Properties of W–Ta Materials of the Neutron-Producing Target of the Subcritical Assembly at the National Scientific Centre ‘Kharkiv Institute of Physics and Technology’ of the National Academy of Sciences of Ukraine

BORTS B.V., PARKHOMENKO O.O., GANN V.V., ZELINSKY A.Yu., SYTIN V.I., VOROBYOV I.O., GLUSCHENKO L.I., KARNAUKHOV I.I., MARCHENKO Yu.O., and DOMNICH M.P.

National Scientific Centre ‘Kharkiv Institute of Physics and Technology’ of the N.A.S. of Ukraine, 1 Akademichna Str., UA-61108 Kharkiv, Ukraine

Received 28.06.2024, final version 09.08.2024 Download PDF logo PDF

Abstract
The works in the field of radiation materials science of target materials of neutron sources based on the subcritical assemblies controlled by linear accelerators of electrons or protons, so-called accelerator driven systems (ADS), are reviewed. Now, electronuclear ADS systems are the prototype of safe nuclear reactors of the 5th generation. In connection with the physical start-up of the neutron source facility of the National Scientific Centre ‘Kharkiv Institute of Physics and Technology’ of the N.A.S. of Ukraine (NSC ‘KhIPT’ NASU), the target of which is fabricated from powdered tungsten covered with tantalum, the issues of preparation technology, construction, and physical and mechanical properties of W–Ta materials of targets in non-irradiated and irradiated states are considered. The nuclear-physical processes of radiation damage to the target during co-irradiation of it with both neutrons of a subcritical assembly and high-energy e- and γ-beams are analyzed. The target resources of ADS systems are estimated. As noted, the difficulty of predicting the ‘survivability’ of the W–Ta target also relates to the fact that, except for the works carried out at the NSC ‘KhIPT’ NASU in 70–90th of the last century, there are no experimental works in the world on the radiation damage of reactor materials by high-energy electrons with an energy of 100 MeV and above.

Keywords: subcritical nuclear systems, tungsten–tantalum targets, high-temperature vacuum rolling, mechanical properties, metallography, nano- and microhardness, level of damage, radiation embrittlement, resource.

DOI: https://doi.org/10.15407/ufm.25.03.459

Citation: B.V. Borts, O.O. Parkhomenko, V.V. Gann, A.Yu. Zelinsky, V.I. Sytin, I.O. Vorobyov, L.I. Gluschenko, I.I. Karnaukhov, Yu.O. Marchenko, and M.P. Domnich, Properties of W–Ta Materials of the Neutron-Producing Target of the Subcritical Assembly at the National Scientific Centre ‘Kharkiv Institute of Physics and Technology’ of the National Academy of Sciences of Ukraine, Progress in Physics of Metals, 25, No. 3: 459–481 (2024)


References  
  1. I.M. Karnaukhov and A.Yu. Zelinsky, Problems of Atomic Science and Technology, No. 3 (133): 3 (2021). https://doi.org/10.46813/2021-133-003
  2. M.S. Wecsler, J. Sommer, C. Lin, L.L. Daemen, and P.D. Ferguson, J. Nuclear Mater., 244, No. 3: 177 (1997). https://doi.org/10.1016/S0022-3115(96)00735-0
  3. M. Kawai, M.M. Kawai, M. Furusaka, K. Kikuchi, H. Kurishita, R. Watanabe, J.-F. Li, K. Sugimoto, T. Yamamura, Y. Hiraoka, K. Abe, A. Hasegawa, M. Yoshiie, H. Takenaka, K. Mishima, Y. Kiyanagi, T. Tanabe, N. Yoshida, and T. Igarashi, J. Nuclear Mater., 318: 38 (2003). https://doi.org/10.1016/S0022-3115(03)00114-4
  4. W. Yin, Q.Z. Yu, Y.L. Lu, S.L. Wang, J.F. Tong, and T.J. Liang, Journal Nuclear Materials, 431, Nos. 1–3: 39 (2012). https://doi.org/10.1016/j.jnucmat.2011.11.025
  5. D. Wilcox, P. Loveridge, T. Davenne, L. Jones, and D. Jenkins, J. Nuclear Mater., 506: 76 (2018). https://doi.org/10.1016/j.jnucmat.2017.10.075
  6. J. Chen, P. Jung, M. Rödig, H. Ullmaier,and G.S. Bauer, J. Nuclear Mater., 343, Nos. 1–3: 227(2005). https://doi.org/10.1016/j.jnucmat.2004.09.076
  7. T.S. Byun and S. Maloy, J. Nuclear Mater., 377, No. 1: 72 (2008). https://doi.org/10.1016/j.jnucmat.2008.02.034
  8. V.F. Zelenskij, I.M. Neklyudov, L.S. Ozhigov, V.V. Gann, A.A. Parkhomenko, B.V. Borts, and V.F. Stefanov, J. Nuclear Mater., 207: 280 (1993). https://doi.org/10.1016/0022-3115(93)90270-9
  9. I.M. Neklyudov, L.S. Ozhigov, A.A. Parkhomenko, and V.F. Stefanov, Preprint ‘Kharkov Institute of Physics and Technology’ of the AS of Ukr.SSR, (Kharkov: 1988), p. 38–53 (in Russian).
  10. E. Lopez Sola, M. Calviani , P. Avigni, M. Battistin, J. Busom Descarrega, J. Canhoto Espadanal, M.A. Fraser, S. Gilardoni, B. Goddard, D. Grenier, R. Jacobsson, K. Kershaw, M. Lamont, A. Perillo-Marcone, M. Pandey, B. Riffaud, S. Sgobba, V. Vlachoudis, and L. Zuccalli, Phys. Rev. Accel. Beams, 22: 113001 (2019). https://doi.org/10.1103/PhysRevAccelBeams.22.113001
  11. V. Barabash, G. Federici, M. Rödig, L.L Snead, and C.H. Wu, J. Nuclear Mater., 283–287, Pt. 1: 138 (2000). https://doi.org/10.1016/S0022-3115(00)00203-8
  12. I.M. Neklyudov, L.S. Ozhigov, A.A. Parkhomenko, and M.P. Zeydlits, Materials of the 2nd Int. Conf. ‘High Purity Materials’ (Kharkiv: NSC ‘KIPT’: 2013), p. 27 (in Russian).
  13. A. Hasegawa, M. Fukuda, K. Yabuuchi, and S. Nogami, J. Nuclear Mater., 471: 175 (2016). https://doi.org/10.1016/j.jnucmat.2015.10.047
  14. X. Hu, J. Nuclear Mater., 568: 153856 (2022). https://doi.org/10.1016/j.jnucmat.2022.153856
  15. R.G. Abernethy, J.S.K.-L. Gibson, A. Giannattasio, J.D. Murphy, O. Wouters, R. Вradnam, L.W. Packer, M.R. Gilbert, M. Klimenkov, M. Rieth, H.C. Schneider, C.D. Hardie, S.G. Roberts, and D.E.J. Armstrong, J. Nuclear Mater., 527: (2019). https://doi.org/10.1016/j.jnucmat.2019.151799
  16. A. Mc Clintock, B.J. Vevera, B.W. Riemer, F.X. Gallmeier, J.W. Hyres, and P.D. Ferguson, J. Nuclear Mater., 450, Nos. 1–3: 130 (2014). https://doi.org./10.1016/j.jnucmat.2014.02.037
  17. V.V. Gann, A.V. Gann, B.V. Borts, I.M. Karnaukhov, P.I. Gladkikh, and A.A. Parkhomenko, Problems of Atomic Science and Technology, No. 6 (136): 17 (2021). https://doi.org./10.46813/2021-136-017
  18. V.V. Gann, A.V. Gann, B.V. Borts, I.M. Karnaukhov, and A.A. Parkhomenko, Problems of Atomic Science and Technology, No. 2 (132): 24 (2021). https://doi.org/10.46813/2021-132-024
  19. F. Sordo, Radiation Damage Analysis for the ESS Target, Technical Report ESS-0037287, European Spallation Source ERIC, 2016.
  20. J. Habainy, Y. Lee, K.B. Surdelli, A. Prosvetov, P. Simon, S. Iyengar, Y. Dai, and M. Tomut, Nuclear Instr. Methods Phys. Res. B, 439: 7 (2019). https://doi.org/10.1016/j.nimb.2018.11.017
  21. V.V. Gann, I.S. Guk, A.N. Dovbnya, A.I. Kalinichenko, S.G. Kononenko, and A.S. Tarasenko, Visnyk KhNU, Ser. Fiz. ‘Yadra, Chastynky, Polya’, 868: 40 (2009) (in Russian).
  22. B.V. Borts, A.A. Parkhomenko, I.A. Vorobiev, A.A. Lopata, V.A. Aleksandrov, and M.P. Domnich, Open J. Metals, 8, No. 3: 55 (2018). https://doi.org/10.4236/ojmetal.2018.83004
  23. A.S. Drachinskiy, A.V. Krainukov, and V.I. Trefilov, Fiz. Met. Metalloved., 54: 1133 (1982) (in Russian).
  24. D.A. Robins, J. Less-Common Metals, 1, No. 5: 396 (1959). https://doi.org/10.1016/0022-5088(59)90043-8
  25. G.V. Samsonov, I.F. Pryadko, and L.F. Pryadko, Ehlektronnaya Lokalizatsiya v Tverdom Tele [Electron Localization in Solid] (Мoskva: Nauka: 1976 (in Russian).
  26. V.G. Glushchenko, Metallovedenie i Termoobrabotka Metallov, 4: 2 (1982). (in Russian).
  27. V.I. Trefilov, Yu.V. Milman, and S.A. Firstov, Fizicheskie Osnovy Prochnosti Tugoplavkikh Metallov [Physical Principles of Strength of Refractory Metals] (Kiev: Naukova Dumka: 1975) (in Russian).
  28. N.A. Azarenkov, А.А. Parkhomenko, L.S. Ozhigov, V.G. Kirichenko, and S.V. Litovchenko, Materials of the 17th Int. Conf. ‘Reactor Materials Science’ (Kharkov: NSC ‘KIPT’: 2006), p. 39 (in Russian).
  29. Y. Kitsunai, H. Kurishita, H. Kayano, Y. Hiraoka, T. Igarashi, and T. Takida, J. Nuclear Mater., 271–272: 423 (1999). https://doi.org/10.1016/S0022-3115(98)00753-3
  30. B.V. Borts, A.Yu. Zelinsky, A.A. Parkhomenko, V.I. Sytin, L.I. Gluschenko, V.I. Tkachenko, I.A. Vorobyov, A.D. Pidlisnyi, A.A. Lopata, M.P. Domnich, and I.V. Patochkin, Problems of Atomic Science and Technology, No. 2 (138): 92 (2022); https://doi.org/10.46813/2022-138-092
  31. B.V. Borts, I.A. Vorobyov, A.Yu. Zelinsky, I.M. Karnaukhov, A.A. Lopata, A.A. Parkhomenko, I.V. Patochkin, and V.I. Tkachenko, Problems of Atomic Science and Technology, No. 2 (144): 58 (2023). https://doi.org/10.46813/2023-144-058