Electron Concept of Hydrogen Embrittlement and Hydrogen-Increased Plasticity of Metals

GAVRILJUK V.G., SHYVANIUK V.M., and TEUS S.M.

G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received 20.02.2024, final version 02.08.2024 Download PDF logo PDF

Abstract
Based on theoretical and experimental studies of hydrogen effect on the electron structure of iron, nickel and titanium, an electron concept is proposed for hydrogen embrittlement as well as for hydrogen-improved plasticity of engineering metallic materials. This concept implies a hydrogen-caused redistribution of valence electrons across their energy levels and an increase in the density of electron states at the Fermi level, causing a softening of the crystal lattice and, thereby, leading to a decrease in the specific energy of dislocations with consequent increase in their mobility. Innate phenomena in metallic solid solutions, namely, short-range atomic order in its two versions, short-range ordering and decomposition, are shown to be a precondition for the localization of plastic deformation. Hydrogen enhances merely this effect resulting in pseudo-brittle fracture. The role of hydrogen-induced superabundant vacancies in hydrogen-caused localization of plastic deformation and grain-boundary fracture in pure metals is discussed. Using the temperature- and strain-dependent internal friction, the enthalpies of hydrogen diffusion and hydrogen–dislocation binding are studied, and their controlling effect on the temperature- and strain-rate-dependent hydrogen embrittlement is demonstrated. Finally, a physical rationale is proposed for using hydrogen as a temporary alloying element in the technological processing of titanium alloys, and for a positive hydrogen effect on the fatigue life and plasticity of austenitic steels.

Keywords: hydrogen, iron, nickel, titanium, electron structure, embrittlement, plasticity.

DOI: https://doi.org/10.15407/ufm.25.03.482

Citation: V.G. Gavriljuk, V.M. Shyvaniuk, and S.M. Teus, Electron Concept of Hydrogen Embrittlement and Hydrogen-Increased Plasticity of Metals, Progress in Physics of Metals, 25, No. 3: 482–519 (2024)


References  
  1. W.H. Johnson, On some remarkable changes produced in iron and steel by the action of hydrogen and acid, Proc. Royal Society of London, 23, No. 158: 168 (1875). Republished in Hydrogen Damage (Metals Park, OH: ASM: 1977). https://doi.org/10.1098/rspl.1874.0024
  2. J.P. Hirth and H.H. Johnson, Hydrogen problems in energy related technology, Corrosion, 32, No. 1: 3 (1976). https://doi.org/10.5006/0010-9312-32.1.3
  3. M.R. Louthan Jr. Hydrogen in Metals (Eds. I.M. Bernstein and A.W. Thompson) (Metals Park, OH: ASM: 1974), pp. 53–78.
  4. I.M. Bernstein, R. Garber, and G.M. Presouyre, Effect of dissolved hydrogen on mechanical behavior of metals, Effect of Hydrogen on Behavior of Materials (Eds. A.W. Thompson and I.M. Bernstein) (New York: TMS-AIME: 1975), pp. 37–58.
  5. P. Bastien and P. Azou, Influence de l’écrouissage sur le frottement intérieur du fer et del’acier, chargés ou non en hydrogene, C. R. Acad. Sci. Paris, 232: 1845–1848 (1951) (in French).
  6. T. Boniszewski and G.C. Smith, The influence of hydrogen on the plastic deformation ductility and fracture of nickel in tension, Acta Metall., 11, No. 3: 165–178 (1963). https://doi.org/10.1016/0001-6160(63)90209-8
  7. K.V. Popov, Dynamical strain aging of metals and hydrogen-type brittleness (Novosibirsk: Nauka, Siberia branch: 1969), 98 pp. (in Russian).
  8. R.M. Gabidullin, B.A. Kolachev, and P.D. Drozdov, Estimation of conditions for manifestation of reversible hydrogen brittleness of metals, Problems of Strength, No. 12: 36–40 (1971) (in Russian).
  9. L. Fournier, D. Delafosse, and T. Magnin, Cathodic hydrogen embrittlement in alloy 718, Mat. Sci. Eng. A, 269, Nos. 1–2: 111–119 (1999). https://doi.org/10.1016/s0921-5093(99)00167-7
  10. C. Zapfe, Discussion of metal arc welding of steels by S.A. Herres, Trans. ASM, No. 39: 191–192 (1947).
  11. F. Garofalo, Y.T. Chou, and V. Ambegaokar, Effect of hydrogen on stability of micro cracks in iron and steel, Acta Metall., 8, No. 8: 504–512 (1960). https://doi.org/10.1016/0001-6160(60)90103-6
  12. B.A. Bilby and J. Hewitt, Hydrogen in steel — the stability of micro-cracks, Acta Metall., 10, No. 6: 587–600 (1962). https://doi.org/10.1016/0001-6160(62)90048-2
  13. N.J. Petch, Delayed fracture of metals under static load, Nature, 169: 842–843 (1952). https://doi.org/10.1038/169842a0
  14. N.J. Petch, The lowering of fracture-stress due to surface adsorption, Phil. Mag., 1, No. 4: 331–337 (1956). https://doi.org/10.1080/14786435608238106
  15. A.R. Troiano, The role of hydrogen and other interstitials in the mechanical behavior of metals, Trans. ASM, 52, 54–80 (1960). Republished: A.R. Troiano, Metallogr. Microstruct. Anal., 5: 557–569 (2016). https://doi.org/10.1007/s13632-016-0319-4
  16. E.A. Steigerwald, F.W. Schaller, and A.R. Troiano, The role of stresses in hydrogen induced delayed failure, TMS-AIME, 218, No. 5: 832–841 (1960).
  17. R.A. Oriani, A mechanistic theory of hydrogen embrittlement of steels, Berichte Bunsen Gesellschaft für Physik Chem, 76, No. 8: 848–857 (1972). https://doi.org/10.1002/bbpc.19720760864
  18. R.A. Oriani and P.H. Josephic, Testing of the decohesion theory of hydrogen-induced crack propagation, Scripta Metall., 6, No. 8: 681–688 (1972). https://doi.org/10.1016/0036-9748(72)90126-3
  19. R.A. Oriani and P.H. Josephic, Equilibrium aspects of hydrogen-induced cracking of steels, Acta Metall, 22, No. 9: 1065–1074 (1974). https://doi.org/10.1016/0001-6160(74)90061-3
  20. R.A. Oriani and P.H. Josephic, Equilibrium and kinetic studies of the hydrogen-assisted cracking of steel, Acta Metall., 25, No. 9: 979–988 (1977). https://doi.org/10.1016/0001-6160(77)90126-2
  21. S.P. Lynch, Environmentally assisted cracking: Overview of evidence for an adsorption-induced localised-slip process, Acta Metall., 36, No. 10: 2639–2661 (1988). https://doi.org/10.1016/0001-6160(88)90113-7
  22. S.P. Lynch, Towards understanding mechanisms and kinetics of environmentally assisted cracking, Environment-Induced Cracking of Materials (Eds. S.A. Shipilov, R.H. Jones, J.-M. Olive, and R.B. Rebak) (Elsevier: 2008), pp. 167–177.
  23. S. Lynch, Hydrogen embrittlement phenomena and mechanisms, Corros Rev., 30, Nos. 3–4: 105–123 (2012). https://doi.org/10.1515/corrrev-2012-0502
  24. M. Nagumo, Function of hydrogen in embrittlement of high-strength steels, ISIJ Intern., 41, No. 6: 590–598 (2001). https://doi.org/10.2355/isijinternational.41.590
  25. M. Nagumo, Hydrogen related failure of steels — a new aspect, Mat. Sci. Technol., 20, No. 8: 940–950 (2004). https://doi.org/10.1179/026708304225019687
  26. M. Nagumo and K. Takai, The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: Overview, Acta Mater., 165: 722–733 (2019). https://doi.org/10.1016/j.actamat.2018.12.013
  27. J. Song, M. Soar, and W.A. Curtin, Testing continuum concepts for hydrogen embrittlement in metals using atomistics, Model. Simul. Mater. Sci., 18: 045003 (2010). https://doi.org/10.1088/0965-0393/18/4/045003
  28. J. Song and W.A. Curtin, Atomic mechanism and prediction of hydrogen embrittlement in iron, Nature Mat., 12, No. 2: 145–151 (2012). https://doi.org/10.1038/nmat3479
  29. A. Tehranchi, X. Zhou, and W.A. Curtin, A decohesion pathway for hydrogen embrittlement in nickel: mechanism and quantitative prediction, Acta Mater., 185, No. 15: 98–109 (2020). https://doi.org/10.1016/j.actamat.2019.11.062
  30. H.K. Birnbaum and P. Sofronis, Hydrogen-enhanced localized plasticity — a mechanism for hydrogen-related fracture, Mat. Sci. Eng. A, 176, Nos. 1–2: 191–202 (1994). https://doi.org/10.1016/0921-5093(94)90975-x
  31. I.M. Robertson, The effect of hydrogen on dislocation dynamics, Eng. Fract. Mech., 64, No. 5: 649–673 (1999). https://doi.org/10.1016/s0013-7944(99)00094-6
  32. P. Sofronis and I.M. Robertson, Transmission electron microscopy observations and micromechanical/continuum models for the effect of hydrogen on the mechanical behaviour of metals, Phil. Mag. A, 82, Nos. 17–18: 3405–3413 (2002). https://doi.org/10.1080/01418610208240451
  33. I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.V. Gross, and K.E. Nygren, Hydrogen embrittlement understood, Metall. Mater. Trans. A, 46, No. 3: 1085–1103 (2015). https://doi.org/10.1007/s11663-015-0325-y
  34. A. Nagao, M. Dadfarnia, P. Sofronis, and I. Robertson, Hydrogen Embrittlement: Mechanisms. Encyclopedia of Iron, Steel, and Their Alloys (Taylor & Francis: 2015), pp. 1768–1784. https://doi.org/10.1081/E-EISA-120049717
  35. A. Nagao, M. Dadfarnia, B.P. Somerday, P. Sofronis, and R.O. Ritchie, Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and “quasi-cleavage” fracture of lath martensitic steels, J. Mech. Phys. Sol., 112: 403–430 (2018). https://doi.org/10.1016/j.jmps.2017.12.016
  36. M.L. Martin, M. Dadfarnia, A. Nagao, S. Wang, and P. Sofronis, Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials, Acta Mater., 165: 734–750 (2019). https://doi.org/10.1016/j.actamat.2018.12.014
  37. P. Sofronis and H.K. Birnbaum, Mechanics of the hydrogen–dislocation–impurity interactions. — I. Increasing shear modulus, J. Mech. Phys. Sol., 43, No. 1: 49–90 (1995). https://doi.org/10.1016/0022-5096(94)00056-b
  38. P.J. Ferreira, I.M. Robertson, and H.K. Birnbaum, Hydrogen effects on the interaction between dislocations, Acta Mater., 46, No. 5: 1749–1757 (1998). https://doi.org/10.1016/S1359-6454(97)00349-2
  39. P.J. Ferreira, I.M. Robertson, and H.K. Birnbaum, Hydrogen effects on the character of dislocations in high-purity aluminium, Acta Mater., 47, No. 10 2991–2998 (1999). https://doi.org/10.1016/s1359-6454(99)00156-1
  40. D.G. Ulmer and C.J. Altstetter, Hydrogen-induced strain localization and failure of austenitic stainless steels at high hydrogen concentrations, Acta Metall. Mater., 39, No. 6: 1237–1248 (1991). https://doi.org/10.1016/0956-7151(91)90211-I
  41. M.-J. Lji, X.-F. Chen, Y. Katz, and W.W. Gerberich, Dislocation modeling and acoustic emission observation of alternating ductile/brittle events in Fe-3wt%Si crystals, Acta Metall. Mater., 38, No. 12: 2435–2453 (1990). https://doi.org/10.1016/0956-7151(90)90255-f
  42. W.W. Gerberich, R.A. Oriani, M.-J. Lji, X. Chen, and T. Foecke, The necessity of both plasticity and brittleness in the fracture thresholds of iron, Phil. Mag. A, 63, No. 2: 363–376 (1991). https://doi.org/10.1080/01418619108204854
  43. W.W. Gerberich, D.D. Stauffer, and P. Sofronis, A coexistent view of hydrogen effects on mechanical behaviour of crystals: HELP and HEDE. Effect of Hydrogen on Materials (Eds. B. Somerday, P. Sofronis, and R. Jones), Proc. of Int. Hydrogen Conf. (ASM: 2009), pp. 38–45.
  44. M.B. Djukic, V.S. Zeravcic, G.M. Bakic, A. Sedmak, and B. Rajicic, Hydrogen damage of steels: A case study and hydrogen embrittlement model, Eng. Failure Anal., 58: 485–498 (2015). https://doi.org/10.1016/j.engfailanal.2015.05.017
  45. M.B. Djukic, G.M. Bakic, V.S. Zeravcic, A. Sedmak, B. Rajicic, Hydrogen Embrittlement of Industrial Components: Prediction, Prevention, and Models, Corrosion, 72, No. 7: 943–961 (2016). https://doi.org/10.5006/1958
  46. M.B. Djukic, G.M. Bakic, V. Sijacki Zeravcic, A. Sedmak, and B. Rajicic, The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion, Eng. Fract. Mech., 216: 106528 (2019). https://doi.org/10.1016/j.engfracmech. 2019.106528
  47. A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis, and I.M. Robertson, The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel, Acta Mater., 60, Nos. 13–14: 5182–5189 (2012). https://doi.org/10.1016/j.actamat.2012.06.040
  48. A. Nagao, M. Dadfarnia, P. Sofronis, and I. Robertson, Hydrogen Embrittlement: Mechanisms. Encyclopedia of Iron, Steel, and Their Alloys (Taylor & Francis: 2016), pp. 1768–1784. https://doi.org/10.1081/E-EISA-120049717
  49. A. Nagao, M. Dadfarnia, B.P. Somerday, P. Sofronis, and R.O. Ritchie, Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and “quasi-cleavage” fracture of lath martensitic steels, J. Mech. Phys. Sol., 112: 403–430 (2018). https://doi.org/10.1016/j.jmps.2017.12.016
  50. K.M. Bertch, S. Wang, A. Nagao, and I.M. Robertson, Hydrogen-induced compatibility constraints across grain boundary drive intergranular failure of Ni, Mat. Sci. Eng. A, 760: 58–67 (2019). https://doi.org/10.1016/j.msea.2019.05.36
  51. K.E. Nygren, A. Nagao, S. Wang , P. Sofronis, and I.M. Robertson, Influence of internal hydrogen content on the evolved microstructure beneath fatigue striations in 316L austenitic stainless steel, Acta Mater., 213: 116957 (2021). https://doi.org/10.1016/j.actamat.2021.116957
  52. Z.D. Harris, S.K. Lawrence, D.L. Medlin, G. Guetard, J.T. Burns, and B.P. Somerday, Elucidating the contribution of mobile hydrogen-deformation interactions to hydrogen-induced intergranular cracking in polycrystalline nickel, Acta Mater., 158: 180–192 (2018). https://doi.org/10.1016/j.actamat.2018.07.043
  53. B.D. Shanina, V.G. Gavriljuk, S.P. Kolesnik, and V.N. Shivanyuk, Paramagnetic resonance in hydrogen-charged austenitic steel, J. Phys. D: Appl. Phys., 32, No. 3: 298–304 (1999). https://doi.org/10.1088/0022-3727/32/3/018
  54. S.M. Teus, V.N. Shyvanyuk, B.D. Shanina, and V.G. Gavriljuk, Effect of hydrogen on electronic structure of fcc iron in relation to hydrogen embrittlement of austenitic steels, Phys. Stat. Sol. A, 204, No. 12: 4249–4258 (2007). https://doi.org/10.1002/pssa.200723249
  55. V.G. Gavriljuk, B.D. Shanina, V.N. Shyvanyuk, and S.M. Teus, Electronic effect on hydrogen brittleness of austenitic steels, J. Appl. Phys., 108: 083723 (2010). https://doi.org/10.1063/1.3499610
  56. S.M. Teus and V.G. Gavriljuk, Electron structure and thermodynamics of solid solutions in Ni–H system, Mat. Sci. & Eng. Int. J., 2, No. 4: 101–109 (2018). https://doi.org/10.15406/mseij.2018.02.00042
  57. V.G. Gavriljuk, V.M. Shyvaniuk, and S.M. Teus, Hydrogen in Engineering Metallic Materials (Springer: 2022). https://doi.org/10.1007/978-3-030-98550-9
  58. H.K. Birnbaum, I.M. Robertson, P. Sofronis, and D. Teter, Mechanisms of hydrogen related fracture — A review, Second Int. Conf. ‘Corrosion, Deformation Interactions CDI’96’ (Nice, France) (Ed. T. Magnin) (Great Britain: The Institute of Materials: 1997), pp. 172–195.
  59. P. Sofronis, Y. Liang, and N. Aravas, Hydrogen induced shear localization of the plastic flow in metals and alloys, Eur. J. Mech. A/Solids, 20, No. 6: 857–872 (2001). https://doi.org/10.1016/S0997-7538(01)01179-2
  60. I.M. Robertson, H.K. Birnbaum, P. Sofronis, Hydrogen Effects on Plasticity. Dislocations in Solids (Eds. J.P. Hirth and L. Kubin) (Elsevier: 2009), Ch. 91, pp. 249–293.
  61. C. Hwang and I.M. Bernstein, The effect of strain on hydrogen-induced dislocation morphologies in single crystal iron, Acta Metall., 34, No. 6: 1011–1020 (1986). https://doi.org/10.1016/0001-6160(86)90210-5
  62. T.D. Le and I.M. Bernstein, Effects of hydrogen on dislocation morphology in spheroidized steel, Acta Metall. Mater., 39, No. 3: 363–372 (1991). https://doi.org/1010.1016/0956-7151(91)90315-r
  63. W.A. McInteer, A.W. Thompson, and I.M. Bernstein, The effect of hydrogen on the slip character of nickel, Acta Metall., 28, No. 7: 887–894 (1980). https://doi.org/10.1016/0001-6160(80)90105
  64. S. Wang, A. Nagao, K. Edalati, Z. Horita, and I.M. Robertson, Influence of hydrogen on dislocation self-organization in Ni, Acta Mater., 135: 96–102 (2017). https://doi.org/10.1016/j.actamat.2017.05.073
  65. W.A. Tayon, K.E. Nygren, R.E. Crooks, and D.C. Pagan, In-situ study of planar slip in a commercial aluminum–lithium alloy using high energy x-ray diffraction microscopy, Acta Mater., 173: 231–241 (2019). https://doi.org/10.1016/j.actamat.2019.04.030
  66. M. Furukawa, Y. Miura, and M. Nemoto, Strengthening mechanisms in Al–Li alloys containing coherent ordered phases, Trans. Jpn. Inst. Metals, 26, No. 4: 230–235 (1985). https://doi.org/10.2320/matertrans1960.26.230
  67. H. Zhao, P. Chakraborty, P. Ponge, T. Hickel, B. Sun, C.-H. Wu, B. Gault, and D. Raabe, Hydrogen trapping and embrittlement in high-strength Al alloys, Nature, 602, No. 7897: 437–441 (2022). https://doi.org/10.1038/s41586-021-04343-z
  68. P.L. Gruzin, Yu.V. Kornev, and G.V. Kurdyumov, Hydrogen effect on selfdiffusion of the iron, Dokl. Akad. Nauk SSSR, LXXX, No. 1: 49–51 (1951) (in Russian).
  69. R.B. McLellan, The thermodynamics of interstitial–vacancy interactions in solid solutions, J. Phys. Chem. Solids, 49, No. 10: 1213–1217 (1988). https://doi.org/10.1016/0022-3697(88)90178-3
  70. A.A. Smirnov, Theory of vacancies at crystal lattice sites in interstitial alloys, Dokl. Akad. Nauk Ukr. SSR, No. 7: 66–71 (1991) (in Russian).
  71. N.Z. Carr and R.B. McLellan, The thermodynamic and kinetic behavior of metal–vacancy–hydrogen systems, Acta Mater., 52, No. 11: 3273–3293 (2004). https://doi.org/10.1016/j.actamat.2004.03.024
  72. Y. Fukai and N. Okuma, Evidence of copious vacancy formation in Ni and Pd under a high hydrogen pressure, Jpn. J. Appl. Phys., 32, No. 9A: L1256–L1259 (1993). https://doi.org/10.1143/JJAP.32.L1256
  73. V.G. Gavriljuk, V.N. Bugaev, Yu.N. Petrov, A.V. Tarasenko, and B.Z. Yanchitski, Hydrogen-induced equilibrium vacancies in fcc iron base alloys, Scr. Mater., 34, No. 6: 903–907 (1996). https://doi.org/10.1016/1359-6462(95)00580-3
  74. Y. Takeyama and T. Ohno. Stability and clusterization of hydrogen–vacancy complexes in α-Fe, Phys. Rev. B, 67, No. 17: 174105 (2003). https://doi.org/10.1103/PhysRevB.67.174105
  75. W.A. Counts, C. Wolverton, and R. Gibala, First-principles energetic of hydrogen traps in α-Fe: Point defects, Acta Mater., 58, No. 14: 4730–4741 (2010). https://doi.org/10.1016/j.actamat.2010.05.010
  76. R. Nazarov, T. Hickel, and J. Neugebauer, First-principles study of the thermodynamics of hydrogen–vacancy interaction in fcc iron, Phys. Rev. B, 82, No. 22: 224104 (2010). https://doi.org/10.1103/PhysRevB.82.224104
  77. G. Lu and E. Kaxiras, Hydrogen embrittlement of aluminum: The crucial role of vacancies, Phys. Rev. Lett., 94, No. 15: 155501 (2005). https://doi.org/10.1103/PhysRevLett.94.155501
  78. H.K. Birnbaum, C. Buckley, F. Zeides, E. Sirois, P. Rozenak, S. Spooner, and J.S. Lin, Hydrogen in aluminium, J. Alloys Compd., 253–254: 260–264 (1997). https://doi.org/10.1016/S0925-8388(96)02968-4
  79. D. Teirlinck, F. Zok, J.D. Embury, and M.F. Ashby, Fracture mechanism maps in stress space, Acta Metall., 36, No. 5: 1213–1228 (1988). https://doi.org/10.1016/0001-6160(88)90274-X
  80. W. Charnock and J. Nutting, The effect of carbon and nickel upon the stacking fault energy, Met. Sci. J., 1, No. 1: 123–127 (1967). https://doi.org/10.1179/msc.1967.1.1.123
  81. P.Yu. Volosevich, V.N. Gridnev, and Yu.N. Petrov, Carbon effect on stacking fault energy of austenite in manganese steels, Fiz. Met. Metalloved., 40, No. 3: 554–559 (1972) (in Russian).
  82. V. Gavriljuk, Yu. Petrov, and B. Shanina, Effect of nitrogen on the electron structure and stacking fault energy in austenitic steels, Scripta Mater., 55: 537–540 (2006). https://doi.org/10.1016/j.scriptamat.2006.05.025
  83. V.G. Gavriljuk, A.I. Tyshchenko, V.V. Bliznuk, I.L. Yakovleva, S. Riedner, and H. Berns, Cold work hardening of high-strength austenitic steels, Steel Res. Intern., 79, No. 6: 413–422 (2008). https://doi.org/10.1002/srin.200806147
  84. H. Berns, V.G. Gavriljuk, and S. Riedner, High Interstitial Stainless Austenitic Steels (Heidelberg–New York–Dordrecht–London: Springer: 2013). https://doi.org/10.1007/978-3-642-33701-7
  85. V. Gerold and H.P. Karnthaler, On the origin of planar slip in f.c.c. alloys, Acta Metall., 37, No. 8: 2177–2183 (1989). https://doi.org/10.1016/0001-6160(89)90143-0
  86. J.M. Cowley, X-ray measurement of order in single crystals of Cu3Au, J. Appl. Phys., 21, No. 1: 24–30 (1950). https://doi.org/10.1063/1.1699415
  87. H. Warlimont, Order–Disorder Transformations in Alloys (Berlin–Heidelberg–New York: Springer: 1974). https://doi.org/10.1007/978-3-642-80840-1
  88. V.I. Iveronova and A.A. Katsnelson, Short-Range Order in Solid Solutions, (Moskva: Nauka: 1977) (in Russian).
  89. H.D. Solomon and L.M. Levinson, Mössbauer effect study of ‘475C embrittlement’ of duplex and ferritic stainless steels, Acta Metall., 26, No. 3: 429–442 (1978). https://doi.org/10.1016/0001-6160(78)90169-4
  90. K.A. Kozlov, V.A. Shabashov, A.E. Zamatovskii, V.V. Sagaradze, and K.A. Lyashkov, Atomic ordering in a low-concentrated Fe–Cr alloy upon severe plastic deformation, Phys. Met. Metallogr., 119, No. 11: 1093–1100 (2018). https://doi.org/10.1134/S0031918X18110121
  91. G.G. Amigood and V.S. Litvinov, Short-range order and stability of austenite in iron–manganese alloys of Fe–20Mn type, Fiz. Met. Metalloved., 56, No. 6: 1132–1137 (1983) (in Russian).
  92. V.N. Bugayev, V.G. Gavriljuk, V.M. Nadutov, and V.A. Tatarenko, Interaction and atomic distribution in fcc alloy FeMnC, Dokl. Akad. Nauk SSSR, 288, No. 2: 362–365 (1986) (in Russian).
  93. D.N. Movchan, V.N. Shyvanyuk, B.D. Shanina, and V.G. Gavriljuk, Atomic interactions and hydrogen-induced γ* phase in fcc iron–nickel alloys, Phys. Stat. Sol. A, 207, No. 8: 1796–1801 (2010). https://doi.org/10.1002/pssa.200925548
  94. G. Hongxia, Ch. Hua, L. Fan, and Q. Zhenpin, Shape-controlled synthesis of FeNi3 nanoparticles by ambient chemical reduction and their magnetic properties, J. Mater. Res., 27, No. 11: 1522–1530 (2012). https://doi.org/10.1557/jmr.2012.67
  95. N.Y. Pandya, A.D. Mevada, and P.N. Gajjar, Lattice dynamical and thermodynamic properties of FeNi3, FeNi and Fe3Ni invar materials, Comp. Mater. Sci., 123: 287–295 (2016). https://doi.org/10.1016/j.commatsci.2016.07.001
  96. F.A. Garner and J.M. McCarthy, Spinodal-like decomposition of Fe–Ni and Fe–Ni–Cr “invar” alloys during neutron or ion irradiation, Physical Metallurgy of Controlled Expansion Invar-Type Alloys (Eds. K.C. Russel and D.F. Smith) (Warendale, PA: TMS-AIME: 1990), pp. 187–206.
  97. F. Rotman, D. Gilbon, and O. Dimitro, Periodic decomposition of electron-irradiated pure austenitic Fe–Cr–Ni alloys, Physical Metallurgy of Controlled Expansion Invar-Type Alloys (Eds. K.C. Russel and D.F. Smith) (Warendale, PA: TMS-AIME: 1990), pp. 145–158.
  98. A. Wiedenmann, W. Wagner, and H. Wollenberger, Thermal decomposition of Fe–34 at.% Ni between 625°C and 725°C, Scripta Metall., 23, No. 4: 603–605 (1989). https://doi.org/10.1016/0036-9748(89)90459-6
  99. B.D. Shanina, V.G. Gavriljuk, A.A. Konchits, S.P. Kolesnik, and A.V. Tarasenko, Exchange interaction between electron subsystems in iron-based fcc alloy doped by nitrogen or carbon, Phys. Stat. Sol. A, 149: 711–722 (1995). https://doi.org/10.1002/pssa.2211490222
  100. B.D. Shanina, V.G. Gavriljuk, A.A. Konchits, and S.P. Kolesnik, The influence of substitutional atoms upon the electron structure of the iron-based transition metal alloys, J. Phys.: Cond. Mat., 10, No. 8: 1825–1838 (1998). https://doi.org/10.1088/0953-8984/10/8/015
  101. V.G. Gavriljuk and H. Berns, High Nitrogen Steels (Berlin: Springer: 1999).
  102. V.G. Gavriljuk, B.D. Shanina, and H. Berns, On the correlation between electron structure and short-range atomic order in iron-based alloys, Acta Mater., 48: 3879–3893 (2000). https://doi.org/10.1016/S1359-6454(00)00192-0
  103. A. Abragam and B. Blreaney, Electron Paramagnetic Resonance of Transition Ions (Oxford: Clarendon Press: 1970).
  104. B.D. Shanina, A.I. Tyshchenko, I.N. Glavatskyy, V.V. Runov, Yu.N. Petrov, H. Berns, and V.G. Gavriljuk, Chemical nano-scale homogeneity of austenitic CrMnCN steels in relation to electronic and magnetic properties, J. Mat. Sci., 46, No. 24: 7725–36 (2011). https://doi.org/10.1007/s10853-011-5752-9
  105. S.R. Chen and D. Tang, Effect of interstitial atom concentration on lattice parameters of martensite and retained austenite in iron–carbon–nitrogen alloys, Mater. Sci. Forum, 56–58: 201–206 (1990). https://doi.org/10.4028/www.scientific.net/MSF.56-58.201
  106. K. Takita and K. Sakamoto, Low temperature internal friction peak and hydrogen cold-work peak in deformed α-iron, Scr. Metall., 10, No. 5: 399–403 (1976). https://doi.org/10.1016/0036-9748(76)90160-5
  107. A.H. Cottrell and B.F. Bilby, Dislocation theory of yielding and strain ageing of iron, Proc. Phys. Soc. A, 6, No. 1: 49–62 (1949). https://doi.org/10.1088/0370-1298/62/1/308
  108. Y. Yagodzinskyy, M. Ivanchenko, and H. Hänninen, Hydrogen-dislocation interaction in austenitic stainless steel studied with mechanical loss spectroscopy, Solid State Phenom., 184: 227–232 (2012). https://doi.org/10.4028/www.scientific.net/ssp.184.227
  109. M.R. Louthan, J.A. Donovan, and G.R. Gaskey, Hydrogen diffusion and trapping in nickel, Acta Metall., 23, No. 6: 745–749 (1975). https://doi.org/10.1016/0001-6160(75)90057-7
  110. S.M. Teus, Hydrogen mobility and its interaction with dislocations in nickel-based Inconel 718 alloy, Metallofiz. Noveishie Tecnol., 39, No. 5: 593–606 (2017). https://doi.org/10.15407/mfint.39.05.0593
  111. S.M. Teus, D.G. Savvakin, O.M. Ivasishin, and V.G. Gavriljuk, Hydrogen migration and hydrogen–dislocation interaction in austenitic steels and titanium alloy in relation to hydrogen embrittlement, Int. J. Hydrogen Energy, 42, No. 4: 2424–2433 (2018). https://doi.org/10.1016/j.ijhydene.2016.09.212
  112. D.E. Jiang and E.A. Carter, Diffusion of interstitial hydrogen into and through bcc Fe from first principles, Phys. Rev. B, 70, No. 6: 064102 (2004). https://doi.org/10.1103/PhysRevB.70.064102
  113. M. Nagano, Y. Hayashi, N. Ohtani, M. Isshik, and K. Igaki, Hydrogen diffusivity in high purity alpha iron, Scr. Metall., 16, No. 8: 973–976 (1982). https://doi.org/10.1016/0036-9748(82)90136-3
  114. S. Fukuyama, D. Sun, L. Zhang, M. Wen, and K. Yokogawa, Effect of temperature on hydrogen environment embrittlement of type 316 series austenitic stainless steels at low temperatures, J. Jpn. Inst. Met. Mater., 67, No. 9: 456–459 (2003). https://doi.org/10.2320/jinstmet1952.67.9_456
  115. V.G. Gavriljuk, S.P. Efimenko, Ye.E. Smuk, S.Yu. Smuk, B.D. Shanina, N.P. Baran, and V.M. Maksimenko, Electron-spin-resonance study of electron properties in nitrogen and carbon austenite, Phys. Rev. B, 48, No. 5: 3224–3231 (1993). https://doi.org/10.1103/PhysRevB.48.3224
  116. U. Zwicker and H. Schleicher, Titanium alloys deformability improvement technique during hot pressure shaping, USA Patent No. 2892742, Grade 148-11.5 (1959).
  117. B.A. Kolachev, V.K. Nosov, V.A. Lyvanov, G.I. Shypunov, and A.D. Chuchuryukin, Hydrogen effect on technological plasticity of Ti+9%Al alloy, Izv. Vuzov: Non-Ferrous Metallurgy, No. 4: 137–142 (1972) (in Russian).
  118. B.A. Kolachev, S.A. Vigdorchik, A.V. Malkov, and V.K. Nosov, On a favourable hydrogen effect on technological plasticity of titanium alloy, Technology of Light Alloys, No. 7: 32–35 (1974) (in Russian).
  119. V.A. Lyvanov, B.A. Kolachev, and V.K. Nosov, On a mechanism of favourable hydrogen effect on technological plasticity of high-aluminum titanium alloys, Metallurgy and Casting of Light Alloys (Moskva: Metallurgiya: 1977), pp. 312–320 (in Russian).
  120. B.A. Kolachev and V.K. Nosov, Hydrogen plastification and superplasticity of titanium alloys, Fiz. Met. Metalloved., 57, No. 2: 288–297 (1984) (in Russian).
  121. D. Eliezer, N. Eliaz, O. Senkov, and F. Froes, Positive effects of hydrogen in metals, Mat. Sci. Eng. A, 280, No. 1: 220–224 (2000). https://doi.org/10.1016/s0921-5093(99)00670-x
  122. F.H. Froes, O.N. Senkov, and J.I. Qasi, Beneficial effects of hydrogen as a temporary alloying element in titanium alloys: An overview, Int. Symp. Processing and Fabrication of Advanced Materials XI (Eds. T.S. Srivatsan and R.A. Varin) (Materials Park, OH: ASM International: 2003), pp. 295–305.
  123. F.H. Froes, O.N. Senkov, and J.I. Qasi, Hydrogen as a temporary alloying element in titanium alloys: Thermohydrogen processing, Int. Mater. Rev., 49, Nos. 3–4: 227–245 (2004). https://doi.org/10.1179/095066004225010550
  124. B.A. Kolachev, Reversible hydrogen alloying of titanium alloys, Met. Sci. Heat Treat., 35, 586–591 (1993). https://doi.org/10.1007/BF00778671
  125. V.K. Nosov, M. Kolerov, S.A. Mamonov, A.V. Ovchinnikov, and A.A. Krastilevskii, Hydrogen effect on deformability of titanium alloys VT22 and VT22I at ambient temperature, Metally, No. 6: 95–99 (1995) (in Russian).
  126. V.K. Nosov, A.V. Ovchinnikov, and Y.Y. Shchugorev, Applications of hydrogen plasticizing of titanium alloys, Metal Sci. Heat. Treat., 50: 378–382 (2008). https://doi.org/10.1007/s11041-008-9059-7
  127. Y. Murakami, T. Kanezaki, and Y. Mine, Hydrogen effect against hydrogen embrittlement, Metall. Mater. Trans A, 41, No. 10: 2548–2562 (2010). https://doi.org/10.1007/s11661-010-0275-6
  128. R. Kirchheim, Solid solution softening and hardening by mobile solute atoms with special focus on hydrogen, Scr. Mater., 67, No. 9: 767–770 (2012). https://doi.org/10.1016/j.scriptamat.2012.07.022
  129. A. Zielinski, G. Hauptmann, U. Holzwarth, and H. Kronmüller, Internal friction in cold worked and hydrogen charged nickel single crystals, Z. Metallkd., 87, No. 2: 104–110 (1996). https://doi.org/10.1515/ijmr-1996-870207
  130. A. Seeger, The temperature dependence of the critical shear stress and of work-hardening of metal crystals, Phil. Mag., 45, No. 336: 771–773 (1954). https://doi.org/10.1080/14786440708520489
  131. A. Seeger, The generation of lattice defects by moving dislocations, and its application to the temperature dependence of the flow stress of f.c.c. crystals, Phil. Mag., 46, No. 382: 1194–1217 (1955). https://doi.org/10.1080/14786441108520632
  132. B. Obst and A. Nyilas, Experimental evidence on the dislocation mechanism of serrated yielding in f.c.c. metals and alloys at low temperatures, Mat. Sci. Eng. A, 137: 141–150 (1991)). https://doi.org/10.1016/0921-5093(91)90328-K
  133. A. Nyilas, B. Obst, and H. Nakajima, Tensile properties, fracture and crack growth of a nitrogen strengthened new stainless steel (Fe–25Cr–15Ni–0.35N) for cryogenic use, High Nitrogen Steels (Eds. V.G. Gavriljuk and V.M. Nadutov) (Kiev: Institute for Metal Physics: 1993), pp. 339–344.
  134. V.G. Gavriljuk, A.L. Sozinov, K. Foct, Yu.N. Petrov, and Yu.A. Polushkin, Effect of nitrogen on the temperature dependence of the yield strength of austenitic steels, Acta Mater., 46, No. 4: 1157–1163 (1998). https://doi.org/10.1016/S1359-6454(97)00322-4
  135. B. Obst, Basic aspects of tensile properties, Handbook of Applied Superconductivity (Ed. B. Seeger) (Bristol-Philadelphia: Institute of Physics Publishing: 1998), vol. 2, F1.1, pp. 969–993.
  136. V.G. Gavriljuk, V.M. Shyvaniuk, and S.M. Teus, On the nature of positive hydrogen and nitrogen effects on fatigue of austenitic steels, Metallofiz. Noveishie Tekhnol., 44, No. 11: 1395–1405 (2022). https://doi.org/10.15407/mfint.44.11.1395
  137. H. Margolin, J. Mahajan, and Y. Saleh, Grain boundaries, stress gradients and fatigue crack initiation, Scr. Metall., 10, No. 12: 1115–1118 (1976). https://doi.org/10.1016/0036-9748(76)90036-3
  138. J.E. Epperson, P. Fürnrohr, and C. Ortiz, The short-range-order structure of α-phase Cu–Al alloys. Acta Cryst. A, 34: 667–681 (1978). https://doi.org/10.1107/s0567739478001424
  139. R.L. Tobler and R.P. Reed, Interstitial carbon and nitrogen effects on the cryogenic fatigue crack growth of AISI 304 type stainless steels, J. Testing Evaluation, 12: 364–370 (1984). https://doi.org/10.1520/JTE10741J
  140. R. Taillard and J. Foct, Mechanisms of the action of nitrogen interstitials upon low cycle fatigue behaviour of 316 stainless steels, High Nitrogen Steels (Eds. J. Foct and A. Hendry) (London: The Institute of Metal: 1989), pp. 387–391.
  141. Y. Ogawa, H. Hosoi, K. Tsuzaki, T. Redarce, O. Takakuwa, and H. Matsunaga, Hydrogen, as an alloying element, enables a greater strength-ductility balance in an Fe–Cr–Ni-based, stable austenitic stainless steel, Acta Mater., 199: 181–192 (2020). https://doi.org/10.1016/j.actamat.2020.08.024
  142. V.N. Shyvanyuk, J. Foct, and V.G. Gavriljuk, Hydrogen-enhanced microplasticity of austenitic steels studied by means of internal friction, Mat. Sci. Eng. A, 300, Nos. 1–2: 284–290 (2001). https://doi.org/10.1016/S0921-5093(00)01442-8
  143. V.G. Gavriljuk, B.D. Shanina, V.N. Shyvanyuk, and S.M. Teus, Hydrogen embrittlement of austenitic steels: electron approach, Corros. Rev., 31, No. 2: 33–50 (2013). https://doi.org/10.1515/corrrev-2013-0024
  144. V.G. Gavriljuk, S.M. Teus, B.D. Shanina, and A.A. Konchits, On the nature of similarity in embrittlement of metals by hydrogen and surfactants, Material Sci. & Eng. Int. J., 1, No. 3: 70–79 (2017). https://doi.org/10.15406/mseij.2017.01.00013
  145. S.M. Teus, D.G. Savvakin, O.M. Ivasishin, and V.G. Gavriljuk, Hydrogen migration and hydrogen-dislocation interaction in austenitic steels and titanium alloy in relation to hydrogen embrittlement, Int. J. Hydrogen Energy, 42, No. 4: 2424–2433 (2016). https://doi.org/10.1016/j.ijhydene.2016.09.212