Application of Cryogenic Technologies in Deformation Processing of Metals

VOLOKITINA I.E., DENISSOVA A.I., VOLOKITIN A.V., FEDOROVA T.D., and LAVRINYUK D.N.

Karaganda Industrial University, Republic Ave. 30, 101400 Temirtau, Kazakhstan

Received 15.06.2023, final version 20.02.2024 Download PDF logo PDF

Abstract
The publications in the field of cryogenic-technologies’ applications in the processes of the thermal and deformation treatments of metals are reviewed. The most effective fields of the applications of cryogenic liquids and gases for the heat treatment of working tools and metals (titanium, aluminium, and copper alloys) are in the rolling production and heavy engineering in order to improve the product quality, equipment and tool durability, to reduce the impact on the environment and operating personnel. The effects of cryogenic treatment and cooling on the tool life, wear, cutting temperature, surface roughness, dimensional accuracy, and cutting force are considered. As a result, the use of cryogenic processing and cryogenic cooling in machining processes increases the tool life and improves surface roughness as well as reduces the temperature of the machined surface, energy consumption during operation, and, thus, reduces tool wear that contributes to an increase in productivity. The possibility of obtaining and changing the nanostructure of a metal through the cryogenic cooling is also considered. The topic may be of interest for researchers and scientists in the field of metallurgy, materials science, and nanotechnologies.

Keywords: cryogenic cooling, liquid nitrogen, tool life, surface roughness, cryodeformation, low-temperature processing, nanostructured materials.

DOI: https://doi.org/10.15407/ufm.25.01.161

Citation: I.E. Volokitina, A.I. Denissova, A.V. Volokitin, T.D. Fedorova, and D.N. Lavrinuk, Application of Cryogenic Technologies in Deformation Processing of Metals, Progress in Physics of Metals, 25, No. 1: 161–194 (2024)


References  
  1. I.Y. Huang and P.B. Prangnell, Acta Mater., 56: 1619 (2008). https://doi.org/10.1016/j.actamat.2007.12.017
  2. I.A. Gnidin, N.S. Gubin, and Y.D. Starodubov, Sov. Phys. J., 14: 811 (1971). https://doi.org/10.1007/BF00822178
  3. L.F. Vereshchagin, E.N. Yakovlev, and Y.A. Timofeev, The Possibility of the Transition of Hydrogen to a Conductive State, 18: 746 (1975).
  4. A. Volokitin, A. Naizabekov, I. Volokitina, and A. Kolesnikov, J. Chemical Technology and Metallurgy, 57: 809 (2022).
  5. I.E. Volokitina, A.V. Volokitin, M.A. Latypova, V.V. Chigirinsky, and A.S. Kolesnikov, Prog. Phys. Met., 24, No. 1: 132 (2023). https://doi.org/10.15407/ufm.24.01.132
  6. B. Sapargaliyeva, A. Agabekova, G. Ulyeva, A. Yerzhanov, and P. Kozlov, Case Studies in Construction Materials, 18: e02162 (2023). https://doi.org/10.1016/j.cscm.2023.e02162
  7. S.M. Yuan, L.T. Yan, W.D. Liu, and Q. Liu, J. Mater. Process. Technol., 211: 356 (2011). https://doi.org/10.1016/j.jmatprotec.2010.10.009
  8. D. Pugh, J. Less, K. Ashiroft, and D.A. Gann, The Engineer, 212: 258 (1961).
  9. Z. Zhao and S.Y. Hong, Mater. Eng. Perform., 1, No. 5: 669 (1992). https://doi.org/10.1007/BF02649248
  10. I.A. Gnidin, Metallophysics, 2: 49 (1980).
  11. I.A. Gnidin, Phys. Met. Metallurgy, 30: 986 (1970).
  12. I.A. Gnidin, M.B. Lazareva, V.M. Matsevity, Y.D. Starodubov, and V.P. Lebedev, Phys. Met. Metallurgy, 23: 756 (1967).
  13. A.P. Gulyaev, Termicheskaya Obrabotka Stali [Heat Treatment of Steel] (GNTI: 1953) (in Russian).
  14. Z.Y. Wang and K.P. Rajurkar, Wear, 239, No. 2: 168 (2000). https://doi.org/10.1016/S0043-1648(99)00361-0
  15. I.Y. Prikhodko and P.V. Krot, Metallurgical Processes and Equipment [Metallurgicheskie Protsessy i Oborudovanie], No. 1: 10 (2009) (in Russian).
  16. M.A. Tikhonovsky, A.G. Shepelev, and L.V. Panteyenko, Problems of Atomic Science and Technology. Ser.: Vacuum, Pure Materials, Superconductors, 13, No. 5: 103 (2003) (in Russian).
  17. O.I. Volchok, M.B. Lazareva, V.S. Okovit, Ya.D. Starodubov, O.V. Chernyj, and L.A. Chirkina, Low Temp. Phys., 27, No. 5: 353 (2001). https://doi.org/10.1063/1.1374719
  18. S. Lezhnev, A. Naizabekov, and E. Panin, Procedia Engineering, 81: 1499 (2014). https://doi.org/10.1016/j.proeng.2014.10.180
  19. P.A. Khaimovich, Problems of Atomic Science and Technology. Ser.: Physics of Radiation Effect and Radiation Materials Science, 89, No. 4: 28 (2006) (in Russian).
  20. I.E. Volokitina, Met. Sci. Heat Treat., 61: 234 (2019). https://doi.org/10.1007/s11041-019-00406-1
  21. I.E. Volokitina, Met. Sci. Heat Treat., 62: 253 (2020). https://doi.org/10.1007/s11041-020-00544-x
  22. E. Yasa, S. Pilatin, and O. Çolak, J. Production Eng., 15, No. 2: 1 (2012).
  23. P.J. Arrazola, A. Garay, L.M. Iriarte, M. Armendia, S. Marya, and F. Le Maitre, Mater. Process. Technol., 209, 2223 (2009). https://doi.org/10.1016/j.jmatprotec.2008.06.020
  24. I.E. Volokitina, J. Chem. Technol. Metallurgy, 55, No. 2: 479 (2020).
  25. H. Wang, C. Ban, N. Zhao, L. Li, Q. Zhu, J. Cui, J. Mater. Res. Technol., 14: 1167 (2021). https://doi.org/10.1016/j.jmrt.2021.07.019
  26. S.Y. Hong and Y. Ding, Int. J. Machine Tools and Manufacture, 41, No. 10: 1417 (2001). https://doi.org/10.1016/S0890-6955(01)00026-8
  27. S.Y. Hong, I. Markus, and W.C. Jeong, Int. J. Machine Tools and Manufacture, 41, No. 15: 2245 (2001). https://doi.org/10.1016/S0890-6955(01)00041-4
  28. W. Li, H. Wang, X. Jiang, J. Zhu, Z. Liu, X. Guo, and C. Song, RSC Adv., 8, No. 14: 7651 (2018). https://doi.org/10.1039/C7RA13546G
  29. M. Dhananchezian and M.P. Kumar, Cryogenics, 51, No. 1: 34 (2011). https://doi.org/10.1016/j.cryogenics.2010.10.011
  30. K.A. Venugopal, S. Paul, and A.B. Chattopadhyay, Cryogenics, 47, No. 1: 12 (2007). https://doi.org/10.1016/j.cryogenics.2006.08.011
  31. S.Y. Hong, Machining Sci. Technol., 10, No. 1: 133 (2006). https://doi.org/10.1080/10910340500534324
  32. J. Yin, J. Lu, H. Ma, and P. Zhang, J. Mater. Sci., 39: 2851 (2004). https://doi.org/10.1023/B:JMSC.0000021463.83899.b3
  33. Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, and Y.T. Zhu, Adv. Mater., 18, No. 17: 2280 (2006). https://doi.org/10.1002/adma.200600310
  34. N. Govindaraju, A.L. Shakeel, and V. Pradeep, Applied Mechanics and Materials, 592–594: 316 (2014). https://doi.org/10.4028/www.scientific.net/AMM.592-594.316
  35. Y.M. Wang, M.W. Chen, H.W. Sheng, and E. Ma, J. Mater. Res., 17: 3004 (2002). https://doi.org/10.1557/JMR.2002.0436
  36. V.P. Pilyugin, L.M. Voronova, M.V. Degtyarev, and T.I. Chashchukhina, Deformation and Destruction of Materials, 1: 26 (2011).
  37. O. Kolesnikova, S. Syrlybekkyzy, R. Fediuk, A. Yerzhanov, R. Nadirov, A. Utelbayeva, A. Agabekova, M. Latypova, L. Chepelyan, I. Volokitina, N.I. Vatin, A. Kolesnikov, and M. Amran, Materials, 15, No. 19: 6980 (2022). https://doi.org/10.3390/ma15196980
  38. V.P. Pilyugin, T.M. Gapontseva, T.I. Chashchukhina, L.M. Voronova, L.I. Shchinova, and M.V. Degtyarev, Phys. Metals Metallogr., 105: 409 (2008). https://doi.org/10.1134/S0031918X08040157
  39. L.M. Voronova, T.I. Chashchukhina, M.V. Degtyarev, and V.P. Pilyugin, Russ. Metallurgy, 212: 303 (2012). https://doi.org/10.1134/S0036029512040131
  40. J. Shi, L. Hou, J. Zuo, L. Zhuang and J. Zhang, Mater. Sci. Eng. A, 701: 274 (2017). https://doi.org/10.1016/j.msea.2017.06.087
  41. M. Abbasi-Baharanchi, F. Karimzadeh, and M.H Enayati, Mater. Sci. Eng. A, 683: 56 (2017). https://doi.org/10.1016/j.msea.2016.11.099
  42. M. Kumar, N. Sotirov, F. Grabner, R. Schneider, and G. Mozdzen, Trans. Nonferrous Met. Soc. China, 27, No. 6: 1257 (2017). https://doi.org/10.1016/S1003-6326(17)60146-8
  43. G. Singh, S.S. Gill, and M. Dogra, Cleaner Production, 143: 1060 (2017). https://doi.org/10.1016/j.jclepro.2016.12.013
  44. R. Choudhary, H. Garg, M. Prasad, and D. Kumar, Mater. Today: Proc., 4, No. 2, Pt. A: 1158 (2017). https://doi.org/10.1016/j.matpr.2017.01.132
  45. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, and M.E. Kassner, Mater. Sci. Eng. A, 238: 219 (1997). https://doi.org/10.1016/S0921-5093(97)00424-3
  46. D.S. Leonov, T.M. Radchenko, V.A. Tatarenko, and Yu.A. Kunitsky, Defect Diffus. Forum, 273–276: 520 (2008). https://doi.org/10.4028/www.scientific.net/DDF.273-276.520
  47. V.A. Tatarenko and C.L. Tsynman, Solid State Ionics, 101–103: 1061 (1997). https://doi.org/10.1016/s0167-2738(97)00376-7
  48. T.M. Radchenko, O.S. Gatsenko, V.V. Lizunov, and V.A. Tatarenko, Prog. Phys. Met., 21, No. 4: 580 (2020). https://doi.org/10.15407/ufm.21.04.580
  49. T.M. Radchenko, V.A. Tatarenko, H. Zapolsky, and D. Blavette, J. Alloys Compd., 452, No. 1: 122 (2008). https://doi.org/10.1016/j.jallcom.2006.12.149
  50. V.N. Bugayev, V.G. Gavrilyuk, V.M. Nadutov, and V.A. Tatarenko, Fiz. Met. Metalloved., 68, No. 5: 931 (1989).
  51. V.A. Tatarenko, T.M. Radchenko, A.Yu. Naumuk, and B.M. Mordyuk, Prog. Phys. Met., 25, No. 1: 3 (2024). https://doi.org/10.15407/ufm.25.01.003
  52. I.S. Jawahir, H. Attia, D. Biermann, J. Duflou, F. Klocke, D. Meyer, S.T. Newman, F. Pusavec, M. Putz, J. Rech and V. Schulze, CIRP Annals-Manufacturing Technology, 65, No. 2: 713 (2016). https://doi.org/doi:10.1016/j.cirp.2016.06.007
  53. A. Naizabekov, A. Volokitin, E. Panin, J. Mater. Eng. Perform., 28: 1762 (2019). https://doi.org/10.1007/s11665-019-3880-6
  54. E.A. Krivonos and V.G. Solonenko, Vestnik DGTU, 7, No. 2 (33): 200 (2007) (in Russian).
  55. S.M. Yuan, L.T. Yan, W.D. Liu, and Q. Liu, J. Mater. Process. Technol., 211, No. 3: 356 (2011). https://doi.org/10.1016/j.jmatprotec.2010.10.009
  56. P.I. Patel and R.G. Tated, Comparison of effects of cryogenic treatment on different types of steels: a review, Int. Conf. Computational Intelligence (ICCIA, March 2012), vol. 9, p. 10.
  57. G. Plicht and H. Schillak, Cold rolling of metal using technical gases, 9th Int. & 4th Eur. Conf. Steel Rolling (Paris: 2006).
  58. H. Pawelski and H.-P. Richter, Application of low volume lubrication and liquid nitrogen in the finalstand of a tandem cold mill (Pittsburg: AISTech: 2008).
  59. S. A. Chopra and V. G. Sargade, Mater. Today: Proc., 2, Nos. 4–5: 1814 (2015). https://doi.org/doi:10.1016/j.matpr.2015.07.119
  60. Z.Y. Wang and K.P. Rajurkar, Wear, 239, No. 2: 168 (2000). https://doi.org/doi:10.1016/S0043-1648(99)00361-0