45.06.0743
  5. X. Zhang, B. Li, L. Wang, W. Xiong, J. Li, S. Zhou, J. Xu, Y. Zhao, X. He, and H. Yan, Hydrogen Storage Properties of AB2 Type Ti–Zr–Cr–Mn–Fe Based Alloys, Int. J. Hydrogen Energy, 51: 193–201 (2024); https://doi.org/10.1016/j.ijhydene.2023.11.045
  6. V.A. Dekhtyarenko, T.V. Pryadko, T.P. Vladimirova, S.V. Maksymova, H.Yu. Mykhailova, and V.I. Bondarchuk, Effect of Alloying on the Hydrogen Sorption in Ti–Zr–Mn-Based Alloys. Pt. 1: C14-Type Laves-Phase-Based Alloys, Prog. Phys. Met., 25, No. 3: 520–544 (2024); https://doi.org/10.15407/ufm.25.03.520
  7. V.A. Dekhtyarenko, D.G. Savvakin, V.I. Bondarchuk, V.M. Shyvanyuk, T.V. Pryadko, and O.O. Stasiuk, TiMn2-Based Intermetallic Alloys for Hydrogen Accumulation: Problems and Prospects, Prog. Phys. Met., 22, No. 3: 307–351 (2021); https://doi.org/10.15407/ufm.22.03.307
  8. J.L. Bobet, B. Chevalier, and Т.B. Darrie, Crystallographic and Hydrogen Sorption Properties of ТiMn2 Based Alloys, Intermettallics, 8, No. 4: 359–363 (2000); https://doi.org/10.1016/S0966-9795(99)00092-8
  9. J.L. Bobet and Т.B. Darriet, Relationship Between Hydrogen Sorption Properties and Crystallography for TiMn2 Based Alloys, Int. J. Hydrogen Energy, 25: 767–772 (2000); https://doi.org/10.1016/S0360-3199(99)00101-9
  10. S. Samboshi, N. Masahashi, and S. Hanada, Effect of Composition on Hydrogen Absorbing Properties in Binary ТiMn2 Based Alloys, J. Alloys Compd., 352: 210-217 (2003); https://doi.org/10.1016/S0925-8388(02)01125-8
  11. P. Liu, X. Xie, L. Xu, X. Li, and T. Liu, Hydrogen Storage Properties of (Ti0.85Zr0.15)1.05Mn1.2Cr0.6V0.1M0.1 (M = Ni, Fe, Cu) Alloys Easily Activated at Room Temperature, Prog. Nat. Sci., 27: 652–657 (2017); https://doi.org/10.1016/j.pnsc.2017.09.007
  12. Z. Cao, L. Ouyang, H. Wang, J. Liu, L. Sun, and M. Zhu, Composition Design of Ti–Cr–Mn–Fe Alloys for Hybrid High-Pressure Metal Hydride Tanks, J. Alloys Compd., 639: 452–457 (2015); https://doi.org/10.1016/j.jallcom.2015.03.196
  13. H. Iba and E. Akiba, Hydrogen Absorption and Modulated Structure in Ti–V–Mn Alloys, J. Alloys Compd., 253–254: 21–24 (1997); https://doi.org/10.1016/S0925-8388(96)03072-1
  14. E. Akiba and H. Iba, Hydrogen Absorption by Laves Phase Related BCC Solid Solution, Intermetallic, 6: 461–470 (1998); https://doi.org/10.1016/S0966-9795(97)00088-5
  15. J. Huot, D.B. Ravnsbæk, J. Zhang, F. Cuevas, M. Latroche, and T.R. Jensen, Mechanochemical Synthesis of Hydrogen Storage Materials, Prog. Mater. Sci., 58: 30–75 (2013); https://doi.org/10.1016/j.pmatsci.2012.07.001
  16. C. Raufast, D. Plante, and S. Miraglia, Investigation of the Structural and Hydrogenation Properties of Disordered Ti–V–Cr–Mo BCC Solid Solutions, J. Alloys Compd., 617: 633–638 (2014); https://doi.org/10.1016/j.jallcom.2014.07.089
  17. N. Skryabina, D. Fruchart, M.G. Shelyapina, S. Dolukhanyan, and A. Aleksanyan, Phase Transformations in Ti–V Hydrides, J. Alloys Compd., 580: S94–S97 (2013); https://doi.org/10.1016/j.jallcom.2013.03.114
  18. H. Itoh, H. Arashima, K. Kubo, T. Kabutomori, and K. Ohnishi, Improvement of Cyclic Durability of BCC Structured Ti–Cr–V Alloys, J. Alloys Compd., 404–406: 417–420 (2005); https://doi.org/10.1016/j.jallcom.2004.12.175
  19. G.G. Libowitz and A. Maeland, Hydride Formation by B.C.C. Solid Solution Alloys, Mater. Sci. Forum, 30: 177–196 (1988); https://doi.org/10.4028/www.scientific.net/MSF.31.177
  20. S. Ono, K. Nomura, and J. Ikeda, The Reaction of Hydrogen with Alloys of Vanadium and Titanium, J. Less-Common. Met., 72: 159–165 (1980); https://doi.org/10.1016/0022-5088(80)90135-6
  21. V.G. Ivanchenko, V.А. Dekhtyarenko, and T.V. Pryadko, Sorption Properties of Heterophase Alloys β(Ti,Zr,Mn)+(Ti,Zr)Mn2−x, Меtallofiz. Noveishie Tekhnol., 33, Spec. Iss.: 479–484 (2011) (in Russian).
  22. V. Dekhtyarenko, T. Pryadko, and O. Boshko. Effect of the Phase Composition of the Ti–Zr–Mn–V Alloys on the Interaction Kinetics with Hydrogen, Chem. Met. Alloys, 11, No. 3/4: 77–84 (2018); https://doi.org/10.30970/cma11.0371
  23. V. Ivanchenko, T. Pryadko, V. Dekhtyarenko, and T. Kosorukova, Hydrogen Absorbing Properties of a Ti–Zr–Mn Eutectic Alloy, Chem. Met. Alloys., 1, No. 2: 133–136 (2008); https://doi.org/10.30970/cma1.0044
  24. A. Zuttel, Materials for Hydrogen Storage, Mater. Today, 6, No. 9: 24–33 (2003); https://doi.org/10.1016/S1369-7021(03)00922-2
  25. O.M. Ivasishin, О.B. Bondarchuk, and M.M. Gumenyak, Surface Phenomena During Heating of Titanium Hydride Powder, Phys. Chem. Solid State, 12, No. 4: 900–907 (2011) (in Ukrainian).
  26. Gases and Carbon in Metals. Pure and Applied Metallurgy in Individual Representations (Eds. E. Fromm and E. Gebhardt) (Berlin–Heidelberg–New York: Springer Verlag: 1976), vol. 26; https://doi.org/10.1002/bbpc.19770810821
  27. V.A. Dekhtyarenko, Alloy Based on Intermetallic (Ti,Zr)(V,Mn,Cr)2−x Obtained Using Titanium Sponge for Hydrogen Sorption, Metallofiz. Noveishie Tekhnol., 41, No. 10: 1283–1290 (2019); https://doi.org/10.15407/mfint.41.10.1283
  28. V.A. Dekhtyarenko, Hydrogen Storage Properties of Ti15.4Zr30.2Mn44V5.4Сr5 Alloy Produced by Induction and Arc Melting, Metallofiz. Noveishie Tekhnol., 43, No. 8: 1053–1063 (2021); https://doi.org/10.15407/mfint.43.08.1053
  29. V.G. Ivanchenko, V.A. Dekhtyarenko, and T.V. Pryadko, Variations of the Parameters of Hydrogenation for Alloys of the Ті–Zr– Mn System with 20 аt.% Zr Depending on the Structure, Metaloznav. Obrob. Met., No. 1: 4–7 (2010) (in Ukrainian).
  30. V.A. Dekhtiarenko, The Influence of Vanadium Addition on Hydrogen Capacity and Absorption–Desorption Kinetics of the Eutectic Ti–Zr–Mn Alloy, Metallofiz. Noveishie Tekhnol., 36, No. 3: 375–381 (2014) (in Russian); https://doi.org/10.15407/mfint.36.03.0375
  31. V.A. Dekhtyarenko, T.V. Pryadko, D.G. Savvakin, and V.I. Bondarchuk, Structure, Phase Composition, and Hydrogen Absorption Properties of Multiphase Alloys of Ti–Zr–Mn–V System Alloyed with Holmium, Metallofiz. Noveishie Tekhnol., 44, No. 7: 913–926 (2022); https://doi.org/10.15407/mfint.44.07.0913
  32. V.G. Ivanchenko, V.A. Dekhtyarenko, T.V. Pryadko, and V.I. Nychyporenko, Influence of V on the Structure and Phase Composition of Eutectic Ti0.475Zr0.3Mn0.225 Alloy, Metallofiz. Noveishie Tekhnol., 36, No. 6: 803–813 (2014) (in Russian); https://doi.org/10.15407/mfint.36.06.0803
  33. V.G. Ivanchenko, V.A. Dekhtyarenko, and T.V. Pryadko, Hydrogen Sorption Properties of Ti0.475Zr0.3Mn0.225 Eutectic Alloy Alloyed with 2 at.% and 5 at.% of Vanadium, Metallofiz. Noveishie Tekhnol., 37, No. 4: 521–530 (2015); https://doi.org/10.15407/mfint.37.04.0521
  34. V.G. Ivanchenko, V.А. Dekhtyarenko, Т.V. Pryadko, D.G. Savvakin, and I.K. Evlash, Influence of Heat Treatment on the Hydrogen-Sorption Properties of Ti0.475Zr0.3Mn0.225 Eutectic Alloy Doped with Vanadium, Mater. Sci., 51: 492–499 (2016); https://doi.org/10.1007/s11003-016-9867-7
  35. T.V. Pryadko, V.A. Dekhtyarenko, K.M. Khranovs’ka, and H.S. Mohyl’nyi, Influence of the Substitution of Chromium for Manganese on the Structure and Hydrogen-Sorption Properties of Ti47.5Zr30Mn22.5 Eutectic Alloy, Mater Sci., 55: 854–862 (2020); https://doi.org/10.1007/s11003-020-00379-0
  36. V.A. Dekhtyarenko, T.V. Pryadko, D.G. Savvakin, and T.A. Kosorukova, Structure, Phase Composition and Hydrogen Adsorption Properties of Eutectic Alloys of the Ti–Zr–Mn–V System, Metallofiz. Noveishie Tekhnol., 41, No. 11: 1455–1468 (2019) (in Russian); https://doi.org/10.15407/mfint.41.11.1455
  37. H. Smithson, C.A. Marianetti, D. Morgan, A. Van der Ven, A. Predith, and G. Ceder, First-Principles Study of the Stability and Electronic Structure of Metal Hydrides, Phys. Rev. B, 66, No. 12: 144107 (2002); https://doi.org/10.1103/PhysRevB.66.144107
  38. D.N. Movchan, V.N. Shyvanyuk, B.D. Shanina, and V.G. Gavriljuk, Atomic Interactions and Hydrogen-Induced γ* Phase in FCC Iron–Nickel Alloys, Phys. Status Solidi A, 207: 1796–1801 (2010); https://doi.org/10.1002/pssa.200925548
  39. H.Y. Mykhailova, V.A. Dekhtyarenko, and Y.V. Vasylyk, Hydrogen Sorption Properties of Ti15.4Zr30.2Mn(54.4−x−y)VxCryNiy Alloy Able of Being Activated at Room Temperature and Pressure of 0.23 MPa, MRS Communications, 13: 1288–1295 (2023); https://doi.org/10.1557/s43579-023-00451-1
  40. V.A. Dekhtyarenko, Composite Material Based on Laves Phase with Magnesium for Hydrogen Storage, MRS Communications, 14: 337–344 (2024); https://doi.org/10.1557/s43579-024-00534-7
  41. K.P. Gupta The Ni–Ti–Zr System (Nickel–Titanium–Zirconium), J. Phase Equilibria, 20, No. 4: 441–448 (1999); https://doi.org/10.1361/105497199770335604
  42. S.V. Mitrokhin, T.N. Bezuglaya, and V.N. Verbetsky, Structure and Hydrogen Sorption Properties of (Ti,Zr)–Mn–V Alloys, J. Alloys Compd., 330–332: 146–151 (2002); https://doi.org/10.1016/S0925-8388(01)01469-4
  43. S.V. Mitrokhin, T.N. Smirnova, V.A. Somenkov, V.P. Glazkov, and V.N. Verbetsky, Structure of (Ti,Zr)–Mn–V Nonstoichiometric Laves Phases and (Ti0.9Zr0.1)(Mn0.75V0.15Ti0.1)2D2.8 Deuteride, J. Alloys Compd., 356–357: 80–83 (2003); https://doi.org/10.1016/S0925-8388(03)00257-3
  44. T.A. Zotov, V.N. Verbetskii, T.Ya. Safonova, A.V. Garshev, and O.A. Petriiz, Hydrogen Sorption and Electrochemical Properties of Alloys: Systems Zr–Ti–Ni–V–Mn with Laves Phase Structures, Russ. J. Electrochem., 43, No. 3: 355–363 (2007); https://doi.org/10.1134/S1023193507030147
  45. F. Stein and A. Leineweber, Laves Phases: a Review of Their Functional and Structural Applications and an Improved Fundamental Understanding of Stability and Properties, J Mater Sci., 56: 5321–5427 (2021); https://doi.org/10.1007/s10853-020-05509-2
  46. S.V. Mitrokhin, Regularities of Hydrogen Interaction with Multicomponent Ti(Zr)–Mn–V Laves Phase Alloys, J. Alloys Compd., 404–406: 384–387 (2005); https://doi.org/10.1016/j.jallcom.2005.02.078
  47. V.A. Dekhtyarenko, Structure and Hydrogen Sorption Properties of (Ti0.34Zr0.66)Mn1.11V0.1 Alloy, Metallofiz. Noveishie Tekhnol., 37, No. 5: 683–688 (2015) (in Russian); https://doi.org/10.15407/mfint.37.05.0683
  48. T.V. Pryadko and V.A. Dekhtyarenko, Influence of Partial Substitution of Manganese with Chromium on Structure and Kinetics of Hydrogenation of an Alloy Based on the (Ti, Zr)(V, Mn)2−x Intermetallide, Metallofiz. Noveishie Tekhnol., 40, No. 5: 649–660 (2018) (in Russian); https://doi.org/10.15407/mfint.40.05.0649
  49. N.N. Greenwood and A. Earnshaw, Chemistry of the Elements (Oxford: Butterworth Heinemann: 1997).
  50. J.R. Johnson, Reaction of Hydrogen with the High Temperature (C14) form of TiCr2, J. Less-Common Met., 73: 345–354 (1980); https://doi.org/10.1016/0022-5088(80)90328-8
  51. J. Bodega, J.F. Fernández, F. Leardini, J.R. Ares, and C. Sánchez, Synthesis of Hexagonal C14/C36 and Cubic C15 ZrCr2 Laves Phases and Thermodynamic Stability of Their Hydrides, J. Phys. Chem. Solids, 72 No. 11: 1334–1342 (2011); https://doi.org/10.1016/j.jpcs.2011.08.004
  52. V. Ivanchenko, V. Dekhtyarenko, T. Kosorukova, and T. Pryadko, Phase Equilibria on the TiMn2–TiFe2, Polythermal Section, Chem. Met. Alloys., 1, No. 2: 137–139 (2008); https://doi.org/10.30970/cma1.0045
  53. O.I. Dekhtyar, O.M. Ivasishin, D.Yu. Kovalev, O.M. Korduban, V.K. Prokudina, V.I. Ratnikov, D.G. Savvakin, A.Ye. Sychev, and M.M. Gumenyak, Features of Phase Formation at Controlled Hydrogenation and Dehydrogenation of Titanium by Different Methods, Metallofiz. Noveishie Tekhnol., 36, No. 9: 1153–1169 (2014) (in Russian); https://doi.org/10.15407/mfint.36.09.1153
  54. T.V. Pryadko, V.A. Dekhtyarenko, and A.A. Shkola, Influence of the Ambient Medium in the Course of Laser Treatment on the Resistance of Titanium to Hydrogen Embrittlement, Mater Sci., 56: 75–81 (2020); https://doi.org/10.1007/s11003-020-00399-w
  55. V.A. Dekhtyarenko, T.V. Pryadko, О.І. Boshko, V.V. Kirilchuk, H.Yu. Mykhailova, and V.I. Bondarchuk, Hydrogen Embrittlement of Titanium: Phenomena and Main Ways of Prevention, Prog. Phys. Met., 25, No. 2: 276–293 (2024); https://doi.org/10.15407/ufm.25.02.276
  56. V.A. Dekhtyarenko, T.V. Pryadko, D.G. Savvakin, V.I. Bondarchuk, and G.S. Mogylnyy, Hydrogenation Process in Multiphase Alloys of Ti–Zr–Mn–V System on the Example of Ti42.75Zr27Mn20.25V10 Alloy, Int. J. Hydrogen Energy, 46: 8040–8047 (2021); https://doi.org/10.1016/j.ijhydene.2020.11.283
  57. K.B. Minko, M.V. Lototskyy, I.E. Bessarabskaya, and B.P. Tarasov, CFD simulation of heat and mass transfer processes in a metal hydride hydrogen storage system, taking into account changes in the bed structure, Int. J. Hydrogen Energy (2024); https://doi.org/10.1016/j.ijhydene.2024.05.083
  58. V.G. Gavriljuk, V.M. Shyvaniuk, and S.M. Teus, Hydrogen Embrittlement, Hydrogen in Engineering Metallic Materials (Springer: 2022), p. 201; https://doi.org/10.1007/978-3-030-98550-9_5
  59. V.A. Tatarenko and C.L. Tsynman, Strain-Induced and Blocking Effects in Thermodynamics of The Ordering and Precipitation Reactions within the Off-Stoichiometric Close-Packed-Metal Hydrides, Solid State Ionics, 101–103, Pt. 1: 1061–1067 (1997); https://doi.org/10.1016/s0167-2738(97)00376-7
  60. V.A. Tatarenko and T.M. Radchenko, Direct and Indirect Methods of the Analysis of Interatomic Interaction and Kinetics of a Relaxation of the Short-Range Order in Close-Packed Substitutional (Interstitial) Solid Solutions, Usp. Fiz. Met., 3, No. 2: 111–236 (2002); https://doi.org/10.15407/ufm.03.02.111
  61. T.M. Radchenko, V.A. Tatarenko, H. Zapolsky, and D. Blavette, Statistical-Thermodynamic Description of the Order–Disorder Transformation of D019-Type Phase in Ti–Al Alloy, J. Alloys Compd., 452, No. 1: 122–126 (2008); https://doi.org/10.1016/j.jallcom.2006.12.149
  62. Molecular Systems under High Pressure (Eds. R. Pucci and G. Piccito) (Elsevier: 1991), p. 139–156.
  63. M. Lototskyy, I. Tolj, Y. Klochko, M.W. Davids, D. Swanepoel, and V. Linkov, Metal Hydride Hydrogen Storage Tank for Fuel Cell Utility Vehicles, Int. J. Hydrogen Energy, 45: 7958–7967 (2020); https://doi.org/10.1016/j.ijhydene.2019.04.124
  64. O.M. Ivasishin, D.G. Savvakin, M.M. Gumenyak, О.B. Bondarchuk, Role of Surface Contamination in Titanium PM, Key Eng. Mater., 520: 121–132 (2012); https://doi.org/10.4028/www.scientific.net/KEM.520.121
  65. S. Dong, G. Ma, P. Lei, T. Cheng, D. Savvakin, and O. Ivasishin, Comparative Study on the Densification Process of Different Titanium Powder, Adv. Powder Technol., 32: 2300–2310 (2021); https://doi.org/10.1016/j.apt.2021.05.009
  66. V.G. Ivanchenko, V.A. Dekhtyarenko, and T.V. Pryadko, Hydrogen-Sorption Properties of (Ti, Zr)Mn2−x Intermetallic Alloy, Powder Metall. Met. Ceram., 52: 340–344 (2013); https://doi.org/10.1007/s11106-013-9531-9
  67. O.M. Ivasyshyn and D.H. Savvakin, Synthesis of Zirconium and Titanium-Based Alloys with the Use of Their Hydrides, Mater. Sci., 51: 465–474 (2016); https://doi.org/10.1007/s11003-016-9863-y