Evolution of Microstructure of Copper and Its Alloys during Severe Plastic Deformation Process

VOLOKITIN A.V., DENISSOVA A.I., FEDOROVA T.D., and LAVRINUK D.N.

Karaganda Industrial University, Republic Ave. 30, 101400 Temirtau, Kazakhstan

Received 12.10.2023, final version 22.04.2024 Download PDF logo PDF

Abstract
The changes in the properties of copper and its alloys as a result of severe plastic deformation (SPD) are reviewed. The literature review shows that contemporary materials science is aimed at solving the problem of producing ultrafine-grained materials with high-angle grain boundaries. With using of the methods of severe plastic deformation, it is possible to obtain so-called bulk nanostructured materials with grain sizes of 0.1–0.2 microns and specific substructures containing the lattice and grain-boundary dislocations. Such structures are characterised by large elastic distortions of the crystal lattice. It is believed that such fine-grained structures should simultaneously provide a high level of plastic and strength characteristics due to special stressed high-angle grains. The article discusses SPD methods such as torsion with shear, equal-channel angular pressing, screw extrusion, all-round forging, rolling with shear, etc. Among the most significant results of SPD, it is worth highlighting the increase in strength, fatigue resistance and elastic properties of the material. These changes make copper and its alloys subjected to SPD very attractive for use in many industries, including electrical engineering, aviation, medicine, etc.

Keywords: copper, copper alloys, severe plastic deformation, fine-grained microstructure, mechanical properties.

DOI: https://doi.org/10.15407/ufm.25.02.294

Citation: A.V. Volokitin, A.I. Denissova, T.D. Fedorova, and D.N. Lavrinuk, Evolution of Microstructure of Copper and Its Alloys during Severe Plastic Deformation Process, Progress in Physics of Metals, 25, No. 2: 294–319 (2024)


References  
  1. R.Z. Valiev, A.V. Sergueeva, and A.K. Mukherjee, Scripta Mater., 49: 666 (2003). https://doi.org/10.1016/S1359-6462(03)00395-6
  2. I.E. Volokitina, A.V. Volokitin, M.A. Latypova, V.V. Chigirinsky, and A.S. Kolesnikov, Progress in Physics of Metals, 24, No. 1: 132 (2023). https://doi.org/10.15407/ufm.24.01.132
  3. S.M. Yuan, L.T. Yan, W.D. Liu, and Q. Liu, Journal Materials Processing Technology, 211: 356 (2011). https://doi.org/10.1016/j.jmatprotec.2010.10.009
  4. G.G. Kurapov, E.P. Orlova, and A. Turdaliev, J. Chem. Technol. Metall., 51: 451 (2016).
  5. I.E. Volokitinа and A.V. Volokitin, Metallurgist, 67: 232 (2023). https://doi.org/10.1007/s11015-023-01510-7
  6. I. Volokitinа, B. Sapargaliyeva, A. Agabekova, G. Ulyeva, A. Yerzhanov, and P. Kozlov, Case Studies in Construction Materials, 18: e02162 (2023). https://doi.org/10.1016/j.cscm.2023.e02162
  7. I. Volokitinа, A. Bychkov, and A. Kolesnikov, Metallography, Microstructure, and Analysis, 12, No. 3: 564 (2023). https://doi.org/10.1007/s13632-023-00966-y
  8. K. Muszka, M. Wielgus, J. Majta, K. Doniec, and M. Stefanska-Kaclziela, Mater. Sci. Forum, 654–656: 314 (2010). https://doi.org/10.4028/www.scientific.net/MSF.654-656.314
  9. A.P. Zhilyaev and T.G. Langdon, Progress in Materials Science, 53, No. 6: 893 (2008). https://doi.org/10.1016/J.PMATSCI.2008.03.002
  10. P. Wang, L. Zhao, J. Liu, M.D. Weir, X. Zhou, and H.H.K. Xu, Bone Research, 2: 14017 (2014). https://doi.org/10.1038/boneres.2014.17
  11. I.E. Volokitina, A.V. Volokitin, and E.A. Panin, Progress in Physics of Metals, 23, No. 4: 684 (2022). https://doi.org/10.15407/ufm.23.04.684
  12. Y. Beygelzimer, V. Varyukhin, S. Synkov, and D. Orlov, Materials Science and Engineering A, 503: 14 (2009). http://doi.org/10.1016/J.MSEA.2007.12.055
  13. M. Hawryluk, J. Ziemba, and P. Sadowski, Measurement and Control, 50: 74 (2017). http://doi.org/10.1177/0020294017707161
  14. I.E. Volokitina, Metal Science and Heat Treatment, 62: 253 (2020). https://doi.org/10.1007/s11041-020-00544-x
  15. I. Volokitina, A. Volokitin, A. Denissova, T. Fedorova, D. Lawrinuk, A. Kolesnikov, A. Yerzhanov, Y. Kuatbay, and Y. Liseitsev, Case Studies in Construction Materials, 19: e02346 (2023). https://doi.org/10.1016/j.cscm.2023.e02346
  16. A.P. Zhilyaev, K. Ohishi, G.I. Raab, T.R. McNelley, and Y.T. Zhu, Ultrafine Grained Materials IV (Warrendale: TMS: 2006), p. 113.
  17. I.E. Volokitina and G.G. Kurapov, Metal Science and Heat Treatment, 59, Nos. 11–12: 786 (2018). https://doi.org/10.1007/s11041-018-0227-0
  18. A.B. Naizabekov, S.N. Lezhnev, and I.E. Volokitina, Metal Science and Heat Treatment, 57, Nos. 5–6: 254–260 (2015). https://doi.org/10.1007/s11041-015-9870-x
  19. S. Lezhnev, A. Naizabekov, and I. Volokitina, Journal of Chemical Technology and Metallurgy, 52, No. 4: 626 (2017).
  20. S. Ramesh Kumar, K. Gudimetla, B. Tejaswi, and B. Ravisankar, Trans. Indian. Inst. Met., 70: 639 (2017). https://doi.org/10.1007/s12666-017-1073-2
  21. G.I. Raab and R.Z. Valiev, Non-Ferrous Metallurgy, 5: 50 (2000).
  22. T. Liu, Q. Wang, A. Gao, C. Zhang, C.J. Wang, and J.C. He, Scripta Materialia, 57, No. 11: 992 (2007). https://doi.org/10.1016/j.scriptamat.2007.08.011
  23. A.P. Zhilyaev, G. Ringot, Y. Huang, J.M. Cabrera, and T.G. Langdon, Mater. Sci. Eng. A, 688: 498 (2017). https://doi.org/10.1016/j.msea.2017.02.032
  24. R. Yuan, Acta Mechanica, 234: 4147 (2023). https://doi.org/10.1007/s00707-023-03606-2
  25. I.E. Volokitina, Metal Science and Heat Treatment, 61: 234 (2019). https://doi.org/10.1007/s11041-019-00406-1
  26. L. Kommel, R. Veinthal, and E. Kimmari, Materials Science, 9: 99 (2003).
  27. Y.H. Zhao, J.F. Bingert, Y.T. Zhu, X.Z. Liao, R.Z. Valiev, Z. Horita, T.G. Langdon, Y.Z. Zhou, and E.J. Lavernia, Applied Physics Letters, 92, No. 8: 081903 (2008). https://doi.org/10.1063/1.2870014
  28. A. Vinogradov, T. Suzuki, S. Hashimoto, K. Kitagawa, A. Kuznetsov, and S. Dobatkin, Materials Science Forum, 503–504: 971 (2006). https://doi.org/10.4028/www.scientific.net/MSF.503-504.971
  29. L. Kommel, Y.Y. Zhu, T.G. Langdon, R.Z. Valiev, S.L. Smetanin, D.H. Shin, and T.C. Lowe, Ultrafine Grained Materials III (Wiley: 2005), p. 571.
  30. A.V. Volokitin, I.E. Volokitina, and E.A. Panin, Progress in Physics of Metals, 23, No. 3: 411 (2022). https://doi.org/10.15407/ufm.23.03.411
  31. S. Swaminathan, M. Ravi Shankar, S. Lee, J. Hwang, A.H. King, R.F. Kezar, B.C. Rao, T.L. Brown, S. Chandrasekar, W.D. Compton, and K.P. Trumble, Mater. Sci. Eng. A, 410–411: 358 (2005). https://doi.org/10.1016/j.msea.2005.08.139
  32. J. Alkorta, J.M. Martinez-Esnaola, and J.G. Sevillano, Acta Materialia, 56, No. 4: 884 (2008). https://doi.org/10.1016/j.actamat.2007.10.039
  33. R.Z. Valiev and T.G. Langdon, Progress in Materials Science, 51, No. 7: 881 (2006). https://doi.org/10.1016/j.pmatsci.2006.02.003
  34. Y.T. Zhu and T.C. Lowe, Scripta Materialia, 51, No. 8: 819 (2004). https://doi.org/10.1016/j.scriptamat.2004.05.014
  35. I.E. Volokitina, Metal Science and Heat Treatment, 63, Nos. 3–4: 163 (2021). https://doi.org/10.1007/s11041-021-00664-y
  36. A.B. Naizabekov, A.S. Kolesnikov, M.A. Latypova, T.D. Fedorova, and A.D. Mamitova, Progress in Physics of Metals, 23, No. 4: 629 (2022). https://doi.org/10.15407/ufm.23.04.629
  37. Y.M. Wang and E. Ma, Materials Science and Engineering A, 375–377: 46 (2004). https://doi.org/10.1016/j.msea.2003.10.214
  38. M.A. Meyers, A. Mishra, and D.J. Benson, Progress in Materials Science, 51, No. 4: 427 (2006). https://doi.org/10.1016/j.pmatsci.2005.08.003
  39. Z. Horita, T. Fujinami, M. Nemoto, and T.G. Langdon, Journal of Materials Processing Technology, 117, No. 3: 288 (2001). https://doi.org/10.1016/S0924-0136(01)00783-X
  40. A.P. Zhilyaev and T.G. Langdon, Progress in Materials Science, 53, No. 6: 893 (2008). https://doi.org/10.1016/j.pmatsci.2008.03.002
  41. R.W. Landgraf, Metal Forming Plasticity (Springer: 1974).
  42. W.P. Chang and S.-C. Jen, International Journal of Solids and Structures, 22, No. 3: 267 (1986). https://doi.org/10.1016/0020-7683(86)90091-0
  43. Y. Beygelzimer, R. Kulagin, M.I. Latypov, V.Varyukhin, and H.S. Kim, Metals and Materials Instrumental, 21: 734 (2015). https://doi.org/10.1007/s12540-015-4577-5
  44. V.M. Segal, V.I. Reznikov, V.I. Kopylov, D.A. Pavlik, and V.F. Malyshev, Protsessy Plasticheskogo Strukturoobrazovaniya Metallov (Minsk: Novyye Tekhnologii: 1994) (in Russian).
  45. F. Barlat and J. Lian, International Journal of Plasticity, 5, No. 1: 51 (1989). https://doi.org/10.1016/0749-6419(89)90019-3
  46. L. Kunz, Copper Alloys – Early Applications and Current Performance – Enhancing Processes (IntechOpen: 2012). https://doi.org/10.5772/32634
  47. A. Naizabekov, I. Volokitina, A. Volokitin, and E. Panin, Journal of Materials Engineering and Performance, 28, No. 3: 1762 (2019). https://doi.org/10.1007/s11665-019-3880-6
  48. S.N. Lezhnev, I.E. Volokitina, and A.V. Volokitin, Physics of Metals and Metallography, 118: 1167–1170 (2017). https://doi.org/10.1134/S0031918X17110072
  49. S.N. Lezhnev, E. Panin, and I. Volokitina, Advanced Materials Research, 814: 68 (2013). https://doi.org/10.4028/www.scientific.net/AMR.814.68
  50. С.N. Aguilar, Microstructure and Properties of Copper Deformed by Accumulative Roll-Bonding (Escola Tècnica Superior d’Enginyeria Industrial de Barcelona, School of Power and Mechanical Engineering, Wuhan: 2014).
  51. L. Kommel, A. Rozkina, and I. Vlasieva, Metals, Alloys, Coatings, 14: 2029 (2008).
  52. L. Kommel, I. Hussainova, and O. Volobueva, Materials and Design, 28, No. 7: 2121 (2007). https://doi.org/10.1016/j.matdes.2006.05.021
  53. A. Mishra, B.K. Kad, F. Gregori, and M.A. Meyers, Acta Materiala, 55, No. 1: 13 (2007). https://doi.org/10.1016/j.actamat.2006.07.008
  54. I. Volokitina, B. Sapargaliyeva, A. Agabekova, S. Syrlybekkyzy, A. Volokitin, L. Nurshakhanova, F. Nurbaeva, A. Kolesnikov, G. Sabyrbayeva, A. Izbassar, O. Kolesnikova, Y. Liseitsev, and S. Vavrenyuk, Case Studies in Construction Materials, 19: e02256 (2023). https://doi.org/10.1016/j.cscm.2023.e02256
  55. I. Volokitina, Journal of Chemical Technology and Metallurgy, 57, No. 3: 631–636 (2022).
  56. N. Zhangabay, I. Baidilla, A. Tagybayev, U. Suleimenov, Z. Kurganbekov, M. Kambarov, A. Kolesnikov, G. Ibraimbayeva, K. Abshenov, I. Volokitina, B. Nsanbayev, Y. Anarbayev, and P. Kozlov, Case Studies in Construction Materials, 18: e02161 (2023). https://doi.org/10.1016/j.cscm.2023.e02161
  57. S. Swaminathan, T.L. Brown, S. Chandrasekar, T.R. McNelley, and W.D. Compton, Scripta Materiala, 56, No. 12: 1047 (2007). https://doi.org/10.1016/j.scriptamat.2007.02.034
  58. W. Moscoso, M. Ravi Shankar, J.B. Mann, W.D. Compton, and S. Chandrasekar, J. Mater. Res., 22: 201–205 (2007). https://doi.org/10.1557/jmr.2007.0021
  59. S. Tamimi, M. Ketabchi, N. Parvin, M. Sanjari, and A. Lopes, International Journal of Metals, 2014: 179723 (2014). https://doi.org/10.1155/2014/179723
  60. S.M. Ghalehbandi, M. Malaki, and M. Gupta, Applied Sciences, 9, No. 17: 3627 (2019). https://doi.org/10.3390/app9173627
  61. A. Heidarzadeh, T. Saeid, V. Klemm, A. Chabok, and Y. Pei, Materials & Design, 162: 185 (2019). https://doi.org/10.1016/j.matdes.2018.11.050
  62. I.E. Volokitina and A.V. Volokitin, Physics of Metals and Metallography, 119: 917–921 (2018). https://doi.org/10.1134/S0031918X18090132
  63. S.N. Lezhnev, I.E. Volokitina, E.A. Panin, and A.V. Volokitin, Physics of Metals and Metallography, 121: 689 (2020). https://doi.org/10.1134/S0031918X20070054
  64. S. Lezhnev, I. Volokitina and T. Koinov, Journal of Chemical Technology and Metallurgy, 49, No. 6: 621 (2014).
  65. E.N. Borodin, A. Morozova, V. Bratov, A.Belyakov, and A.P. Jivkov, Materials Characterization, 156: 109849 (2019). https://doi.org/10.1016/j.matchar.2019.109849
  66. B. Grzegorczyk, S. Rusz, P. Snopinski, O. Hilser, A. Skowronek, and A. Grajcar, Journal of Mining and Metallurgy B, 59, No. 1: 39 (2023). https://doi.org/10.2298/JMMB220309004G
  67. W. Wang, Sh. Zhou, Zh. Xiao, W. Qiu, and Q. Lei, Journal of Alloys and Compounds, 925: 166624 (2022). https://doi.org/10.1016/j.jallcom.2022.166624
  68. A.K. Parimi, P.S. Robi, and S.K. Dwivedy, Materials and Design, 32, No. 4: 1948 (2011). https://doi.org/10.1016/j.matdes.2010.11.074
  69. A.T. Kunimine and M. Watanabe, Materials Transaction, 60, No. 8: (2019). https://doi.org/10.2320/matertrans.MF201944
  70. A.I. Belyaeva, A.A. Galuza, P.A. Khaimovich, I.V. Kolenov, A.A. Savchenko, S.I. Solodovchenko and N.A. Shul’gin, Physics of Metals and Metallography, 117: 1170 (2016). https://doi.org/10.1134/S0031918X16090027
  71. M. Furukawa, Z. Horita, M. Nemoto, and T. Langdon, Journal of Materials Science, 36: 2835 (2001). https://doi.org/10.1023/A:1017932417043
  72. Y. Estrin and A. Vinogradov, Acta Materialia, 61, No. 3: 782 (2013). https://doi.org/10.1016/j.actamat.2012.10.038
  73. V.V. Chigirinsky, Y.S. Kresanov, and I.E. Volokitina, Metallofiz. Noveishie Tekhnol., 45, No. 4: 467 (2023). https://doi.org/10.15407/mfint.45.04.0467
  74. C.D.S. Tuck, C.A. Powell, and J. Nuttall, Reference Module in Materials Science and Materials Engineering (Elsevier: 2016). https://doi.org/10.1016/B978-0-12-803581-8.01634-9
  75. C.D.S. Tuck, C.A. Powell, and J. Nuttall, Shreir’s Corrosion, 3: 1937 (2010). https://doi.org/10.1016/B978-044452787-5.00094-9
  76. V.A. Tatarenko and T.M. Radchenko, Usp. Fiz. Met., 3, No. 2: 111 (2002). https://doi.org/10.15407/ufm.03.02.111
  77. V.A. Tatarenko and C.L. Tsynman, Solid State Ionics, 101–103: 1093 (1997). https://doi.org/10.1016/S0167-2738(97)00375-5
  78. I.A. Ivanova, D.S. Daskalova, L.P. Yordanova, and E.L. Pavlova, Processes, 12, No. 2: 352 (2024). https://doi.org/10.3390/pr12020352