Pressure Welding through a Layer of Hydrocarbon Material: Electromagnetic Phenomena during the Diffusion Bonding Formation

JARTOVSKY O.V.$^{1}$ and LARICHKIN O.V.$^{2}$

$^1$Donbass State Engineering Academy, 72 Akademichna Str., UA-34313 Kramatorsk, Donetsk Region, Ukraine
$^2$JSC ‘Novokramatorsky Machine Building Plant’, 5 Oleksa Tykhy Str., UA-84305 Kramatorsk, Donetsk Region, Ukraine

Received 06.02.2022, final version 13.02.2024 Download PDF logo PDF

Abstract
The literary data dealing with the experimental studies concerning the influence of electromagnetic phenomena on the diffusion processes are reviewed and analysed. Based on the scientific facts presented in interdisciplinary experimental studies, a hypothesis is suggested. It is concerned with the influence of electromagnetic phenomena in the process of formation of a diffusion joint during pressure welding through a layer of a hydrocarbon substance. In the welded joint, at the initial moment of current transmission, energy is released during the explosion at the points of contact. When a pulsed electric current is passed through the pyrolysis products in microvolumes between the surfaces to be joined, they are also destroyed. Ionized particles are formed. Under the action of the pinch effect, they move to the centre of the welded joint. A capsule with ionized carbon particles is formed there. The ‘Coulomb explosion’ occurs in the capsule located in the middle of the joint. Multiple exposures of the surfaces by microexplosions in microvolumes between the surfaces to be joined and the final ‘Coulomb explosion’ of the capsule create the release of a large number of magnetic monopoles. This can be a determining and synergistic factor among a number of others in the formation of a welded joint. This makes it possible to explain the short time required for welding and the small deformations of the weld formation zone.

Keywords: pressure welding, hydrocarbon substances, electric explosion, electric current, diffusion.

DOI: https://doi.org/10.15407/ufm.25.01.114

Citation: O.V. Jartovsky and O.V. Larichkin, Pressure Welding through a Layer of Hydrocarbon Material: Electromagnetic Phenomena during the Diffusion Bonding Formation, Progress in Physics of Metals, 25, No. 1: 114–131 (2024)


References  
  1. N.F. Kazakov, Diffuzionnaya Svarka Materialov [Diffusion Welding of Materials] (Moskva: Mashinostroenie: 1976).
  2. M.L. Finkelshtein, Sposob Diffuzionnoy Svarki v Zashchitnoy Srede [Method of Diffusion Welding in Shielded Medium], Avtorskoe Svidetelstvo SSSR, No. 236223, Bul. 7 (1977) (in Russian).
  3. M.L. Finkelshtein, Sposob Diffuzionnoy Svarki [Method of Diffusion Welding], Avtorskoe Svidetelstvo SSSR, No. 244865, Bul. 21 (1976) (in Russian).
  4. N.F. Kazakov, A.V. Krivoshey, and E.G. Sudenkov, Sposob Diffuzionnoy Svarki Materialov v Gazoobraznykh Sredakh [Method of Diffusion Welding of Materials in a Gaseous Media], Avtorskoe svidettelstvo SSSR, No. 172606, Bul. 13 (1965) (in Russian).
  5. V.V. Gubarev, Yu.V. Kazakov, and M.L. Finkelshtein, Svarochnoe Proizvodstvo, No. 7: 49 (1976) (in Russian).
  6. S.P. Kocharmin, A.P. Semenov, and N.V. Guzev, Tezisy Dokladov XI Vsesoyuznoy Nauchnoy Konferentsii ‘Diffuzionnoe Soedinenie Metallicheskikh i Nemetallicheskikh Materialov (Moskva: 1984), Ch. 2, p. 49 (in Russian).
  7. O.V. Jartovsky and O.V. Larichkin, Prog. Phys. Met., 22, No. 3: 440 (2021). https://doi.org/10.15407/ufm.22.03.440
  8. N.B. Demkin, Kontaktirovanie Sherokhovatykh Poverkhnostey (Moskva: Nauka: 1970) (in Russian).
  9. A.E. Borisevich and S.L. Cherkas, Zh. Tekh. Fiz., 82, No. 10: 58 (2012) (in Russian).
  10. V.A. Morozov and S.S. Shipilov, Vestnik SPbGU, 1, No. 1: 96 (2012) (in Russian).
  11. M.I. Lerner and V.V. Shamanskiy, Zh. Strukt. Khim., 45: 112 (2004) (in Russian).
  12. A.V. Jartovsky, V. Manevich, and I. Lapsker, Metallofiz. Noveishie Tekhnol., 43, No. 9: 1195 (2021) (in Ukrainian). https://doi.org/10.15407/mfint.43.09.1195
  13. A.A. Rukhadze, L.I. Urutskoev, and D.V. Filippov, Kratkie Soobshcheniya po Fizike FIAN, No 4: 39 (2004) (in Russian).
  14. I.V. Kurchatov, Usp. Fiz. Nauk, LIX, 4: 603 (1956) (in Russian).
  15. A.G. Volkovich, A.P. Govorun, A.A. Gulyaev, S.V. Zhukov, V.L. Kuznetsov, A.A. Rukhadze, A.V. Steblevskiy, and L.I. Urutskoev, Kratkie Soobshcheniya po Fizike FIAN, No. 8: 45(2002) (in Russian).
  16. T.K. Ibraimov, N.A. Erkinbaeva, Y. Tashpolotov, and E. Sadykov, Vestnik Oshskogo Gosudarstvennogo Universiteta. Matematika, Fizika, Tekhnika, No. 1: 144 (2021) (in Russian).
  17. N.G. Ivoylov and L.I. Urutskoev, Prikladnaya Fizika, No. 5: 20 (2004) (in Russian).
  18. A.V. Vachaev and N.I. Ivanov, Ehnergetika i Tekhnologiya Strukturnykh Perekhodov: Uchebnoye Posobie (Magnitogorsk: MGMA: 1994) (in Russian).
  19. N.G. Ivoylov, M.M. Bikchantaev, O.A. Strebkov, Yu.E. Khalabuda, A.Kh. Gilmutdinov, A.V. Voloshin, and A.V. Protasov, Uchenye Zapiski Kazanskogo Gosudarstvennogo Universiteta. Fiziko-Matematicheskie Nauki, 151, No. 3: 52 (2009) (in Russian).
  20. L.I. Urutskoev and D.V. Filippov, Prikladnaya Fizika, No. 2: 30 (2004) (in Russian).
  21. G. Lochak, Prikladnaya Fizika, No. 3: 10 (2003) (in Russian).
  22. A.S. Agapov, A.V. Malyshev, V.A. Kalenskiy, Ch.B. Kaytukov, L.I. Urutskoev, D.V. Filippov, R.V. Ryabova, and A.V. Steblevskiy, Prikladnaya Fizika, No. 1: 37 (2007) (in Russian).
  23. L.I. Urutskoev, V.I. Niksonov, and V.G. Tsinoyev, Prikladnaya Fizika, No. 4: 83 (2000) (in Russian).
  24. L.I. Urutskoev and D.V. Filippov, Prikladnaya Fizika, No. 2: 30 (2004) (in Russian).
  25. L.I. Urutskoev, V.I. Liksonov, and V.G. Tsinoev, Zh. Radioelektroniki, No. 3: 20 (2000).
  26. Ya.B. Zeldovich and S.S. Gershtein, Usp. Fiz. Nauk, LXXI, 4: 581 (1960).
  27. S.V. Adamenko, Preprint LEI ‘PROTON-21’ (Kiev: 2004).
  28. S.V. Adamenko and A.S. Adamenko, Symp. New Projects and Lines of Research in Nuclear Physics (24–26 October 2002, Messina, Italy), p. 33.
  29. S.V. Adamenko, VIII Int. Conf. Nucleus–Nucleus Collisions (17–21 June 2003, Moskva), p. 237.
  30. V.V. Komarov, A.M. Popova, I.O. Stureyko, L. Shmidt, and X. Yungklas, VMU. Seriya 3. Fizika, Astronomiya, No. 1: 3 (2013) (in Russian).
  31. P. Szroeder, I.Yu. Sagalianov, T.M. Radchenko, V.A. Tatarenko, Yu.I. Prylutskyy, and W. Strupiński, Appl. Surf. Sci., 442: 185 (2018). https://doi.org/10.1016/j.apsusc.2018.02.150
  32. P. Szroeder, I. Sahalianov, T. Radchenko, V. Tatarenko, and Yu. Prylutskyy, Optical Mater., 96: 109284 (2019). https://doi.org/10.1016/j.optmat.2019.109284
  33. A.G. Solomenko, R.M. Balabai, T.M. Radchenko, and V.A. Tatarenko, Prog. Phys. Met., 23, No. 2: 147 (2022). https://doi.org/10.15407/ufm.23.02.147
  34. T.M. Radchenko, V.A. Tatarenko, and G. Cuniberti, Mater. Today: Proc., 35, Pt. 4: 523 (2021). https://doi.org/10.1016/j.matpr.2019.10.014
  35. I.Yu. Sagalianov, T.M. Radchenko, V.A. Tatarenko, and G. Cuniberti, EPL, 132: 48002 (2020). https://doi.org/10.1209/0295-5075/132/48002
  36. T.M. Radchenko, I.Yu. Sahalianov, V.A. Tatarenko, Yu.I. Prylutskyy, P. Szroeder, M. Kempiński, and W. Kempiński, Springer Proceedings in Physics: Nanooptics, Nanophotonics, Nanostructures, and Their Applications (Eds. O. Fesenko and L. Yatsenko) (Cham, Switzerland: Springer: 2018), vol. 210, Ch. 3, p. 25. https://doi.org/10.1007/978-3-319-91083-3_3
  37. D.M.A. Mackenzie, M. Galbiati, X.D. de Cerio, I.Y. Sahalianov, T.M. Radchenko, J. Sun, D. Peña, L. Gammelgaard, B.S. Jessen, J.D. Thomsen, P. Bøggild, A. Garcia-Lekue, L. Camilli, and J.M. Caridad, 2D Materials, 8, No. 4: 045035 (2021). https://doi.org/10.1088/2053-1583/ac28ab
  38. S.P. Repetsky, E.G. Len, and V.V. Lizunov, Metallofiz. Noveishie Tekhnol., 28, No. 8: 989 (2006).
  39. S.P. Repetsky, T.S. Len, and V.V. Lizunov, Metallofiz. Noveishie Tekhnol., 28, No. 9: 1143 (2006).
  40. S.V. Lizunova, V.B. Molodkin, B.V. Sheludchenko, and V.V. Lizunov, Metallofiz. Noveishie Tekhnol., 35, No. 11: 1585 (2013).
  41. E.G. Len, I.M. Melnyk, S.P. Repetsky, V.V. Lizunov, and V.A. Tatarenko, Materialwissenschaft und Werkstofftechnik, 42, No. 1: 47 (2011). https://doi.org/10.1002/mawe.201100729
  42. P. Prysyazhnyuk and D. Di Tommaso, Mater. Adv., 4, No. 17: 3822 (2023). https://doi.org/10.1039/d3ma00313b
  43. V.B. Molodkin, S.I. Olikhovskii, S.V. Dmitriev, A.I. Nizkova, and V.V. Lizunov, Acta Crystallographica Section A: Foundations and Advances, 76: 45 (2020). https://doi.org/10.1107/S2053273319014281
  44. V.B. Molodkin, S.I. Olikhovskii, S.V. Dmitriev, and V.V. Lizunov, Acta Crystallographica Section A: Foundations and Advances, 77: 433 (2021). https://doi.org/10.1107/S2053273321005775
  45. V.V. Lizunov, I.M. Zabolotnyy, Ya.V. Vasylyk, I.E. Golentus, and M.V. Ushakov, Prog. Phys. Met., 20, No. 1: 75 (2019). https://doi.org/10.15407/ufm.20.01.075
  46. O.S. Skakunova, S.I. Olikhovskii, T.M. Radchenko, S.V. Lizunova, T.P. Vladimirova, and V.V. Lizunov, Sci. Rep., 13: 15950 (2023). https://doi.org/10.1038/s41598-023-43269-6