Ensuring Quality of Stamping Sheet Aviation Parts

ONOPCHENKO A.V., KURIN M.O., and SHYROKYI Yu.V.

National Aerospace University M.Ye. Zhukovsky ‘Kharkiv Aviation Institute’, 17 Chkalov Str., UA-61070 Kharkiv, Ukraine

Received 02.02.2024, final version 07.05.2024 Download PDF logo PDF

Abstract
The theory and practice of stamping sheet parts for aircraft are reviewed and analysed. The problem of developing scientific grounds for constructing rational technological processes is noted to provide minimal work intensity and cost of manufacturing aircraft parts with the best quality. Forming operations of sheet stamping and its main advantages are considered. A classifier of research areas in the field of metal sheet stamping is developed. As an analysis of existing research shows, improving the sheet-stamping process still remains relevant; much attention is paid to the influence of temperature, lubricants, and the configuration of stamping equipment on the sheet-stamping process. The drawing quality of samples and the influence of deep drawing on the microstructure and texture of samples are considered. The morphologies of the protective coatings of steel sheets before and after deep drawing are studied. As known, the latent energy of deformation is an important integral characteristic of the substructural state of the metal after plastic deformation and accumulates all common hardening parameters. The influence of latent energy of deformation on the operational properties of parts, as well as on the dimensional stability of parts, is significant that is especially important for thin-walled and precision products. A model for controlling the quality of treatment based on the value of latent energy of deformation is proposed.

Keywords: metal sheet stamping, microstructure, texture, latent deformation energy.

DOI: https://doi.org/10.15407/ufm.25.02.320

Citation: A.V. Onopchenko, M.O. Kurin, and Yu.V. Shyrokyi, Ensuring Quality of Stamping Sheet Aviation Parts, Progress in Physics of Metals, 25, No. 2: 320–363 (2024)


References  
  1. V.V. Chigirinsky, Y.S. Kresanov, and I.E. Volokitina, Metallofiz. Noveishie Tekhnol., 45, No. 4: 467 (2023). https://doi.org/10.15407/mfint.45.04.0467
  2. V.V. Chigirinsky, Y.S. Kresanov, and I.E. Volokitina, Metallofiz. Noveishie Tekhnol., 45, No. 5: 631 (2023). https://doi.org/10.15407/mfint.45.05.0631
  3. A.I. Denissova, A.V. Volokitin, and I.E. Volokitina, Prog. Phys. Met., 23, No. 2: 268 (2022). https://doi.org/10.15407/ufm.23.02.268
  4. O.I. Gorbatov, Yu.N. Gornostyrev, P.A. Korzhavyi, and A.V. Ruban, Phys. Metals Metallogr., 117: 1293 (2016). https://doi.org/10.1134/S0031918X16130019
  5. K. Wang, L. Wang, K. Zheng, He. Zhubin, D. Politis, G. Liu, and S. Yuan, Int. J. Extrem. Manuf., 2, 032001: 1 (2020). https://doi.org/10.1088/2631-7990/ab949b
  6. V. Deepak, O. Abhilash, Y.P. Ravitej, Veerachari, and L. Abhinandan, AIP Conf. Proc., 2316, No. 1: 030015 https://doi.org/10.1063/5.0038385
  7. L.B. Zuev, S.A. Barannikova, and A.G. Lunev, Prog. Phys. Met., 19, No. 4: 379 (2018). https://doi.org/10.15407/ufm.19.04.379
  8. Yu.V. Milman, S.I. Chugunova, I.V. Goncharova, and А.А. Golubenko, Usp. Fiz. Met., 19, No. 3: 271 (2018). https://doi.org/10.15407/ufm.19.03.271
  9. M.O. Kurin, O.O. Horbachov, A.V. Onopchenko, and T.V. Loza, Metallofiz. Noveishie Tekhnol., 44, No. 6: 785 (2022). https://doi.org/10.15407/mfint.44.06.0785
  10. A.A. Kabatov, Tekhnologiya Almaznogo Vyglazhivaniya Detaley Aviatsionnykh Dvigateley i Agregatov [Technology for Diamond Smoothing of Aircraft Engine Parts and Units] (Thesis of Disser. for PhD) (Kharkiv: National Aerospace University ‘Kharkiv Aviation Institute’: 2014) (in Russian).
  11. E.A. Popov, V.H. Kovalev, and Y.N. Shubyn, Tekhnologiya i Avtomatizatsiya Listovoi Shtampovki [Technology and Automation of Sheet Metal Stamping] (Moskva: MGTU im. N.E. Baumana: 2003) (in Russian).
  12. M.M. Ubyzkyi, O.V. Kulyk, A.H. Fesenko, and D.I. Shevchuk, Kholodne Lystove Shtampuvannya [Cold Sheet Stamping] (Dnipropetrovsk: RVV DNU: 2008) (in Ukrainian).
  13. V.V. Tretiak, O.V. Manankov, D.A. Ovchar, and A.V. Onopchenko, Aerospace Technic and Technology, 60: 3 (2009).
  14. V.V. Tretiak and A.V. Onopchenko, Proektuvannya Tekhnolohichnykh Protsesiv Impulsnogo Obroblennya Metodamy Syntezu i Adresatsii [Design of Technological Processes of Impulse Processing by Methods of Synthesis and Addressing] (Kharkiv: National Aerospace University ‘Kharkiv Aviation Institute’: 2020) (in Ukrainian).
  15. V.G. Stepanov and I.A. Shavrov, Vysokoehnergeticheskie Impul’snyye Metody Obrabotki Metallov [High-Energy Pulsed Metal Processing Methods] (Leningrad: Mashinostroenie: 1975) (in Russian).
  16. Uncontained Turbine Rotor Failure, Bombardier Inc., BD-500-1A10 (C series CS100), C-FBCS, Aviation Investigation Report A14Q0068 (Quebec: International (Mirabel) Airport: 2014). https://publications.gc.ca/site/eng/9.819750/publication.html
  17. D.S. Rechenko, Povyshenie Effektivnosti Tverdosplavnogo Finishnogo Instrumenta Lezviynogo Instrumenta Putyom Sverkhskorostnogo Zatachivaniya i Razrabotki Kompleksa Usloviy Ego Ekspluatatsii [Increasing the Efficiency of Carbide Finishing Tools for Cutting Tools Through Ultra-High-Speed Sharpening and the Development of a Set of Conditions for Its Operation] (Thesis of Disser. for Dr. Tekhn. Sci.) (Tomsk: Omsk State Technical University: 2018) (in Russian).
  18. X. Yang, B. Wang, and J. Zhou, Int. J. Adv. Manuf. Technol., 110: 1233 (2020). https://doi.org/10.1007/s00170-020-05802-z
  19. J. Zhou, X. Yang, B. Wang, and M. Yanhong, Int. J. Adv. Manuf. Technol., 121: 5779 (2022). https://doi.org/10.1007/s00170-022-09570-w
  20. Ki. Mori, Y. Abe, and S. Miyazawa, Int. J. Adv. Manuf. Technol., 108: 3885 (2020). https://doi.org/10.1007/s00170-020-05642-x
  21. H. Li, Z. Hu, L. Hua, and Q. Sun, JOM, 71: 4778 (2019). https://doi.org/10.1007/s11837-019-03846-5
  22. K. Zheng, C. Tong, Y. Li, Z. Kolozsvari, and D. Trevor, Int. J. Adv. Manuf. Technol., 111: 2919 (2020). https://doi.org/10.1007/s00170-020-06280-z
  23. H. Ou, X. Zhang, J. Xu, G. Li, and J. Cui, J. Mater. Eng. Perform., 27: 4025 (2018). https://doi.org/10.1007/s11665-018-3290-1
  24. A. Komodromos, F. Kolpak, and A.E. Tekkaya, Berg Huettenmaenn Monatsh., 167: 428 (2022). https://doi.org/10.1007/s00501-022-01264-w
  25. L.I. Besong, J. Buhl, and M. Bambach, Int. J. Mater. Form., 15: 37 (2022). https://doi.org/10.1007/s12289-022-01684-6
  26. W. Xiao, B. Wang, and K. Zheng, Int. J. Adv. Manuf. Technol., 92: 3299 (2017). https://doi.org/10.1007/s00170-017-0419-6
  27. D. Kumar, L. Zhigang, S. Jirathearanat, and A. Kumar, J. Mater. Eng. Perform., 32: 2950 (2023). https://doi.org/10.1007/s11665-022-07304-3
  28. S. Golovashchenko, S. Zdravkovic, N. Reinberg, S. Nasheralahkami, and W. Zhou, Forming the Future. The Minerals, Metals & Materials Series (Eds. G. Daehn, J. Cao, B. Kinsey, E. Tekkaya, A. Vivek, and Y. Yoshida) (Cham–Columbus–Dortmund: Springer: 2021), p. 2777. https://doi.org/10.1007/978-3-030-75381-8_231
  29. T. Matsuno, Y. Ochiai, Y. Okitsu, M. Iga, A. Kohri, and T. Mikami, Int. J. Adv. Manuf. Technol., 116: 2873 (2021). https://doi.org/10.1007/s00170-021-07675-2
  30. C.J. Tan and Y.H. Phoo, Research Square Preprint (2021). https://doi.org/10.21203/rs.3.rs-515980/v1
  31. J. Wang, J. Liu, B. Wang, X. Huang, and B. Wang, Int. J. Adv. Manuf. Technol., 125: 2581 (2023). https://doi.org/10.1007/s00170-023-10883-7
  32. M. Madi, M.V. Junior, R.A. Filho, and P.V. Prestes, Int. J. Adv. Manuf. Technol., 99: 2417 (2018). https://doi.org/10.1007/s00170-018-2635-0
  33. S. Golovashchenko, N. Reinberg, A. Hassannejadasl, and D. Green, J. Mater. Eng. Perform., 28: 2465 (2019). https://doi.org/10.1007/s11665-019-03977-5
  34. B. Ma, C. Yang, X. Wu, and L. Zhan, J. Mater. Eng. Perform., 32: 2465 (2023). https://doi.org/10.1007/s11665-023-07849-x
  35. B.-b. Jia and W.W. Wang, Int. J. Mater. Form., 11: 491 (2018). https://doi.org/10.1007/s12289-017-1359-2
  36. A. Martinez, V. Miguel, and J. Coello, Int. J. Mater. Form., 11: 619 (2018). https://doi.org/10.1007/s12289-017-1377-0
  37. R. Gu, Q. Liu, S. Chen, W. Wurong, and W. Xicheng, J. Mater. Eng. Perform., 28: 7259 (2019). https://doi.org/10.1007/s11665-019-04436-x
  38. D. You, D. Cai, Y. Wang, F. Zhou, and Z. Ruan, Int. J. Adv. Manuf. Technol., 120: 3741 (2022). https://doi.org/10.1007/s00170-022-08936-4
  39. T. Xu, H. Wu, F. Xue, J. Guo, J. Ran, and F. Gong, Int. J. Adv. Manuf. Technol., 121: 8115 (2022). https://doi.org/10.1007/s00170-022-09898-3
  40. C. Chen, M. Chen, L. Xie, Z. Gong, and J. Ye, Int. J. Adv. Manuf. Technol., 103: 807 (2019). https://doi.org/10.1007/s00170-019-03568-7
  41. R. Fan, M. Chen, Y. Wu, and L. Xie, Metals, 8, No. 12: 985 (2018). http://dx.doi.org/10.3390/met8120985
  42. Y.J. Song, I.S. Oh, S.H. Hwang, H Choi, M. Lee, and H.J. Kim, Int. J. Automot. Technol., 22: 69 (2021). https://doi.org/10.1007/s12239-021-0008-4
  43. I.K. Lee, M.S. Jeong, S.K. Lee, Y. Cho, J Lee, P. Seo, D. Ko, K. Lee, and B. Kim, Int. J. Precis. Eng. Manuf., 16: 2377 (2015). https://doi.org/10.1007/s12541-015-0306-8
  44. H. Wang, H. Xie, Q. Liu, Y. Shen, P. Wang, and L. Zhao, Struct. Multidisc. Optim., 58: 769 (2018). https://doi.org/10.1007/s00158-018-1899-1
  45. L. Belhassen, S. Koubaa, M. Wali, and F. Dammak, Int. J. Adv. Manuf. Technol., 103: 4837 (2019). https://doi.org/10.1007/s00170-019-04066-6
  46. Y.-q. Shu, N. Xiang, H.-r. Wang, P.-i. Wang, T. Huang, Z.-f. Wang, Y.-j. Lin, and J.-q. Guo, Int. J. Adv. Manuf. Technol., 121: 5473 (2022). https://doi.org/10.1007/s00170-022-09759-z
  47. F. Flegler, P. Groche, T. Abraham, and G. Bruer, JOM, 72: 2511 (2020). https://doi.org/10.1007/s11837-020-04173-w
  48. M. Polajnar, L. Coga, and M. Kalin, Friction, 11: 1741 (2023). https://doi.org/10.1007/s40544-022-0706-6
  49. H.S. Jeong, S.H. Park, and W.S. Cho, Int. J. Precis. Eng. Manuf., 20: 497 (2019). https://doi.org/10.1007/s12541-019-00112-1
  50. A.C.S. Reddy, S. Rajesham, P.R. Reddy, T.P. Kumar, and J. Goverdhan, IJEST, 7, No. 1: 21 (2015). https://doi.org/10.4314/ijest.v7i1.3
  51. Wy. Ma, By. Wang, Q. Rong, J. Yang, and J. Zhang, J. Cent. South Univ., 29: 883 (2022). https://doi.org/10.1007/s11771-022-4984-y
  52. J. Qin, C. Zhou, D. Wang, X. Li, T. Hu, J. Wang, and Y. Yang, J. Mater. Res. Technol., 25: 773 (2023). https://doi.org/10.1016/j.jmrt.2023.05.273
  53. Y. Xing, P. Han, and X. Wang, Arch. Metall. Mater., 68, No. 4: 1275 (2023). https://doi.org/10.24425/amm.2023.146192
  54. M. Pako, J. Krawczyk, T. Sleboda, L. Frocisz, M. Ruminski, O. Lypchanskyi, T. Tokarski, and P. Piaseck, Arch. Metall. Mater., 66, No. 2: 601 (2021). https://doi.org/10.24425/amm.2021.135897
  55. V.K. Starkov, Fizika i Optimizatsiya Rezaniya Materialov [Physics and Optimization of Cutting materials] (Moskva: Mashinostroyenie: 2009) (in Russian).
  56. M.O. Kurin, Prog. Phys. Met., 21, No. 2: 249 (2020). https://doi.org/10.15407/ufm.21.02.249
  57. V. Kombarov, V. Sorokin, Y. Tsegelnyk, Y. Aksonov, and O. Fojtu, Int. J. Mechatron. Appl. Mech., 9: 209 (2021).
  58. S. Plankovskyy, V. Myntiuk, Y. Tsegelnyk, S. Zadorozhniy, and V. Kombarov, Mathematical Modeling and Simulation of Systems (MODS’2020) (Eds. S. Shkarlet, A. Morozov, and A. Palagin) (Springer: 2021), vol. 1265, p. 82. https://doi.org/10.1007/978-3-030-58124-4_8
  59. M.O. Kurin, Metallofiz. Noveishie Tekhnol., 42, No. 3: 785 (2022). https://doi.org/10.15407/mfint.42.03.0433
  60. J. Gallet, M. Perez, R. Guillou, C. Ernould, C. Le Bourlot, C. Langlois, B. Beausir, E. Bouzy, T. Chaise, and S. Cazottes, Mater. Characteriz., 199: 112842 (2023). https://doi.org/10.1016/j.matchar.2023.112842
  61. F. Barra, R. Espinoza-Gonzalez, H. Fernandez, F. Lund, A. Maurel, and V. Pagneux, JOM, 67: 1856 (2015). https://doi.org/10.1007/s11837-015-1458-9
  62. M.O. Kurin and M.V. Surdu, Metallofiz. Noveishie Tekhnol., 39, No. 3: 401 (2017). https://doi.org/10.15407/mfint.39.03.0401
  63. M.O. Kurin, Metallofiz. Noveishie Tekhnol., 40, No. 7: 859 (2018). https://doi.org/10.15407/mfint.40.07.0859
  64. GOST 25.503–97. Raschyoty i Ispytaniya na Prochnost. Metody Mekhanicheskikh Ispytaniy Metallov. Metod Ispytaniya na Szhatie [Design Calculation and Strength Testing. Methods of Mechanical Testing of Metals. Method of Compression Testing] (Minsk: Mezhgosudarstvennyi Sovet po Standartizatsii, Metrologii i Sertifikatsii: 1997) (in Russian).
  65. A.I. Dolmatov, A.A. Kabatov, and M.A. Kurin, Metallofiz. Noveishie Tekhnol., 35, No. 10: 1407 (2013) (in Russian).