On the Formation of Solid Solutions at Thermobaric Sintering of PcBN Composites of cBN–MeN–Al and cBN–MeC–Al Systems

BILYAVYNA N.M.$^1$, TURKEVYCH V.Z.$^2$, STRATIICHUK D.A.$^2$, KURYLIUK A.M.$^1$, and NAKONECHNA O.I.$^1$

$^1$Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Str., 01601 Kyiv, Ukraine
$^2$V.M. Bakul Institute for Superhard Materials of the N.A.S. of Ukraine, 2 Avtozavodska Str., 04074 Kyiv, Ukraine

Received 01.07.2024, final version 08.11.2024 Download PDF logo PDF

Abstract
Using the x-ray diffraction method, we study in detail a series of polycrystalline cubic boron nitride (PcBN) composites of the cBN–{TiN, ZrN, HfN, VN, NbN}–Al and cBN–{TiC, ZrC, HfC, VC, NbC, TaC}–Al systems (with a charge composition of 60:35:5 vol.%) sintered at high pressures and high temperatures (HPHT): 7.7 GPa, 1600–2450 °C. As shown, the crystal structure of each nitride MeN or carbide MeC (Me = Ti, Zr, Hf, V, Nb, Ta) existing in these composites belongs to a modified NaCl-type structure with the additional position for nitrogen atoms that results in the accumulation of N-atoms’ excess in the near-surface layers of composites. Al atoms of the charge are embedded into the MeC crystal lattice at certain sintering temperatures forming substitutional solid solutions based on a relevant metal Me. The existence ranges of temperature and composition of MeN1+δ, MeCNδ, and Me1−xAlxCNδ solid solutions formed at HPHT sintering are determined. As shown, the crystal-structure features revealed in these solid solutions are in a good agreement with theoretical assumptions on the solid-phase interaction of the charge components at sintering. Thus, the accumulation of nitrogen in MeN and MeC phases is described within the atomistic diffusion model. Using the data on the excess of N in nitrides as the reference values, the main parameters of nitrogen diffusion (activation energy and rate constant) within the cBN–{TiN, HfN, VN, NbN}–Al composites are determined. The formation of Al solid solutions at certain modes of HPHT sintering is explained by the mechanism of interaction of liquid aluminium with MeC, which is preceded by the active formation of vacancies in the metal sublattice of these carbides. Methodologically, the x-ray diffraction study data are applied for the first time to determine the main parameters of the N-atoms’ migration towards the surface of a composite at its HPHT sintering.

Keywords: cubic boron nitride (cBN), composite, mononitride, monocarbide, x-ray diffraction, crystal structure, diffusion.

DOI: https://doi.org/10.15407/ufm.25.04.661

Citation: N.M. Bilyavyna, V.Z. Turkevych, D.A. Stratiichuk, A.M. Kuryliuk, and O.I. Nakonechna, On the Formation of Solid Solutions at Thermobaric Sintering of PcBN Composites of cBN–MeN–Al and cBN–MeC–Al Systems, 25, No. 4: 661–707 (2024)


References  
  1. G. Will, G. Nover, and J. von der Gönna, J. Solid State Chem., 154: 280285 (2000); https://doi.org/10.1006/jssc.2000.8850
  2. F.R. Corrigan and F.P. Bundy, J. Chem Phys., 63, No. 9: 3812 (1975); https://doi.org/10.1063/1.431874
  3. F. Klocke, Manufacturing Processes 1: Turning, Milling, Drilling (2011).
  4. O.O. Kurakevych and V.L. Solozhenko, Molecules, 21, No. 10: 1399 (2016); https://doi.org/10.3390/molecules21101399
  5. V.L. Solozhenko, I.A. Petrusha, and A.A. Svirid, High Press. Res., 15: 95 (1996); https://doi.org/10.1080/08957959608240463
  6. S.N. Dub and I.A. Petrusha, High Press. Res., 26, No. 2: 71 (2006); https://doi.org/10.1080/08957950600764239
  7. N.P. Bezhenar, S.M. Konoval, S.A. Bozhko, N.N. Beljavina, and V.Ya. Markiv, High Press. Phys. Eng., 19, No. 2: 41 (2009); http://jnas.nbuv.gov.ua/article/UJRN-0000118328
  8. M.P. Bezhenar, M.H. Loshak, O.O. Shulzhenko, S.M. Konoval, L.I. Aleksandrova, S.A. Bozhko, and N.M. Biliavyna, Porodorazrushayushchiy i Metalloobrabatyvayushchiy Instrument — Tekhnika i Tekhnologiya ego Izgotovleniya i Primeneniya, No. 11: 164 (2008) (in Russian).
  9. M.P. Bezhenar, S.M. Konoval, S.A. Bozhko, M.G. Loshak, L.I. Aleksandrova, M.I. Zaika, P.A. Nagornyi, and H.M. Bilyavina, J. Superhard Materials, 32: 1 (2010); https://doi.org/10.3103/S1063457610010016
  10. M.P. Bezhenar, Ya.M. Romanenko, S.M. Konoval, T.A. Harbuz, V.Y. Zelenyn, M.A. Poleshchuk, and Yu.A. Nykytiuk, Porodorazrushayushchiy i Metalloobrabatyvayushchiy Instrument — Tekhnika i Tekhnologiya ego Izgotovleniya i Primeneniya, No. 19: 184 (2016) (in Russian).
  11. S.A. Klymenko, M.Yu. Kopeikyna, and A.O. Chumak, Suchasni Tekhnologii v Mashynobuduvanni, No. 12: 54 (2017) (in Ukrainian).
  12. S.A. Klymenko, Yu.O. Melniichuk, Yu.O. Mukovoz, M.Yu. Kopieikina, I.A. Petrusha, and O.S. Osypov, Deklaratsiinyi Patent Ukrainy No. 70820 A, Sposib Mekhanichnoi Obrobky. Bulletin ‘Promyslova Vlasnist’, 10: 54 (2004) (in Ukrainian).
  13. A. McKie, J. Winzer, I. Sigalas, M. Herrmann, L. Weiler, J. Rudel, and N. Can, Ceram. Int., 37, No. 1: 1 (2011); https://doi.org/10.1016/j.ceramint.2010.07.034
  14. V. Bushlya, F. Lenrick, J.-E. Ståhl, and R. M’Saoubi, CIRP Ann., 67, No. 1: 79 (2018); https://doi.org/10.1016/j.cirp.2018.03.011
  15. R. M’Saoubi, M.P. Johansson, and J.M. Andersson, Wear, 302, Nos. 1–2: 1219 (2013); https://doi.org/10.1016/j.wear.2013.01.074
  16. V. Bushlya, J. Zhou, P. Avdovic, and J.-E. Ståhl, Int. J. Adv. Manuf. Technol., 66, Nos. 9–12: 1083 (2013); https://doi.org/10.1007/s00170-013-4899-8
  17. K. Sobiyi, I. Sigalas, G. Akdogan, and Y. Turan, Int. J. Adv. Manuf. Technol., 77, Nos. 5–8: 861 (2015); https://doi.org/10.1007/s00170-014-6506-z
  18. V.M. Bushlya, O.A. Gutnichenko, J.M. Zhou, J.-E. Ståhl, and S. Gunnarsson, J. Superhard Mater., 36, No. 1: 49 (2014); https://doi.org/10.3103/S1063457614010080
  19. V. Bushlya, O. Gutnichenko, J. Zhou, P. Avdovic, and J.-E. Ståhl, Mach. Sci. Technol., 17, No. 4: 497 (2013); https://doi.org/10.1080/10910344.2013.806105
  20. J. Angseryd and H.O. Andren, Wear, 271, Nos. 9–10: 2610 (2011); https://doi.org/10.1016/j.wear.2010.11.059
  21. P. Klimczyk, E. Benko, K. Lawniczak-Jablonska, E. Piskorska, M. Heinonen, A. Ormaniec, W. Gorczynska-Zawislan, and V.S. Urbanovich, J. Alloys Compd., 382, Nos. 1–2: 195 (2004); https://doi.org/10.1016/j.jallcom.2004.04.140
  22. J. Angseryd, E. Coronel, M. Elfwing, E. Olsson, and H.O. Andren, Wear, 267, Nos. 5–8: 1031 (2009); https://doi.org/10.1016/j.wear.2008.12.075
  23. L. Zhang, F. Lin, Z. Lv, C. Xu, X. He, W. Wang, and L. Xia, Int. J. Refract. Met. Hard Mater., 50: 221 (2015); https://doi.org/10.1016/j.ijrmhm.2015.01.015
  24. K.V. Slipchenko, I.A. Petrusha, V.Z. Turkevich, V.M. Bushlya, and J.-E. Stahl, Metallofiz. Noveishie Tekhnol., 40, No. 8: 1081 (2018) (in Ukrainian); https://doi.org/10.15407/mfint.40.08.1081
  25. K. Slipchenko, D. Stratiichuk, N. Belyavina, V. Turkevich, V. Bushlya, J.E. Stahl, 9th Swedish Production Symposium—SPS 2020, 13: 428 (2020); https://doi.org/10.3233/ATDE200180
  26. K. Slipchenko, V. Turkevich, I. Petrusha, V. Bushlya, and J.-E. Ståhl, Procedia Manuf., 25: 322 (2018); https://doi.org/10.1016/j.promfg.2018.06.090
  27. M.P. Bezhenar, G.S. Oleinik, S.A. Bozhko, T.O. Garbuz, and S.M. Konoval, J. Superhard Mater., 31, No. 6: 357 (2009); https://doi.org/10.3103/S106345760906001X
  28. K. Slipchenko, V. Bushlya, D. Stratiichuk, I. Petrusha, A. Can, V. Turkevich, and F. Lenrick, J. Eur. Ceram. Society, 42, No. 11: 4513 (2022); https://doi.org/10.1016/j.jeurceramsoc.2022.04.022
  29. X.Z. Rong, T. Tsurumi, O. Fukunaga, and T. Yano, Diam. Relat. Mater., 11, No. 2: 280 (2002); https://doi.org/10.1016/S0925-9635(01)00692-6
  30. E. Benko, J.S. Stanisław, B. Królicka, A. Wyczesany, and T.L. Barr, Diam. Relat. Mater., 8, No. 10: 1838 (1999); https://doi.org/10.1016/S0925-9635(99)00131-4
  31. H. Xie, F. Deng, H. Wang, J. Liu, S. Han, and F. Feng, J. Refract. Metals Hard Mater., 89: 105209 (2020); https://doi.org/10.1016/j.ijrmhm.2020.105209
  32. S.Y. Chiou, S.F. Ou, Y.G. Jang, and K.L. Ou, Ceram. Int., 39, No. 6: 7205 (2013); https://doi.org/10.1016/j.ceramint.2013.02.066
  33. K. Slipchenko, V. Bushlya, D. Stratiichuk, V. Turkevich, and J.-E. Ståhl, Procedia CIRP, 101: 254 (2021); https://doi.org/10.1016/j.procir.2020.10.005
  34. K.V. Slipchenko, V.Z. Turkevich, V.M. Bushlya, and J.-E. Ståhl, Rock. Destr. Met. Tools — Tech. Technol. Tool. Prod. Appl., No. 22: 254 (2019).
  35. K.V. Slipchenko, I.A. Petrusha, V.Z. Turkevich, V.M. Bushlya, and J.-E. Ståhl, Rock. Destr. Met. Tools — Tech. Technol. Tool. Prod. Appl., No. 21: 275 (2018).
  36. K.V. Slipchenko, I.A. Petrusha, D.A. Stratiichuk, and V.Z. Turkevych, J. Superhard Mater., 40: 226 (2018); https://doi.org/10.3103/S1063457618030115
  37. K.V. Slipchenko, V.Z. Turkevich, V.M. Bushlya, and J.-E. Ståhl (2019), Tooling Materials Science, No. 22: 254 (2019); http://jnas.nbuv.gov.ua/article/UJRN-0001089259
  38. K.V. Slipchenko, I.A. Petrusha, V.Z. Turkevich, D.A. Stratiichuk, V.M. Slipchenko, N.M. Bilyavina, D.V. Turkevich, V.M. Bushlya, and J.-E. Ståhl, Metallofiz. Noveishie Tekhnol., 41, No. 12: 1599 (2019) (in Ukrainian); https://doi.org/10.15407/mfint.41.12.1599
  39. K.V. Slipchenko, D.A. Stratiichuk, V.Z. Turkevich, N.M. Bilyavyna, V.M. Bushlya, and J.-E. Ståhl, J. Superhard Mater., 42, No. 4: 229 (2020); https://doi.org/10.3103/S1063457620040103
  40. D.A. Stratiichuk, V.Z. Turkevich, K.V. Slipchenko, and V.M. Bushlya, Dopov. Nac. Akad. Nauk Ukr., No. 9: 38 (2020) (in Ukrainian); https://doi.org/10.15407/dopovidi2020.09.038
  41. D.A. Stratiichuk, V.Z. Turkevich, K.V. Slipchenko, Yu.O. Melniichuk, and D.V. Turkevich, Tooling Materials Science, No. 23: 194 (2020).
  42. D.A. Stratiichuk, V.Z. Turkevich, K.V. Slipchenko, V.M. Bushlya, and N.M. Bilyavyna, Dopov. Nac. Akad. Nauk Ukr., No. 2: 37 (2020) (in Ukrainian); https://doi.org/10.15407/dopovidi2020.02.037
  43. K.V. Slipchenko, D.A. Stratiichuk, V.Z. Turkevich, N.M. Belyavina, V.M. Bushlya, and J.-E. Ståhl, J. Superhard Mater., 42: 51 (2020); https://doi.org/10.3103/S1063457620020112
  44. M. Dashevskyi, О. Boshko, О. Nakonechna, and N. Belyavina, Metallofiz. Noveishie Tekhnol., 39 No. 4: 541 (2017); https://doi.org/10.15407/mfint.39.04.0541
  45. N.N. Belyavina, D.A. Stratiichuk, O.I. Nakonechna, T.G. Avramenko, A.M. Kuryliuk, and V.Z. Turkevich, Dopov. Nac. Akad. Nauk Ukr., No. 2: 58 (2022) (in Ukrainian); https://doi.org/10.15407/dopovidi2022.02.058
  46. N.M. Belyavina, V.Z. Turkevich, A.M. Kuryliuk, D.A. Stratiichuk, O.I. Nakonechna, P.P. Kogutyuk, and L.P. Stasuk, Dopov. Nac. Akad. Nauk Ukr., No. 1: 20 (2024) (in Ukrainian); https://doi.org/10.15407/dopovidi2024.01.020
  47. T.G. Avramenko, A.M. Kuryliuk, O.I. Nakonechna, and N.N. Belyavina, Metallofiz. Noveishie Tekhnol., 44, No. 6: 713 (2022); https://doi.org/10.15407/mfint.44.06.0713
  48. W. Lengauer, J. Phys. Chem. Sol., 52. No. 2: 393(1991); https://doi.org/10.1016/0022-3697(91)90089-I
  49. E. Penilla and J. Wang, J. Nanomater., 2008: 1 (2008); https://doi.org/10.1155/2008/267161
  50. R. Fix, R.G. Gordon, and D.M. Hoffman, Chem. Mater., 5, No. 5: 614 (1993); https://doi.org/10.1021/cm00029a007
  51. D.G. Sangiovanni, B. Alling, P. Steneteg, L. Hultman, and I.A. Abrikosov, Phys. Rev. B, 91, No. 5: 054301 (2015); https://doi.org/10.1103/PhysRevB.91.054301
  52. S. Yu, Q. Zeng, A.R. Oganov, G. Frapper, and L. Zhang, Phys. Chem. Chem. Phys., 17, No. 17: 11763 (2015); https://doi.org/10.1039/c5cp00156k
  53. H. Yang, Z. Qian, H.Chen, X. Zhao, G. Han, W. Du, X. Nie, K. Zhao, G. Liu, Q. Sun, T. Gao, J. Zhou, J. Nie, and X. Liu, Acta Mater., 233: 117977 (2022); https://doi.org/10.1016/j.actamat.2022.117977
  54. O.I. Nakonechna, M.M. Dashevskyi, О.І. Boshko, V.V. Zavodyannyi, and N.N. Belyavina, Prog. Phys. Met., 20, No. 1: 5 (2019); https://doi.org/10.15407/ufm.20.01.005
  55. A. Sevy, D.J. Matthew, and M.D. Morse, J. Chem. Phys., 149, No. 4: 044306 (2018); https://doi.org/10.1063/1.5041422
  56. W. Lengauer and A. Eder, Nitrides: Transition Metal Solid-State Chemistry. Encyclopedia of Inorganic Chemistry. First Edition (Wiley: 2006), p. 3515; https://doi.org/10.1002/0470862106.ia156
  57. N.M. Belyavina,V.Z. Turkevich, A.M. Kuryliuk, D.A. Stratiichuk, L.P. Stasuk, O.I. Nakonechna, and P.P. Kogutyuk, Dopov. Nac. Akad. Nauk Ukr., No. 3: 40 (2023); https://doi.org/10.1021/cm00029a007
  58. N.M. Belyavina, D.A. Stratiichuk, A.M. Kuryliuk, V.Z. Turkevich, O.I. Nakonechna, P.P. Kogutyuk, and L.P. Stasuk, J. Nano- Electron. Phys., 15, No. 3: 03030 (2023); https://doi.org/10.21272/jnep.16(2).02013
  59. A.M. Kuryliuk, V.Z. Turkevich, N.M. Belyavina, D.A. Stratiichuk, O.I. Nakonechna, and P.P. Kogutyuk, The 9th Int. Conf. ‘Physics of Disordered Systems’ (PDS’2023) (19–20 September 2023, Lviv, Ukraine), p. 60.
  60. N.M. Belyavina, V.Z. Turkevich, D.A. Stratiichuk, A.M. Kuryliuk, and O.I. Nakonechna, J. Nano- Electron. Phys., 16, No. 2: 02013 (2024); https://doi.org/10.21272/jnep.16(2).02013