The Elastic Anisotropy of Inconel 625 Alloy Samples Made with 3D Printing

USOV V.V.$^1$, SHKATULYAK N.M.$^1$, PAVLENKO D.V.$^2$, IOVCHEV S.I.$^3$, and TKACH D.V.$^2$

$^1$South Ukrainian National Pedagogical University named after K.D. Ushinsky, 26 Staroportofrankivs’ka Str., UA-65020 Odesa, Ukraine
$^2$Zaporizhzhia Polytechnic National University, 64 Zhukovs’ky Str., UA-69063 Zaporizhzhia, Ukraine
$^3$Odesa National Maritime University, 34 Mechnikov Str., UA-65029 Odesa, Ukraine

Received 29.06.2024, final version 07.08.2024 Download PDF logo PDF

Abstract
Depending on the 3D-printing orientation, the anisotropy of the elastic characteristics of the Inconel 625 alloy generated with selective laser sintering from powders is investigated. The impact of the original powder combination and the following heat treatment (post-printing treatment) on the anisotropy of the alloy elastic characteristics is assessed. As demonstrated, the suggested treatments can lessen the anisotropy of the alloy elastic characteristics. Based on knowledge of the elastic constants of the single crystal and x-ray texture features, the results of a theoretical estimation of the elastic and shear moduli, Poisson’s ratio, and their anisotropy in the horizontal and vertical directions of 3D printing are provided. As demonstrated, the obtained theoretical values differ by 6–10% from the corresponding experimental values. The calculated stress–strain state can be more accurately calculated with the use of the estimated elastic characteristics and their anisotropy. The strategy for 3D-printing complicated components from Inconel 625 alloy may be made more effective.

Keywords: Inconel 625 alloy, additive manufacturing, selective laser sintering, crystallographic texture, mechanical properties, elastic anisotropy.

DOI: https://doi.org/10.15407/ufm.25.03.600

Citation: V.V. Usov, N.M. Shkatulyak, D.V. Pavlenko, S.I. Iovchev, and D.V. Tkach, The Elastic Anisotropy of Inconel 625 Alloy Samples Made with 3D Printing, Progress in Physics of Metals, 25, No. 3: 600–613 (2024)


References  
  1. D. Pavlenko, Y. Dvirnyk, and R. Przysowa, Aerospace, 8, No. 1: 1 (2021). https://doi.org/10.3390/aerospace8010001
  2. S. Yin, N. Fan, C. Huang, Y. Xie, C. Zhang, R. Lupoi, and W. Li, J. Mater. Sci. Technol., 170: 47 (2024). https://doi.org/10.1016/j.jmst.2023.05.047
  3. V.G. Mishchenko and S.P. Sheyko, Steel Transl., 44, No. 12: 928 (2014). https://doi.org/10.3103/s0967091214120122
  4. J.-U. Lee, Y.-K. Kim, S.-M. Seo, and K.-A. Lee, Mater. Sci. Eng. A, 841: 143083 (2022). https://doi.org/10.1016/j.msea.2022.143083
  5. D. Pavlenko and А. Ovchinnikov, Mater. Sci., 51, No. 1: 52 (2015). https://dx.doi.org/10.1007/s11003-015-9809-9
  6. V.A. Boguslaev, V.K. Yatsenko, P.D. Zhemanyuk, G.V. Pukhalskaya, D.V. Pavlenko, and V.P. Ben, Otdelochno-Uprochnyayushchaya Obrabotka Detaley GTD [Finishing-Strengthening Treatment of Gas Turbine Engine Parts] (Zaporozh’ye: OAO ‘Motor Sich’: 2005) (in Russian).
  7. M. Jimenez, L. Romero, I.A. Dominguez, M. Espinosa, and M. Dominguez, Complexity, 2019: 9656938 (2019). https://doi.org/10.1155/2019/9656938
  8. B. Zhang, Y. Li, and Q. Bai, Chin. J. Mech. Eng., 30, No. 3: 515 (2017). https://doi.org/10.1007/s10033-017-0121-5
  9. A.M. Polyanskiy, V.A. Polyanskiy, A.K. Belyaev, and Y.A. Yakovlev, Acta Mech., 229: 4863 (2018). https://doi.org/10.1007/s00707-018-2262-8
  10. T. Obermayer, C. Krempaszky, and E. Werner, Metals, 12, No. 11: 1991 (2022). https://doi.org/10.3390/met12111991
  11. V.V. Usov, N.M. Shkatuliak, N.I. Rybak, M.O. Tsarenko, D.V. Pavlenko, D.V. Tkach, and O.O. Pedash, Metallofiz. Noveishie Tekhnol., 45, No. 1: 111 (2023). https://doi.org/10.15407/mfint.45.01.0111
  12. H.L. Eiselstein and D.J. Tillack, The Invention and Definition of Alloy 625, Superalloys 718, 625 and Various Derivatives (Warrendale, Pennsylvania: 1991), p. 1. https://doi.org/10.7449/1991/Superalloys_1991_1_14
  13. N.O. Lysenko, O.O. Pedash, V.V. Klochykhin, and P.O. Kasai, Electrometallurgy Today, 4: 38 (2021). https://doi.org/10.37434/sem2021.04.06
  14. V.V. Usov, N.M. Shkatuliak, D.V. Pavlenko, and O.M. Tkachuk, Mater. Sci., 59: 414 (2023). https://doi.org/10.1007/s11003-024-00792-9
  15. P.R. Morris, J. Appl. Phys., 30, No. 5: 595 (1959). https://aip.scitation.org/doi/10.1063/1.1702413
  16. Ya.D. Vishnyakov, Teoriya Obrazovaniya Tekstur v Metallakh i Splavakh [The Theory of Texture Formation in Metals and Alloys] (Moskva: Nauka: 1979) (in Russian).
  17. P. Aba-Perea, T. Pirling, P. Withers, J. Kelleher, S. Kabra, and M. Preuss, Mater. Des., 89, No. 5: 856 (2016). https://doi.org/10.1016/j.matdes.2015.09.152
  18. J. Everaerts, C. Papadaki, W. Li, and A.M. Korsunsky, J. Mech. Phys. Solids, 131: 303 (2019). https://doi.org/10.1016/j.jmps.2019.07.011
  19. L. Zhang, R. Barrett, P. Cloetens, C. Detlefs, and M. Sanchez del Rio, J. Synchrotron Radiat., 21, No. 3: 507 (2014). https://doi.org/10.1107/S1600577514004962
  20. J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford: Clarendon Press: 1985).
  21. J. Rossin, P. Leser, J.T. Benzing, C. Torbet, R.P. Dillon, S. Smith, S. Daly, and T.M. Pollock, NDT & E Int., 135: 102803 (2023). https://doi.org/10.1016/j.ndteint.2023.102803
  22. J.M. Ortiz-Roldan, Phys. Chem. Chem. Phys., 20: 18647 (2018). https://www.rsc.org/suppdata/c8/cp/c8cp02591f/c8cp02591f1.pdf
  23. Z. Wang, A.D. Stoica, D. Ma, and A.M. Beese, Mater. Sci. Eng. A, 674: 406 (2016). https://doi.org/10.1016/j.msea.2016.08.010
  24. S.P. Kumar, S. Elangovan, R. Mohanraj, and J.R. Ramakrishna, Mater. Today: Proc., 46, No. 17: 7892 (2021). https://doi.org/10.1016/j.matpr.2021.02.566
  25. H.R. Javidrad and S. Salemi, Int. J. Adv. Manuf. Technol., 107: 4597 (2020). https://doi.org/10.1007/s00170-020-05321-x
  26. Ni-Alloy IN625 / 2.4856 / B446. Material Data Sheet. https://www.slm-solutions.com/fileadmin/Content/Powder/MDS/MDS_Ni-Alloy_IN625_0819_EN.pdf
  27. G. Marchese, M. Lorusso, S. Parizia, E. Bassini, J.-W. Lee, F. Calignano, D. Manfredi, M. Terner, H.-U. Hong, D. Ugues, M. Lombardi, and S. Biamino, Mater. Sci. Eng. A, 729: 64 (2018). https://doi.org/10.1016/j.msea.2018.05.044
  28. R.V.K. Honeycombe, The Plastic Deformation of Metals (London: Edward Arnold Ltd. Publ.: 1984). https://archive.org/details/plasticdeformati0000hone_c4v2/page/n5/mode/2up?view=theater
  29. J. Zhu, C. Shao, F. Lu, K. Feng, P. Liu, S. Chu, Y. Feng, H. Kokawa, and Z. Li, Scr. Mater., 221: 114945 (2022). https://doi.org/10.1016/j.scriptamat.2022.114945
  30. Md.A. Anam, Microstructure and Mechanical Properties of Selective Laser Melted Superalloy Inconel 625, Electronic Theses and Dissertations (2018), Paper 3029. https://doi.org/10.18297/etd/3029
  31. J.A. Gonzalez, J. Mireles, S.W. Stafford, M.A. Perez, C.A. Terrazas, and R.B. Wicker, J. Mater. Process. Technol., 264: 200 (2019). https://doi.org/10.1016/j.jmatprotec.2018.08.031