Experimental and Finite Element Methods in Determining the Flexural Properties of Fibre Metal Laminate Composites

GURBANOV N.A.

Azerbaijan State Oil and Industry University, Azadlig, 20, AZ-1010 Baku, Azerbaijan

Received 08.04.2024, final version 03.05.2024 Download PDF logo PDF

Abstract
The study consisting of two stages is carried out to better interpret the damage processes occurring in fibre metal laminate (FML) composite samples. At the first stage, a three-dimensional geometric-data-based model of FML composites is created using the finite element method and used to predict the flexural strength properties according to the ASTM D3039M standard. At the second stage, 7075-T6 Al matrix FML composite samples with 0.0% epoxy, 0.2% graphene, 0.2% SiO2, and 0.2% clay nanoparticles’ addition are prepared in the laboratory environment in line with the numerical model, and their flexural strength properties are examined. As a result of the experiments, it is observed that the addition of 0.2% SiO2 nanoparticles improves the flexural strength properties of 7075-T6 Al matrix FML composite samples by 50.2% in comparison with such properties of composites prepared with epoxy resin. This value is the highest bending-strength value among sample groups with the same ratio. As a result of the studies, it is observed that there is a 5% difference between the flexural-test results for the FML composite samples made according to the ASTM D3039M standard and the simulation results made within the ANSYS program.

Keywords: FML composite, flexural strength, nanoparticle, finite element method.

DOI: https://doi.org/10.15407/ufm.25.02.364

Citation: N.A. Gurbanov, Experimental and Finite Element Methods in Determining the Flexural Properties of Fibre Metal Laminate Composites, Progress in Physics of Metals, 25, No. 2: 364–385 (2024)


References  
  1. E.C. Botelho, R.A. Silva, L.C. Pardini, and M.C. Rezende, Mater Res., 9, No. 3: 247 (2006). https://doi.org/10.1590/S1516-14392006000300002
  2. L.B. Vogelesang and A. Vlot, J. Mater. Process Technol., 103, No. 1: 1 (2000). https://doi.org/10.1016/S0924-0136(00)00411-8
  3. S.B. Singh, SAE Technical Paper, 26: 38 (2003). https://doi.org/10.4271/2003-26-0038
  4. S. Nimityongskul, M. Jones, H. Choi, R. Lakes, S. Kou, and X. Li, Mater. Sci. Eng., 527: 2104 (2010).
  5. T.P. Sathishkumar, J. Naveen, and S. Satheeshkumar, J. Reinf. Plast. Compos., 33, No. 5: 454 (2014). https://doi.org/10.1177/0731684413516393
  6. R. Alderliesten, Recent Patents Eng., 3, No. 1: 25 (2009). https://doi.org/10.2174/187221209787259893
  7. S. Kumar, R. Singh, and M.S.J. Hasmi, Adv. Mater. Process. Technol., 6, 1: 13 (2009).
  8. J.J.C. Remmer and R. Borst, Compos. Sci. Technol., 61: 2207 (2001). https://doi.org/10.1016/S0266-3538(01)00114-2
  9. M.R. Abdullah and W.J. Cantwell, Compos. Sci. Technol., 66, Nos. 11–12: 1682 (2006). https://doi.org/10.1016/j.compscitech.2005.11.008
  10. J. Laliberté, P.V. Straznicky, and C. Poon, AIAAJ, 43, No. 11: 2445 (2005). https://doi.org/10.2514/1.15159
  11. T. Sinmazchelik, E. Avcu, M.O. Bora, and O. Choban, Mater. Des., 32, No. 7: 3671 (2011). https://doi.org/10.1016/j.matdes.2011.03.011
  12. G.R.Villanueva and W.J. Cantwell. Compos. Sci. Technol., 64, No. 1: 35 (2004). https://doi.org/10.1016/S0266-3538(03)00197-0
  13. A. Asundi and A.Y.N. Choi, J. Mater. Process. Technol., 63, Nos. 1–3: 384 (1997). https://doi.org/10.1016/S0924-0136(96)02652-0
  14. R. Alderliesten, C. Rans, and R. Benedictus, Compos. Sci. Technol., 68, No. 14: 2983 (2008). https://doi.org/10.1016/j.compscitech.2008.06.017
  15. R.C. Alderliesten and R. Benedictus, J. Aircraft, 45, No. 4: 1182 (2008). https://doi.org/10.2514/1.33946
  16. A. Vlot, Int. J. Impact Eng., 18, No. 3: 291 (1996). https://doi.org/10.1016/0734-743X(96)89050-6
  17. T. Beumler, F. Pellenkoft, A. Tillich, W. Wohlers, and C. Smart, Airbus Deutschland GmbH, 1: 1 (2006).
  18. M. Chandrasekar, M.R. Ishak, and M. Jawaid, J. Reinf. Plast. Compos., 36: 72 (2017). https://doi.org/10.1177/0731684416668260
  19. L.B. Vogelesang and A. Vlot, J. Mater. Process. Technol., 103, No. 1: 1 (2000). https://doi.org/10.1016/S0924-0136(00)00411-8
  20. J. Fan, Z.W. Guan, and W.J. Cantwell, Compos. Struct., 93, No. 9: 2430 (2011). https://doi.org/10.1016/j.compstruct.2011.04.008
  21. R. Eslami-Farsani, H. Aghamohammadi, and H. Jalali, J. Industrial Textiles, 51, No. 5: 7374 (2022). https://doi.org/10.1177/1528083720947106
  22. A. Afrouzian, A.H. Movahhedi, and G. Liaghat, J. Reinf. Plast. Compos., 36, No. 12: 900 (2017). https://doi.org/10.1177/0731684417694753
  23. K.T. Lau, C. Gu, and D. Hui, Compos. Part B: Eng., 37, No. 6: 425 (2006). https://doi.org/10.1016/j.compositesb.2006.02.020
  24. N. Zareei, A. Geranmayeh, and R. Eslami-Farsani, Polym. Test, 75: 205 (2019). https://doi.org/10.1016/j.polymertesting.2019.02.002
  25. F. Bahari, S.R. Eslami, and S.A. Chirani, J. Sandwich Struct. Mater., 22, No. 6: 1931 (2020). https://doi.org/10.1177/1099636218792693
  26. S.N. Abbandanak, M.A. Azghan, and H. Siadati, J. Industrial Textiles, 51, No. 2: 2576 (2022). https://doi.org/10.1177/1528083720932222
  27. M. Megahed, M.A. Abd El-baky, A.M. Alsaeedy, and A.E. Alshorbagy, Compos. Part B: Eng., 176, No. 1: 107277 (2019). https://doi.org/10.1016/j.compositesb.2019.107277
  28. H. Aghamohammadi, S.N.H. Abbandanak, R. Eslami-Farsani, and S.H. Siadati, Int. J. Adhes. Adhes., 84: 184 (2018). https://doi.org/10.1016/j.ijadhadh.2018.03.005
  29. M.A. Azghan and R.E. Farsani, Mater. Res. Express, 5, No. 2: 025302 (2018). https://doi.org/10.1088/2053-1591/aaa92c
  30. M.S. Maryan, H. Ebrahimnezhad-Khaljiri, and R. Eslami-Farsani, Int. J. Fatigue, 154: 106560 (2022). https://doi.org/10.1016/j.ijfatigue.2021.106560
  31. M.E. Mehr, H. Aghamohammadi, S.H. Abbandanak, G.R. Aghamirzadeh, R. Eslami-Farsani, and S. Siadati, Int. J. Adhes. Adhes., 92: 133 (2019). https://doi.org/10.1016/j.ijadhadh.2019.04.015
  32. G.S. Dhaliwal and G.M. Newaz, Compos. Struct., 160: 1212 (2017). https://doi.org/10.1016/j.compstruct.2016.11.015
  33. E.J. Barbero and M. Shahbazi, Mater. Today: Proc., 176: 768 (2017). https://doi.org/10.1016/j.compstruct.2017.05.074
  34. L. Li, L. Sun, T. Wang, N. Kang, and W. Cao, Aerosp. Sci. Technol., 84: 995 (2019). https://doi.org/10.1016/j.ast.2018.11.038
  35. C. Chen, H. Fang, L. Zhu, J. Han, X. Li, and Z. Qian, Compos. Struct., 306: 116573 (2023). https://doi.org/10.1016/j.compstruct.2022.116573
  36. P.Y. Chang, P.C. Yeh, and J.M. Yang, Mater. Sci. Eng. A, 496, Nos. 1–2: 273 (2008). https://doi.org/10.1016/j.msea.2008.07.041
  37. J.H. Jin and R.C. Batra, Mater. Sci. Eng. A, 216, Nos. 1–2: 117 (1996). https://doi.org/10.1016/0921-5093(96)10396-8
  38. T. Tomasetti, AIAA Journal, 53, No. 8: 2228 (2015). https://doi.org/10.2514/1.J053600
  39. M.J. Jweeg, A.S. Hammood, and M. Al-Waily, J. Sci. Technol., 2, No. 8: 697 (2015).
  40. P. Soltani, M, Keikhosravy, R.H. Oskouei, and C. Soutis, Appl. Compos. Mater., 18, No. 4: 271 (2011). https://doi.org/10.1007/s10443-010-9155-x
  41. A. Vlot, R.C. Alderliesten, P.A. Hooijmeijer, J.L.C.G. de Kanter, J. Sinke, and M.S. Ypma, Int. J. Mater. Prod. Technol., 17, Nos. 1–2: 79 (2002). https://doi.org/10.1504/IJMPT.2002.001301
  42. A. Vlot, Composite Eng., 3, No. 10: 911 (1993). https://doi.org/10.1016/0961-9526(93)90001-Z
  43. M. Sadighi, R.C. Alderliesten, and R. Benedictus, Int. J. Impact Eng., 49: 77 (2012). https://doi.org/10.1016/j.ijimpeng.2012.05.006
  44. W.J. Cantwell and J. Morton, Composites, 22, No. 5: 347 (1991). https://doi.org/10.1016/0010-4361(91)90549-V
  45. R. Costa, R. Sales-Contini, F. Silva, N. Sebbe, and A. Jesus, Metals, 13, No. 4: 638 (2023). https://doi.org/10.3390/met13040638
  46. P. Compston, W.J. Cantwell, C. Jones, and N. Jones, J. Mater. Sci., 20, No. 7: 597 (2001). https://doi.org//10.1023/A:1010904930497
  47. J.F. Laliberte, C. Poon, P.V. Strazincky, and A. Fahr, Polym. Composites, 21, No. 4: 558 (2000). https://doi.org/10.1002/pc.10211
  48. B. Wang and T. Siegmund, Int. J. Fract., 132, No. 2: 575 (2005). https://doi.org/10.1007/s10704-005-0627-1
  49. L. Ye, A. Afaghi-Khatibi, G. Lawcock, and Y.W. Mai, Compos. Part A, 29, No. 12: 1525 (1998). https://doi.org/10.1016/j.matdes.2011.03.011
  50. L. Yao, C.Z. Wang, W.T. He, S.J. Lu, and D. Xie, Thin-Walled Struct., 145: 106399 (2019). https://doi.org/10.1016/j.tws.2019.106399
  51. L. Yao, G.Y. Sun, W.T. He, X.J. Meng, and D. Xie, Compos. Struct., 226: 111218 (2019). https://doi.org/10.1016/j.compstruct.2019.111218
  52. T.P. Vo, Z.W. Guan, W.J. Cantwell, and G.K. Schleyer, Compos. Struct., 94, No. 3: 954 (2012). https://doi.org/10.1016/j.compstruct.2011.10.027
  53. M.H. Kashani, M. Sadighi, A. Lalehpour, and R.C. Alderliesten, J. Compos. Mater., 49, No. 6: 635 (2015). https://doi.org/10.1177/0021998314521476
  54. A.P. Sharma, S.H. Khan, R. Kitey, and V. Parameswaran, Polym. Test., 65: 311 (2018). https://doi.org/10.1016/j.polymertesting.2017.12.001
  55. T. Parnanen, M. Kanerva, E. Sarlin, and O.J.C.S. Saarela, Compos. Struct., 119: 775 (2015). https://doi.org/10.1016/j.compstruct.2014.09.056
  56. T. Pärnänen, A. Vänttinen, M. Kanerva, J. Jokinen, and O. Saarela, Appl. Compos. Mater., 23: 1151 (2016). https://doi.org/10.1007/s10443-016-9505-4
  57. X. Li, X. Zhang, Y. Guo, V.P.W. Shim, J. Yang, and G.B. Chai, Int. J. Impact Eng., 114: 32 (2018). https://doi.org/10.1016/j.ijimpeng.2017.12.011
  58. C. Kaboglu, I. Mohagheghian, and J.P. Dear, J. Mater. Sci., 53: 4209 (2018). https://doi.org/10.1007/s10853-017-1871-2
  59. G.S. Dhaliwal and G.M. Newaz, Behav. Mater., 2: 399 (2016). https://doi.org/10.1007/s40870-016-0075-1
  60. H.H. Kim, M.S. Lee, and C.G. Kang, Mater. Manuf. Process., 28, No. 8: 892 (2013).
  61. M.E. Kazemi, L. Shanmugam, L. Yang, and J. Yang, Compos. Part A, 128: 54 (2020).
  62. A. Salve, R. Kulkarni, and A. Mache, Int. J. Eng. Technol. Sci., 6, No. 1: 71 (2016). https://doi.org/10.15282/ijets.6.2016.10.2.1060
  63. H. Ahmadi, G.H. Liaghat, H. Sabouri, and E. Bidkhouri, J. Compos. Mater., 47: 1605 (2013). https://doi.org/10.1177/0021998312449883
  64. V.G. Reyes and W.J. Cantwell, J. Mater. Process. Technol., 186, Nos. 1–3: 284 (2000). https://doi.org/10.1016/j.jmatprotec.2006.12.050
  65. N. Gurbanov, Adv. Phys. Res., 5, No. 3 146 (2023).
  66. M. Babanli, Y. Turen, N. Gurbanov, R. Mehtiyev, M.Y. Askin, and M. Ismayilov, J. Appl. Comp. Mech., 9, No. 4: 987 (2023). https://doi.org/10.22055/JACM.2023.42798.3978
  67. M. Smolnicki, Sz. Duda, P. Stabla, and T. Osiecki, Compos. Struct., 313: 116943 (2023).
  68. Y.P. Ravitej, V. Swaroop, S. Ramesh, and H. Adarsha, IOP Conf. Series: Mater. Sci. Eng., 376: 012040 (2018).
  69. G.R. Rajkumar, M. Krishna, H.N. Narasimhamurthy, Y.C. Keshavamurthy, and J.R. Nataraj, Proc. Mater. Sci., 5: 60 (2014).
  70. M.W. Ho, C.K. Lam, and K.T. Lau, Compos. Struct., 75, Nos. 1–4: 415 (2006). https://doi.org/10.1016/j.compstruct.2006.04.051
  71. M.H. Pol, G.H. Liaghat, and E.M. Yeganeh, Modares Mech. Eng., 14: 76 (2015).
  72. S.P. Repetsky, I.G. Vyshyvana, S.P. Kruchinin, V.B. Molodkin, and V.V. Lizunov, Influence of the adsorbed atoms of potassium on an energy spectrum of graphene, Metallofiz. Noveishie Tekhnol., 39, No. 8: 1017 (2017). https://doi.org/10.15407/mfint.39.08.1017
  73. O.S. Skakunova, S.I. Olikhovskii, T.M. Radchenko, S.V. Lizunova, T.P. Vladimirova, and V.V. Lizunov, X-ray dynamical diffraction by quasi-monolayer graphene, Sci. Rep., 13: 15950 (2023). https://doi.org/10.1038/s41598-023-43269-6
  74. A.G. Solomenko, R.M. Balabai, T.M. Radchenko, V.A. Tatarenko, Functionalization of quasi-two-dimensional materials: chemical and strain-induced modifications, Prog. Phys. Met., 23, No. 2: 147 (2022). https://doi.org/10.15407/ufm.23.02.147
  75. T.M. Radchenko, I.Yu. Sahalianov, V.A. Tatarenko, Yu.I. Prylutskyy, P. Szroeder, M. Kempiński, and W. Kempiński, Strain- and adsorption-dependent electronic states and transport or localization in graphene, Springer Proceedings in Physics: Nanooptics, Nanophotonics, Nanostructures, and Their Applications (Eds. O. Fesenko and L. Yatsenko) (Cham, Switzerland: Springer: 2018), vol. 210, ch. 3, p. 25. https://doi.org/10.1007/978-3-319-91083-3_3
  76. T.M. Radchenko, V.A. Tatarenko, and G. Cuniberti, Effects of external mechanical or magnetic fields and defects on electronic and transport properties of graphene, Mater. Today: Proc., 35, pt. 4: 523 (2021). https://doi.org/10.1016/j.matpr.2019.10.014
  77. I.Yu. Sagalianov, T.M. Radchenko, V.A. Tatarenko, and G. Cuniberti, Sensitivity to strains and defects for manipulating the conductivity of graphene, EPL, 132: 48002 (2020). https://doi.org/10.1209/0295-5075/132/48002
  78. P. Szroeder, I. Sahalianov, T. Radchenko, V. Tatarenko, and Yu. Prylutskyy, The strain- and impurity-dependent electron states and catalytic activity of graphene in a static magnetic field, Optical Mater., 96: 109284 (2019). https://doi.org/10.1016/j.optmat.2019.109284
  79. P. Szroeder, I.Yu. Sagalianov, T.M. Radchenko, V.A. Tatarenko, Yu.I. Prylutskyy, and W. Strupiński, Effect of uniaxial stress on the electrochemical properties of graphene with point defects, Appl. Surf. Sci., 442: 185 (2018). https://doi.org/10.1016/j.apsusc.2018.02.150
  80. I.Yu. Sahalianov, T.M. Radchenko, V.A. Tatarenko, and Yu.I. Prylutskyy, Magnetic field-, strain-, and disorder-induced responses in an energy spectrum of graphene, Ann. Phys., 398: 80 (2018). https://doi.org/10.1016/j.aop.2018.09.004
  81. T.M. Radchenko and V.A. Tatarenko, A statistical-thermodynamic analysis of stably ordered substitutional structures in graphene, Physica E, 42, No. 8: 2047 (2010). https://doi.org/10.1016/j.physe.2010.03.024
  82. D.M.A. Mackenzie, M. Galbiati, X.D. de Cerio, I.Y. Sahalianov, T.M. Radchenko, J. Sun, D. Peña, L. Gammelgaard, B.S. Jessen, J.D. Thomsen, P. Bøggild, A. Garcia-Lekue, L. Camilli, and J.M. Caridad, Unraveling the electronic properties of graphene with substitutional oxygen, 2D Materials, 8, No. 4: 045035 (2021). https://doi.org/10.1088/2053-1583/ac28ab
  83. T.M. Radchenko, I.Yu. Sahalianov, V.A. Tatarenko, Yu.I. Prylutskyy, P. Szroeder, M. Kempiński, and W. Kempiński, The impact of uniaxial strain and defect pattern on magnetoelectronic and transport properties of graphene, Handbook of Graphene: Growth, Synthesis, and Functionalization (Eds. E. Celasco and A. Chaika) (Beverly, MA: Scrivener Publishing LLC: 2019), vol. 1, ch. 14, p. 451. https://doi.org/10.1002/9781119468455.ch14
  84. T.M. Radchenko, V.A. Tatarenko, V.V. Lizunov, V.B. Molodkin, I.E. Golentus, I.Yu. Sahalianov, and Yu.I. Prylutskyy, Defect-pattern-induced fingerprints in the electron density of states of strained graphene layers: diffraction and simulation methods, Phys. Status Solidi B, 256, No. 5: 1800406 (2019). https://doi.org/10.1002/pssb.201800406
  85. T.M. Radchenko, V.A. Tatarenko, I.Yu. Sagalianov, and Yu.I. Prylutskyy, Configurations of structural defects in graphene and their effects on its transport properties, Graphene: Mechanical Properties, Potential Applications and Electrochemical Performance (Ed. B.T. Edwards) (New York: Nova Science Publishers: 2014), ch. 7, p. 219.
  86. I.Yu. Sagalyanov, Yu.I. Prylutskyy, T.M. Radchenko, and V.A. Tatarenko, Graphene systems: methods of fabrication and treatment, structure formation, and functional properties, Usp. Fiz. Met., 11, No. 1: 95 (2010). https://doi.org/10.15407/ufm.11.01.095
  87. J.P.S. Ahmed and O. Meenakshisundaram, Eng. Res. Express, 4: 025021 (2022). https://doi.org/10.1088/2631-8695/ac6e30
  88. S. Wang, M. Cao, H. Xue, Sh. Araby, and Q. Meng, Thin-Walled Structures, 174: 109092 (2022). https://doi.org/10.1016/j.tws.2022.109092
  89. Y. Arao, S. Yumitori, and H. Suzuki, Compos. Part A: Appl. Sci. Manuf., 55: 19 (2013). https://doi.org/10.1016/j.compositesa.2013.08.002
  90. A.R. Sadygova, I.I. Abbasov, E.S. Safiev, P.B. Asilbeyli, and V.A. Alekperov, Nanosistemi, Nanomateriali, Nanotehnologii, 17, No. 1: 155 (2019). https://doi.org/10.15407/nnn.17.01.155
  91. A. Royani, C. Verma, M. Hanafi, V.S. Aigbodion, and A. Manaf, Prog. Phys. Met., 24, No. 1: 197 (2023). https://doi.org/10.15407/ufm.24.01.197
  92. R.C. Ganesh and N. Lalit, Mater. Today: Proc., 27, No. 1: 272 (2020). https://doi.org/10.1016/j.matpr.2019.08.240
  93. H. Xiao, M.T.H. Sultan, and D. Hui, Rev. Adv. Mater. Sci., 62: 20220328 (2023). https://doi.org/10.1515/rams-2022-0328
  94. H.E. Etri, M.E. Korkmaz, M.K. Gupta, M. Gunay, and J. Xu, Int. J. Adv. Manuf. Technol., 123: 2965 (2022). https://doi.org/10.1007/s00170-022-10277-1
  95. P. Zuo, D.V. Srinivasan, and P.V. Anastasios, Compos. Struct., 274: 114358 (2021). https://doi.org/10.1016/j.compstruct.2021.114358
  96. W. He, L. Wang, H. Liu, C. Wang, and G. Sun, Thin-Walled Struct., 167: 108026 (2021). https://doi.org/10.1016/j.tws.2021.108026