Influence of the Low-Energy Inert-Gas Ion Bombardment on the Structure and Properties of Metallic Thin Films

VASYLYEV M.O.$^{1}$, RUDENKO E.M.$^{1}$, and VOLOSHKO S.M.$^{2}$

$^1$G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Beresteiskyi Prosp., UA-03056 Kyiv, Ukraine

Received 25.11.2023, final version 19.04.2024 Download PDF logo PDF

Abstract
The goal of the review is to analyse the main published results of the most systematic studies of changes in the structural–phase state, the physical and chemical properties of the metallic single- and multilayer thin films’ systems after bombardment by the low-energy (< 10 eV) inert-gas ions. Nanoscale film systems are obtained using two widespread physical methods: magnetron deposition and thermal resistive evaporation. The single-layer systems are based on such pure metals as Co, Cu, Ni, Pt, Nb, Ti, Fe, and W. The films deposited on the Si(100) substrate have thicknesses in the range of 25–700 nm. Multilayered thin films are fabricated based on the following combinations: Cu/Ni, Ni/Cu/Cr, Cr/Cu/Ni, and Ni/Cu/V with 25–30 nm thickness of each layer. The low-energy inert-gas ions’ (Xe+, Ar+, Ne+, He+) bombardment with varying beam energy in the range of 200–10000 eV and fluence in the range of 1015–1019 ions/cm2 are used. The ion bombardment-induced morphology, microstructure and chemical evolution of the polycrystalline thin films are studied using x-ray diffraction (XRD), secondary ion mass spectrometry (SIMS), Auger-electron spectroscopy (AES), electrography, transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), and tribological tests. Different physical mechanisms contributing to this evolution and their relation to theoretical models and experimental studies of the ion-induced thin films are discussed.

Keywords: thin films, ion bombardment, surfaces, phase transformations, wear resistance.

DOI: https://doi.org/10.15407/ufm.25.02.213

Citation: M.O. Vasylyev, E.M. Rudenko, and S.M. Voloshko, Influence of the Low-Energy Inert-Gas Ion Bombardment on the Structure and Properties of Metallic Thin Films, Progress in Physics of Metals, 25, No. 2: 213–242 (2024)


References  
  1. K.L. Chopra, Thin Film Phenomena (New York: McGraw-Hill: 1969).
  2. Milton Ohring, The Materials Science of Thin Films (San Diego: Academic Press: 1992), Ch. 6, p. 249. https://doi.org/10.1016/B978-0-08-051118-4.50012-8
  3. Krishna Seshan, Handbook of Thin Film Deposition Techniques Principles, Methods, Equipment and Applications (CRC Press: 2002). https://doi.org/10.1201/9781482269680
  4. K. Wasa, M. Kitabatake, and H. Adachi, Thin Film Materials Technology: Sputtering of Compound Materials (NY, Heidelrberg: William Andrew, Springer: 2004). https://doi.org/10.1016/B978-081551483-1.50002-2
  5. King-Ning Tu, Electronic Thin-Film Reliability (Cambridge: University Press: 2010).
  6. Ludmila Eckertov, Physics of Thin Films (Springer: 2012 р.
  7. Kiyotaka Wasa, Handbook of Sputter Deposition Technology: Fundamentals and Applications for Functional Thin Films, Nano-Materials and MEMS (William Andrew: 2012).
  8. Thin Film Device Applications (Eds. Kasturi Lal Chopra and Inderjeet Kaur) (New York: Springer: 1983). https://doi.org/10.1007/978-1-4613-3682-2
  9. H. Frey and H.R. Khan, Handbook of Thin-Film Technology (Berlin: Springer: 2015). https://doi.org/10.1007/978-3-642-05430-3
  10. L.R. Shaginya, The Mechanisms of Formation of Thin Films and Coatings Deposited by Physical Vapor Deposition Technology (Kyiv: PH ‘Akademperiodyka’: 2017). https://doi.org/10.15407/akademperiodyka.343.174
  11. David A. Glocker, Handbook of Thin Film Process Technology: Reactive Sputtering (CRC Press: 2018). https://doi.org/10.1201/9781351072793
  12. Sam Zhang, Jyh-Ming Ting, and Wan-Yu Wu, Functional Thin Films Technology (CRC Press: 2021). https://doi.org/10.1201/9781003088080
  13. Jef Poortmans and Vladimir Arkhipov, Thin Film Solar Cells: Fabrication, Characterization and Applications (John Wiley & Sons: 2006). https://doi.org/10.1002/0470091282
  14. G. Carter, and J.S Colligon, Ion Bombardment of Solids (London: Heinemann: 1968).
  15. Jerome J. Cuomo, Stephen M. Rossnagel, and Harold R. Kaufman, Handbook of Ion Beam Processing Technology: Principles, Deposition, Film Modification and Synthesis (Amsterdam: Elsevier: 1989.).
  16. Peter Sigmund, Sputtering by Ion Bombardment: Theoretical Concepts (Berlin: Springer: 1981). https://doi.org/10.1007/3540105212_7
  17. R.S. Nelson, The Observation of Atomic Collisions in Crystalline Solids (Amsterdam: Elsevier: 2013).
  18. I. Utke, S. Moshkalev, and P. Russell, Nanofabrication Using Focused Ion and Electron Beams: Principles and Applications (Oxford: Oxford University Press: 2012).
  19. M. Kaminsky, Atomic and Ionic Impact Phenomena on Metal Surfaces (Berlin–Heidelberg: Springer: 1965). https://doi.org/10.1007/978-3-642-46025-8
  20. Orlando Auciello and Roger Kelly, Ion Bombardment Modification of Surfaces: Fundamentals and Applications (Amsterdam: Elsevier: 1984).
  21. Kumar Tanuj, Nanoscale Pattern Formation under ion bombardment (Lambert Academic Publishing: 2015).
  22. M.O. Vasylyev, S.I. Sidorenko, S.M. Voloshko, and T. Ishikawa, Usp. Fiz. Met., 17: 209 (2016). https://doi.org/10.15407/ufm.17.03.209
  23. S. Ninomiya, K. Ichiki, H. Yamada, Y. Nakata, T. Seki, T. Aokic, and J. Matsuo, Surf. Interface Anal., 43: 95 (2011). https://doi.org/10.1002/sia.3587
  24. M. Sugiyama and G. Sigesato, J. Electron Microscopy, 53: 527 (2004). https://doi.org/10.1093/jmicro/dfh071
  25. T.A. Bakhsh, A. Sadr, and J. Tagami, J. Adhes. Sci. Technol., 29: 232 (2015). https://doi.org/10.1080/01694243.2014.981481
  26. A.J.R. van den Boogaard, E. Zoethout, I.A. Makhotkin, E. Louis, and F. Bijkerk, J. Appl. Phys., 112: 123502 (2012). https://doi.org/10.1063/1.4768915
  27. S. Zuccon, E. Napolitani, E. Tessarolo, P. Zuppella, A.J. Corso, F. Gerlin, M. Nardello, and M.G. Pelizzo, Opt. Mater. Express, 5: 176 (2014). https://doi.org/10.1364/OME.5.000176
  28. X. Li, K.-W. Lin, H.-T. Liang, H.-F. Hsu, N.G. Galkin, Y. Wroczynskyj, J. Van Lierop, and P.W.T. Pong, Nucl. Instrum. Methods Phys. Res. Sect. B, 365: 196 (2015). https://doi.org/10.1016/j.nimb.2015.07.087
  29. L. Repetto, R. Lo Savio, B. Šetina Batic, G. Firpo, E. Angeli, and U. Valbusa, Nucl. Instrum. Methods Phys. Res. Sect. B, 354: 28 (2015). https://doi.org/10.1016/j.nimb.2014.11.013
  30. K. Orlov, I.O. Kruhlov, I.E. Kotenko, S.I. Sidorenko, and S.M. Voloshko, Metallofiz. Noveishie Tekhnol., 39: 349 (2017). https://doi.org/10.15407/mfint.39.03.0349
  31. O.D. Roshchupkina, J. Grenzer, T. Strache, J. McCord, M. Fritzsche, A. Muecklich, and J. Fassbender, J. Appl. Phys., 112: 033901 (2012). https://doi.org/10.1063/1.4739302
  32. S. Zuccon, E. Napolitani, E. Tessarolo, P. Zuppella, A.J. Corso, F. Gerlin, M. Nardello, and M. G. Pelizzo, Opt. Mater. Express, 5: 176 (2014). https://doi.org/10.1364/OME.5.000176
  33. Alvin W. Czanderna, Theodore E. Madey, and Cedric J. Powell, Beam Effects, Surface Topography, and Depth Profiling in Surface Analysis (Springer: 2006).
  34. M. Nastasi, J. Mayer, and J. Hirvonen, Ion Solid Interactions: Fundamentals and Applications (Cambridge: University Press: 1996). https://doi.org/10.1017/CBO9780511565007
  35. R.K. Sherburne and H.E. Farnsworth, J. Chem. Phys., 19: 387 (1951). https://doi.org/10.1063/1.1748229
  36. R. Miranda, J.M. Rojo, and M. Salmeron, Solid State Comm., 35: 83 (1980). https://doi.org/10.1016/0038-1098(80)90777-2
  37. L. Gonzalez, R. Miranda, and S. Ferrer, Solid State Comm., 44: 1461 (1982). https://doi.org/10.1016/0038-1098(82)90031-X
  38. R. Miranda and J. M. Rojo, Vacuum, 34: 1069 (1984). https://doi.org/10.1016/0042-207X(84)90227-6
  39. S.P. Chenakin, Vacuum, 36: 635 (1986). https://doi.org/10.1016/0042-207X(86)90332-5
  40. S.P. Chenakin, Appl. Surface Sci., 84: 91 (1995). https://doi.org/10.1016/0169-4332(94)00471-4
  41. S. Rusponi, G. Costantini, C. Boragno, and U. Valbusa, Phys. Rev. Lett., 81: 4184 (1998). https://doi.org/10.1103/PhysRevLett.81.4184
  42. M.V. Ramana Murty, T. Curcic, A. Judy, B.H. Cooper, A.R. Woll, J.D. Brock, S. Kycia, and R.L. Headrick, Phys. Rev. B, 60: 16956 (1999). https://doi.org/10.1103/PhysRevB.60.16956
  43. S. Rusponi, C. Boragno, and U. Valbusa, Phys. Rev. Lett, 78: 2795 (1997). https://doi.org/10.1103/PhysRevLett.78.2795
  44. Wai Lun Chan, and Eric Chason, J. Appl. Phys., 101: 121301 (2007). https://doi.org/10.1063/1.2749198
  45. A.J.R. van den Boogaard, E. Zoethout, I.A. Makhotkin, E. Louis, and F. Bijkerk, J. Appl. Phys., 112: 123502 (2012). https://doi.org/10.1063/1.4768915
  46. S. Zuccon E. Napolitani, E. Tessarolo, P. Zuppella, A. J. Corso, F. Gerlin, M. Nardello, and M. G. Pelizzo, Opt. Mater. Express, 5: 176 (2014). https://doi.org/10.1364/OME.5.000176
  47. X. Li, K.W. Lin, H.T. Liang, H.F. Hsu, N.G. Galkin, Y. Wroczynskyj, J. van Lierop, and P.W. T. Pong, Nucl. Instrum. Methods Phys. Res. B, 365: 196 (2015). https://doi.org/10.1016/j.nimb.2015.07.087
  48. S.L. Repetto, R. Lo Savio, B. Šetina Batic, G. Firpo, and U. Valbusa, Nucl. Instrum. Methods Phys. Res. B, 354: 28 (2015). https://doi.org/10.1016/j.nimb.2014.11.013
  49. M. Marinov and D. Dobrev, Thin Solid Films, 42: 265 (1977). https://doi.org/10.1016/0040-6090(77)90361-3
  50. Y. Hasegawa, Y. Fujimoto and F. Okuyama, Surf, Sci., 163: L781 (1985). https://doi.org/10.1016/0167-2584(85)90883-7
  51. M. Tanemura, Nucl. Instrum. Methods Phys. Res. B, 47: 126 (1990). https://doi.org/10.1016/0168-583X(90)90020-U
  52. A.D.G. Stewart and M.W. Thompson, J. Mater. Sci., 4: 56 (1969). https://doi.org/10.1007/BF00555048
  53. M.J. Nobes, J.S. Colligon, and G. Carter, J. Mater. Sci., 4: 730 (1969). https://doi.org/10.1007/BF00742430
  54. J.P. Ducommun, M. Cantagrel, and M. Marchal, J. Mater. Sci., 9: 725 (1974). https://doi.org/10.1007/BF00761792
  55. Y. Hasegawa, Y. Fujimoto, and F. Okuyama, Surf. Sci., 163: 781 (1985). https://doi.org/10.1016/0167-2584(85)90883-7
  56. S. Blazhevich, N. Kamyshanchenko, I. Martynov, and I. Neklyudov, Nucl. Instrum. Methods Phys. Res. B, 193: 312 (2002). https://doi.org/10.1016/S0168-583X(02)00797-8
  57. G.S. Tang, H.Y. Liu, F. Zeng, and F. Pan, Vacuum, 89: 157 (2013). https://doi.org/doi:10.1016/j.vacuum.2012.03.039
  58. G. Ozaydin, K.F. Ludwig, Jr., H. Zhou, R.L. Headrick, J. Vac. Sci. Technol. B, 26: 551 (2008). https://doi.org/10.1116/1.2870222
  59. T.G. Bifano, H.T. Johnson, P. Bierden, and R.J. Mali, J. Microelectromech. Syst., 11: 592 2002. https://doi.org/10.1109/JMEMS.2002.802908
  60. E. Chason, S.T. Picraux, J.M. Poate, J.O. Borland, M.T. Current, T.D. de la Rubia, D.J. Eaglesham, O.W. Holland, M.E. Law, C.W. Magee, J.W. Mayer, J. Melngailis, and A.F. Tasch, J. Appl. Phys., 81: 6513 (1997). https://doi.org/10.1063/1.2749198
  61. W.-L. Chan, K. Zhao, N. Vo, Y. Ashkenazy, D.G. Cahill, and R.S. Averback, Phys. Rev B, 77: 205405 (2008). https://doi.org/10.1103/PhysRevB.77.205405
  62. S.-H. Lee, E.-H. Kwak, H.-S. Kim, S.-W. Lee, and G.-H. Jeong, Thin Solid Films, 547: 188 (2013). https://doi.org/10.1016/j.tsf.2013.03.064
  63. M.O. Vasylyev, S.I. Sidorenko, I.O. Kruhlov, and D.I. Trubchaninova, Metallofiz. Noveishie Tekhnol., 42, No. 5: 621 (2020) (in Ukrainian). https://doi.org/10.15407/mfint.42.05.0621
  64. A. Benninghoven, Surf. Sci., 35: 427 (1973). https://doi.org/10.1016/0039-6028(73)90232-X
  65. E. Stumpe and A. Benninghoven, Phys. Status Solidi A, 21: 479 (1974). https://doi.org/10.1002/pssa.2210210212
  66. V.T. Cherepin, M.O. Vasylyev, I.M. Makeeva, V.M. Kolesnik, and S.M. Voloshko, Prog. Phys. Met., 19, No. 1: 49 (2018). https://doi.org/10.15407/ufm.19.01.049
  67. S.E. Donnelly, F. Bodart, K.M. Barfoot, R. Werz, and R.P. Webb, Thin Solid Films, 94: 289 (1982). https://doi.org/10.1016/0040-6090(82)90491-6
  68. B. Navinsek and G. Carter, Canadian J. Phys., 46:719 (1968). https://doi.org/10.1139/p68-088
  69. B. Navinsek and G. Carter, Appl. Phys. Lett., 10: 91 (1967). https://doi:10.1063/1.1754865
  70. M. Deery, K.H. Goh, K.G. Stephens, and I.H. Wilson, Thin Solid Films, 17: 59 (1973). https://doi.org/10.1016/0040-6090(73)90005-9
  71. S. Zuccon, E. Napolitani, E. Tessarolo, P. Zuppella, A.J. Corso, F. Gerlin, M. Nardello, and M.G. Pelizzo, Optical Mater. Express, 5: 176 (2015). https://doi.org/10.1364/OME.5.000176
  72. I.O. Kruhlov, I.A. Vladymyrskyi, O. Dubikovskyi, S.I. Sidorenko, T. Ebisu, K. Kato, O. Sakata, T. Ishikawa, Y. Iguchi, and G.A. Langer, Mater. Res. Express, 6: 126431 (2019). https://doi.org/10.1088/2053-1591/ab6382
  73. S.K. Parida, V.R. Rmedicherla, D.K. Mishra, S. Choudhary, V. Solanki, and S. Varma, Bull. Mater. Sci., 37: 1569 (2014). https://doi.org/10.1007/s12034-014-0727-5
  74. S.P. Chenakin, Vacuum, 36: 635 (1986). https://doi.org/10.1016/0042-207X(86)90332-5
  75. L. De Los Santos Valladares, D. Hurtado Salinas, A. Bustamante Dominguez, D. Acosta Najarro, S.I. Khondaker, T. Mitrelias, C.H.W. Barnes, J. Albino Aguiar, and Y. Majima, Thin Solid Films, 520: 6368 (2012). https://doi.org/10.1016/j.tsf.2012.06.043
  76. O. Kruhlov, A.K. Orlov, O. Dubikovskyi, Y. Iguchi, Z. Erd´elyi, S.I. Sidorenko, T. Ishikawa, S.V. Prikhodko, and S.M. Voloshko, Materials Today Communications, 34: 104977 (2023). https://doi.org/10.1016/j.mtcomm.2022.104977
  77. S.A. Firstov, S.R Ignatovich, and I.M. Zakiev, Strength Mater., 41: 147 (2009). https://doi.org/10.1007/s11223-009-9116-5
  78. V.A. Mechnik, N.A. Bondarenko, V.M. Kolodnitskyi, V.I. Zakiev, I.M. Zakiev, S.R. Ignatovich, and N.O. Kuzin, Powder Metall. Met. Ceram., 58: 679 (2020). https://doi.org/10.1007/s11106-020-00125-w
  79. V.G. Efremenko, Y.G. Chabak, V.I. Fedun, K. Shimizu, T.V. Pastukhova, I. Petryshynets, and B.V. Efremenko, Vacuum, 185:110031 (2021). https://doi.org/10.1016/j.vacuum.2020.110031
  80. I. Zakiev, M. Storchak, G.A. Gogotsi, V. Zakiev, and Y. Kokoieva, Ceramics Int., 47: 29638 (2021). https://doi.org/10.1016/j.ceramint.2021.07.133
  81. V. Zakiev, A. Markovsky, E. Aznakayev, I. Zakiev, and E. Gursky, Medical Imaging. International Society for Optics and Photonics, 5959: 595916 (2005).
  82. I. Kruhlov, A. Orlov, V. Zakiev, I. Zakiev, S. Prikhodko, and S. Voloshko, TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series (Cham: Springer: 2022), p. 431. https://doi.org/10.1007/978-3-030-92381-5_39