The Impact of Nitriding Parameters on Evolution of Properties of Stainless-Steel Surface Plasma-Nitrided in Glow Discharge

BOLOTOV M.G., BOLOTOV G.P., and RUDENKO M.M.

Chernihiv Polytechnic National University, 95 Shevchenko Str., UA-14035, Chernihiv, Ukraine

Received 31.08.2023, final version 12.02.2024 Download PDF logo PDF

Abstract
Plasma nitriding in a glow discharge is a relatively new and extremely promising method of steel surface hardening. Ion-nitrided samples show a tendency to a longer lifespan during severe wear and cyclic loading compared to the traditional gas nitriding. However, a significant disadvantage of plasma thermochemical processes is their relatively long duration of about 20–30 hours. As a result, the surface treatment becomes inefficient and too expensive. As known, the properties of the nitrided layer, its phase composition and growth rate depend strongly on the parameters of the plasma nitriding (temperature, time, gas pressure, composition of the gas mixture, etc.). At the same time, there is still an open question regarding the choice of optimal modes of hardly-nitrided stainless-steels plasma nitriding, which will ensure of high treatment efficiency and obtaining of high-hardness strengthened layers with a controlled structural–phase composition. As established, to prevent the formation of Сr–N metastable phases’ precipitations on the surface of stainless steels, the appearance of which leads to deterioration of their corrosion performance, the treating temperatures should be limited: ≤ 450 °C. Low-temperature plasma nitriding provides the formation of a homogeneous nitrided layer of ‘white’ phase with a nitrogen concentration of 15 at.% and more. This phase ensures the nitrided-surface hardness of 1500 HV, which is by 4-to-5 times greater than the hardness of the untreated one. The possibility of the plasma-nitriding intensification by increasing the gas pressure in the reactor in the range from 130 to 400 Pa is shown. This provides an increase in the thickness of the nitrided layer and its hardness from ≈ 8 µm up to ≈ 18 µm and ≈ 700 HV up to ≈ 1500 HV, accordingly. Significant growth dynamics of the nitrided layer on the stainless-steels’ surfaces is achieved by determining the optimal 3-component gas mixture with a content of 55%Ar–30%N2–15%H2 that ensures the obtaining of a hardened layer with a thickness of ≈ 30 µm and a surface hardness of 1100 HV.

Keywords: glow discharge, plasma nitriding, thermochemical treatment, ion surface modification, stainless steels.

DOI: https://doi.org/10.15407/ufm.25.01.074

Citation: M.G. Bolotov, G.P. Bolotov, and M.M. Rudenko, The Impact of Nitriding Parameters on Evolution of Properties of Stainless-Steel Surface Plasma-Nitrided in Glow Discharge, Progress in Physics of Metals, 25, No. 1: 74–113 (2024)


References  
  1. K.H. Lo, C.H. Shek, and J.K.L. Lai, Recent developments in stainless steels, Mater. Sci. Eng. R, 65, Nos. 4–6: 39–104 (2009). https://doi.org/10.1016/j.mser.2009.03.001
  2. N.R. Baddoo, Stainless steel in construction: A review of research, applications, challenges and opportunities, J. Constr. Steel Res., 64, No. 11: 1199–1206 (2008). https://doi.org/10.1016/j.jcsr.2008.07.011
  3. K. Ram Mohan Rao, Corinne Nouveau, and Kalimi Trinadh, Low-temperature plasma nitriding of martensitic stainless steel, Trans. Indian Inst. Met., 73: 1695–1699 (2020). https://doi.org/10.1007/s12666-020-02013-8
  4. H. Dong, S-phase surface engineering of Fe–Cr, Co–Cr and Ni–Cr alloys, Int. Mater. Rev., 55, No. 2: 65–98 (2010). https://doi.org/10.1179/095066009X12572530170589
  5. M.G. Bolotov and I.O. Prybytko, Application of glow discharge plasma for cleaning (activation) and modification of metal surfaces while welding, brazing, and coating deposition, Prog. Phys. Met., 22, No. 1: 103–128 (2021). https://doi.org/10.15407/ufm.22.01.103
  6. A.A. Babad – Zahryapin, and G.D. Kuznetsov, Radiatsionno-Stimuliruemaya Khimiko-Termiceskaya Obrabotka [Radiational Stimulated Thermochemical Treatment] (Moskva: Ehnergoizdat: 1982) (in Russian).
  7. R.P. Cardoso, S.F. Brunatto, C.J. Scheuer, and S.F. Brunatto, Low-temperature nitriding kinetics, Encyclopedia of Iron, Steel, and Their Alloys (1st Edition) (New York: Taylor & Francis Group: 2016). https://doi.org/10.1081/E-EISA-120051669
  8. S.V. Pogorelov, I.V. Krasovskyi, V.A. Timaniuk, and N.G. Kokodii, Investigation of a glow discharge with a coaxial hollow cathode, East Eur. J. Phys., 2: 85–90 (2022). https://doi.org/10.26565/2312-4334-2022-2-10
  9. T. Borowski, B. Adamczyk-Ciesrlak, A. Brojanowska, K. Kulikowski, and T. Wierzchon, Surface modification of austenitic steel by various glow-discharge nitriding methods, Mater. Sci., 21: 376–381 (2015). https://doi.org/10.5755/j01.ms.21.3.7404
  10. Yu.M. Lahtin and Ya.D. Kogan, Azotirovanie Stali [Nitriding of Steel] (Moskva: Mashinostroyenie: 1976) (in Russian).
  11. B.М. Kramer, Requirements for wear-resistant coatings, Thin Solid Films, 108, No. 2: 117–125 (1983). https://doi.org/10.1016/0040-6090(83)90497-2
  12. R.W. Hoffnau, Stress distributions and thin film mechanical properties, Surface and Interface Analysis, 3, No. 1: 62–66 (1981). https://doi.org/10.1002/sia.740030113
  13. Yu.M. Lahtin and B.N. Arzamasov, Khimiko-Termicheskaya Obrabotka Metallov [Thermochemical Treatment of Metals] (Moskva: Metallurgiya: 1985) (in Russian).
  14. Rodrigo P. Cardoso, Marcio Mafra, and Silvio F. Brunatto, Low-temperature thermochemical treatments of stainless steels — an introduction, Plasma Science and Technology. Progress in Physical States and Chemical Reactions (Ed. Tetsu Mieno) (IntechOpen: 2016). https://doi.org/10.5772/61989
  15. B.N. Arzamasov, Khimiko-Termicheskaya Obrabotka Metallov v Aktivizirovannykh Gazovykh Sredakh [Thermochemical Treatment of Metals in the Active Gas Medium] (Moskva: Mashinostroyenie: 1979) (in Russian).
  16. T.L. Christiansen, T.S. Hummelshøj, and M.A.J. Somers, Expanded austenite, crystallography and residual stress, Surf. Eng., 26, 242–247 (2010). https://doi.org/10.1179/026708410X12506870724316
  17. Z. Balogh and G. Schmitz, Diffusion in Metals and Alloys, Phys. Metallurgy (5th Edition) (Elsevier: 2014), p. 387–559. https://doi.org/10.1016/B978-0-444-53770-6.00005-8
  18. Kai Wang, Xin Chen, Siyi Huang, Xingyu Chen, Zumin Wang, and Yuan Huang, Diffusion behavior determined by the new n-body potential in highly immiscible W/Cu system through molecular dynamics simulations, J. Mater. Res. Technol., 24: 3731–3745 (2023). https://doi.org/10.1016/j.jmrt.2023.04.068
  19. R.E. Cunningham and R.J.J. Williams, Constitutive equations of diffusion and wall effects, Diffusion in Gases and Porous Media (Boston, MA: Springer: 1980). https://doi.org/10.1007/978-1-4757-4983-0_4
  20. Y. Syrovatko and Y. Shtapenko, Determination of activation energy of surface diffusion based on thermal oscillations of atoms, Physics and Chemistry of Solid State, 22, No. 3: 522–528 (2021). https://doi.org/10.15330/pcss.22.3.522-528
  21. A.A. Babad-Zahryapin and G.D. Kuznecov, Khimiko-Termicheskaya Obrabotka v Tleyushchem Razriade [Thermochemical Treatment in a Glow Discharge] (Moskva: Atomizdat: 1975) (in Russian).
  22. A.V. Belyj, V.A. Kukareko, I.Yu. Tarasevich, S.K. Shih, and I.V. Boyarenko, Vliyanie Plotnosti Ionnogo Toka na Strukturnye Parametry i Svojstva Poverhnostnyh Sloev Hromosoderzhashih Splavov Zheleza, Modificirovannyh Ionami Azota [The Impact of Ion Current Density on The Structural Features And Properties of Surface Layer of Chromium Iron Alloys Modified by Nitrogen Atoms], Fizika i Khimiya Obrabotki Materialov, No. 4: 11–17 (2000) (in Russian).
  23. V.A. Moskvina, E.G. Astafurova, N.K. Galchenko, E.V. Melnikov, G.G. Mayer, V.A. Bataev, and I.A. Bataev, The effect of severe plastic deformation by high pressure torsion on structure and phase composition of high-nitrogen austenitic steel, AIP Conf. Proc., 1683, No. 1: 020153 (2015). https://doi.org/10.1063/1.4932843
  24. W.P. Tong, C.Z. Liu, W. Wang, N.R. Tao, Z.B. Wang, L. Zuo, and J.C. He, Gaseous nitriding of iron with a nanostructured surface layer, Scripta Mater., 57, No. 6: 533–536 (2007). https://doi.org/10.1016/j.scriptamat.2007.05.017
  25. A.P. Tschiptschin, A.S. Nishikawa, L.B. Varela, and C.E. Pinedo, Thermal stability of expanded austenite formed on a DC plasma nitrided 316L austenitic stainless steel, Thin Solid Films, 644: 156–165 (2017). https://doi.org/10.1016/j.tsf.2017.06.065
  26. A. Bekmurzayeva, W.J. Duncanson, H.S. Azevedo, and D. Kanayeva, Surface modification of stainless steel for biomedical applications: revisiting a century-old material, Mater. Sci. Eng., 93: 1073–1089 (2018). https://doi.org/10.1016/j.msec.2018.08.049
  27. T. Frączek, R. Prusak, M. Ogórek, and Z. Skuza, Nitriding of 316L steel in a glow discharge plasma, Materials, 15: 3081 (2022). https://doi.org/10.3390/ma15093081
  28. F. Borgioli, E. Galvanetto, and T. Bacci, Low temperature nitriding of AISI 300 and 200 series austenitic stainless steels, Vacuum, 127: 51–60 (2016). https://doi.org/10.1016/j.vacuum.2016.02.009
  29. K. Lin, X. Li, H. Dong, P. Guo, and D. Gu, Nitrogen mass transfer and surface layer formation during the active screen plasma nitriding of austenitic stainless steels, Vacuum, 148: 224–229 (2018). https://doi.org/10.1016/j.vacuum.2017.11.022
  30. V. Moskvina, G. Maier, E. Melnikov, S. Astafurov, E. Zagibalova, M. Panchenko, K. Reunova, A. Nikolaev, K. Ramazanov, and E. Astafurova, The effect of thin surface layer of nitrogen-expanded austenite on bulk γ–α′ phase transformation in low-temperature deformation of 316L stainless steel, Mater. Lett., 304: 130676 (2021). https://doi.org/10.1016/j.matlet.2021.130676
  31. Elieser Arajo, Rafael Bandeira, Marcos Manfrinato, Jeferson Moreto, and Roger Borges, Effect of ionic plasma nitriding process on the corrosion and micro-abrasive wear behavior of AISI 316L austenitic and AISI 470 super-ferritic stainless steels, J. Mater. Res. Technol., 8, No. 2: 2180–2191 (2019). https://doi.org/10.1016/j.jmrt.2019.02.006.
  32. G.E. Totten, L.C. Casteletti, F.A.P. Fernandes, and J. Gallego, Microstructural characterization of layers produced by plasma nitriding on austenitic and superaustenitic stainless steel grades, J. ASTM Int., 9, No. 2: 1–11 (2011). https://doi.org/10.1520/JAI103564
  33. F. Borgioli, A. Fossati, E. Galvanetto, and T. Bacci, Glow-discharge nitriding of AISI-316L austenitic stainless steel: influence of treatment temperature. Surf. Coat. Technol., 200: 2474–2480 (2005). https://doi.org/10.1016/j.surfcoat.2004.07.110
  34. M. Esfandiari and H. Dong, Improving the surface properties of A286 precipitation-hardening stainless steel by low-temperature plasma nitriding, Surf Coat Tech., 201: 6189–6196 (2007). https://doi.org/10.1016/j.surfcoat.2006.11.013
  35. J.F.V. Lima, C.J. Scheuer, S.F. Brunatto, and R.P. Cardoso, Kinetics of the UNS S32750 super duplex stainless steel low-temperature plasma nitriding, Mater. Res., 25: e20210463 (2022). https://doi.org/10.1590/1980-5373-mr-2021-0463
  36. X, Li, W. Dou, L. Tian, and H. Dong, Combating the tribo-corrosion of LDX2404 lean duplex stainless steel by low temperature plasma nitriding. Lubricants, 6, No. 4: 93 (2018). https://doi.org/10.3390/lubricants6040093
  37. A.P. Tschiptschin, L.B. Varela, C.E. Pinedo, X.Y. Li, and H. Dong, Development and microstructure characterization of single and duplex nitriding of UNS S31803 duplex stainless steel, Surf. Coat. Technol., 327: 83–92 (2017). https://doi.org/10.1016/j.surfcoat.2017.08.018
  38. A. Fossati, F. Borgioli, E. Galvanetto, and T. Bacci, Glow-discharge nitriding of AISI-316L 170 austenitic stainless steel: influence of treatment time. Surf. Coat. Technol., 200: 3511–3517 (2006). https://doi.org/10.1016/j.surfcoat.2004.10.122
  39. Carlos E. Pinedo and Waldemar A. Monteiro, On the kinetics of plasma nitriding a martensitic stainless steel type AISI 420, Surf. Coat. Technol., 179, Nos. 2–3: 119–123 (2004). https://doi.org/10.1016/S0257-8972(03)00853-3
  40. M. Lepicka and G. Małgorzata, Effect of heat treatment and plasma nitriding on corrosion resistance of 440B martensitic stainless steel, Acta Mechanica et Automatica, 7, No. 3: 156–159 (2014). https://doi.org/10.2478/ama-2014-0028
  41. L. Ferreira, S.F. Brunatto, and R.P. Cardoso, Martensitic stainless steels low-temperature nitriding: dependence of substrate composition, Mater. Res., 18, No. 3: 622–627 (2015). https://doi.org/10.1590/1516-1439.015215
  42. Hongyu Shen and Liang Wang, Mechanism and properties of plasma nitriding AISI 420 stainless steel at low temperature and anodic (ground) potential, Surf. Coat. Technol., 403: 126390 (2020). https://doi.org/10.1016/j.surfcoat.2020.126390
  43. C.J. Scheuer, R.P. Cardoso, M. Mafra, and S.F. Brunatto, AISI 420 martensitic stainless steel low-temperature plasma assisted carburizing kinetics. Surf Coat Tech., 214: 30–37 (2013). https://doi.org/10.1016/j.surfcoat.2012.10.060
  44. C.J. Scheuer, A.C. Gralak, F.I. Zanetti, T.F. Amaral, R. Pereira, S.F. Brunatto, and R.P. Cardoso, Effect of plasma nitriding parameters on surface properties of low-temperature nitrided AISI 420 martensitic stainless steel, Conference Proc.: 68th ABM International Congress (2013), p. 3733–3743.
  45. Y. Li, Y. He, J. Xiu, W. Wang, Y. Zhu, and B. Hu, Wear and corrosion properties of AISI 420 martensitic stainless steel treated by active screen plasma nitriding, Surf. Coat. Technol., 329: 184–192 (2017). https://doi.org/10.1016/j.surfcoat.2017.09.021
  46. D. Kusmic, O. Cech, and L. Klakurkov, Corrosion resistance of ferritic stainless steel X12Cr13 after application of low-temperature and high-temperature plasma nitriding, Manufacturing Technol., 21, No. 1: 98–104 (2021). https://doi.org/10.21062/mft.2021.013
  47. S.Y. Sirin and E. Kaluc, Structural surface characterization of ion nitrided AISI 4340 steel, Mater. Design, 36: 741–747 (2012). https://doi.org/10.1016/j.matdes.2011.12.025
  48. W. Tuckart, E. Forlerer, and L. Iurman, Delayed cracking in plasma nitriding of AISI 420 stainless steel, Surf. Coat. Technol., 202: 199–202 (2007). https://doi.org/10.1016/j.surfcoat.2007.04.107
  49. A.N. Allenstein, C.M. Lepienski, A.J.A. Buschinelli, and S.F. Brunatto, Plasma nitriding using high H2 content gas mixtures for a cavitation erosion resistant steel, Appl. Surf. Sci., 277: 15–24 (2013). https://doi.org/10.1016/j.apsusc.2013.03.055
  50. O. Comakli, A.F. Yetim, B. Karaca, and A. Celik, Effect of gas mixture on tribological performance of plasma nitrided grey cast iron under dry and lubricated conditions, Mater. Res. Express, 6, No. 5: (2019). https://doi.org/10.1088/2053-1591/ab012b
  51. Li Zhong and Xi Han, Influence of Hydrogen on the Plasmas Nitriding Process of 35CrMo Steel, Advanced Mater. Res., 295–297: 1004–1009 (2011). https://doi.org/10.4028/www.scientific.net/AMR.295-297.1004
  52. K. Ram Mohan Rao, Kalimi Trinadh, and Corinne Nouveau, Elevated temperature plasma nitriding and effects on electrochemical properties of steel, Mater. Today: Proc., 19, No. 2: 867–869 (2019). https://doi.org/ff10.1016/j.matpr.2019.08.227ff
  53. M.K. Sharma, B.K. Saikia, A. Phukan and B. Ganguli, Plasma nitriding of austenitic stainless steel in N2 and N2–H2 dc pulsed discharge. Surf. Coat. Technol., 201: 2407–2413 (2006). https://doi.org/10.1016/j.surfcoat.2006.04.006
  54. Liang Wang, Shijun Ji, and Juncai Sun, Effect of nitriding time on the nitrided layer of AISI-304 austenitic stainless steel. Surf. Coat. Technol., 200: 5067–5070 (2006). https://doi.org/10.1016/j.surfcoat.2005.05.036
  55. Liang Wang, Yang Li, and Xuemin Wu, Plasma nitriding of low alloy steels at floating and cathodic potentials, Appl. Surf. Sci., 254, No. 20: 6595–6600 (2008). https://doi.org/10.1016/j.apsusc.2008.04.027
  56. J. Baranowska, Characteristic of the nitride layers on the stainless steel at low temperature, Surf. Coat. Technol., 180–181: 145–149 (2004). https://doi.org/10.1016/j.surfcoat.2003.10.056
  57. Xu Xiaolei, Wang Liang, Yu Zhiwei, and Hei Zukun, A comparative study on microstructure of the plasma-nitrided layers on austenitic stainless steel and pure Fe, Surf. Coat. Technol., 192, Nos. 2–3: 220–224 (2005). https://doi.org/10.1016/j.surfcoat.2004.04.085
  58. B.N. Arzamasov, A.G. Bratuhin, Yu.S. Eliseev, and T.A. Panajoti, Ionnaya Khimiko-Termicheskaya Obrabotka Splavov [Ion Thermochemical Treatment of Alloys] (Moskva: Izd. MGTU im. Baumana: 1999) (in Russian).
  59. G.P. Bolotov, M.G. Bolotov, and S.M. Yushchenko, Stabilization of a high-current glow discharge under the welding conditions, 2018 IEEE 38th Int. Conf. Electronics and Nanotechnology (ELNANO) (24–26 April 2018, Kyiv) (Kyiv: 2018). https://doi.org/10.1109/ELNANO.2018.8477494
  60. G.P. Bolotov, M.G. Bolotov, and S.A. Stepenko, The ways of stabilization of high-current glow discharge in welding, 2018 IEEE 3rd Int. Conf. Intelligent Energy and Power Systems (IEPS) (10–14 September 2018, Kharkiv) (Kharkiv: 2018). https://doi.org/10.1109/IEPS.2018.8559580
  61. M.G. Bolotov and G.P. Bolotov, Elimination of electric arc stabilization in precision welding with high-current dc glow discharge, 2019 IEEE 39th Int. Conf. Electronics and Nanotechnology (ELNANO-2019) (16–18 April 2019, Kyiv) (Kyiv: 2019). https://doi.org/10.1109/ELNANO.2019.8783845
  62. M.G. Bolotov and G.P. Bolotov, Criterial definition of the limits of glow discharge energy stability in welding, 2019 IEEE 2nd Ukraine Conf. Electrical and Computer Engineering (UKRCON) (02–06 July 2019, Lviv) (Lviv: 2019). https://doi.org/10.1109/UKRCON.2019.8879992
  63. M. Bolotov, G. Bolotov, S. Stepenko, and P. Ihnatenko, Impact of the samples’ surface state on the glow discharge stability in the metals’ treatment and welding processes, Appl. Sci., 11, No. 4: 1765 (2021). https://doi.org/10.3390/app11041765
  64. Yu.P. Raizer, Fizika Gazovogo Razryada [Gas Discharge Physics] (Moskva: Nauka: 1987) (in Russian).
  65. E.V. Berlin, N.N. Koval, and L.A. Sejdman, Plazmennaya himiko-termicheskaya obrabotka poverhnosti stalnyh detalej [Plasma thermochemical treatment of steel samples surfaces] (Moskva: Tekhnosfera: 2012) (in Russian).
  66. T.A. Panajoti, Sozdanie maksimalnoj nasyshayushej sposobnosti gazovoj sredy pri ionnom azotirovanii splavov. [Creation of maximum saturating ability of a gas medium during ion nitride of steels], Fizika i Khimiya Obrabotki Materialov, 4: 70–78 (2003).
  67. F. Borgioli, A. Fossati, E. Galvanetto, T. Bacci, and G. Pradelli, Glow discharge nitriding of AISI-316L austenitic stainless steel: Influence of treatment pressure. Surf. Coat. Technol., 200, No. 11: 5505–5513 (2006). https://doi.org/10.1016/j.surfcoat.2005.07.073
  68. S. Wang, W. Cai, J. Li, W. Wei, and J. Hu, A novel rapid D.C. plasma nitriding at low gas pressure for 304 austenitic stainless steel, Mater. Lett., 105: 47–49 (2013). https://doi.org/10.1016/j.matlet.2013.04.031
  69. S. Lu, X. Zhao, S. Wang, J. Li, W. Wei, and J. Hu, Performance enhancement by plasma nitriding at low gas pressure for 304 austenitic stainless steel. Vacuum, 145: 334–339 (2017). https://doi.org/10.1016/j.vacuum.2017.09.020
  70. F. Borgioli, E. Galvanetto, and T. Bacci, Influence of surface morphology and roughness on water wetting properties of low temperature nitrided austenitic stainless steels, Mater. Charact., 95: 278–284 (2014). https://doi.org/10.1016/j.matchar.2014.07.006
  71. S. Guruvenket, D. Li, J.E. Klemberg-Sapieha, L. Martinu, and J. Szpunar, Mechanical and tribological properties of duplex treated TiN, nc-TiN/a-SiNx and nc-TiCN/a-SiCN coatings deposited on 410 low alloy stainless steel, Surf. Coat. Technol., 203, No. 19: 2905–2911 (2009). https://doi.org/10.1016/j.surfcoat.2009.03.009
  72. J-D. Kamminga, D. Doerwald, M. Schreurs, and G.C.A.M. Janssen, Industrial feasibility of the nitrocoat process, Surf. Coat. Technol., 200, No. 5: 1837–1841 (2005). https://doi.org/10.1016/j.surfcoat.2005.08.008
  73. K.G. Kostov, M. Ueda, M. Lepiensky, P.C. Soares Jr., G.F. Gomes, M.M. Silva, and H. Reuther, Surface modification of metal alloys by plasma immersion ion implantation and subsequent plasma nitriding, Surf. Coat. Technol., 186, No. 1: 204–208 (2004). https://doi.org/10.1016/j.surfcoat.2004.04.027
  74. Linda Gil, Sonia Bruhl, Lorena Jimenez, Ovidio Leon, Rafael Guevara, and Mariana H. Staia, Corrosion performance of the plasma nitrided 316L stainless steel, Surf. Coat. Technol., 201, No. 7: 4424–4429 (2006). https://doi.org/10.1016/j.surfcoat.2006.08.081
  75. M. Lepicka and M. Grądzka-Dahlke, Effect of plasma nitriding process conditions on corrosion resistance of 440B martensitic stainless steel, Acta Mechanica et Automatica, 8, No. 3: 156–159 (2014). https://doi.org/10.2478/ama-2014-0028
  76. A. Sitko, M. Szkodo, and M. Gazda, The influence of gas mixture in the glow-discharge nitriding process of austenitic stainless steel on characteristic of nitrided cases, Key Eng. Mater., 490: 282–287 (2012). https://doi.org/10.4028/www.scientific.net/KEM.490.282
  77. Saeid Amiri and Masoud Moradshahi, Influence of different layer microstructures induced by different gas compositions on corrosion behavior of plasma nitrided stainless steel, Surf. Coat. Technol., 201, Nos. 16–17: 7375–7381 (2007). https://doi.org/10.1016/j.surfcoat.2007.02.006.
  78. C.A. Figueroa and F. Alvarez, New pathways in plasma nitriding of metal alloys, Surf. Coat. Technol., 200: 498–501 (2005). https://doi.org/10.1016/j.surfcoat.2005.02.089
  79. C.A. Figueroa, S. Weber, T. Czerwiec, and F. Alvarez, Oxygen, hydrogen, and deuterium effects on plasma nitriding of metal alloys, Sripta Mater., 54, No. 7: 1335 (2006). https://doi.org/10.1016/j.scriptamat.2005.12.013
  80. M.K. Sharma, B.K. Saikia, and S. Bujarbarua, Optical emission spectroscopy of DC pulsed plasmas used for steel nitriding, Surf. Coat. Technol., 203, No. 3: 229–233 (2008). https://doi.org/10.1016/j.surfcoat.2008.08.036
  81. Yu.G. Husainov, K.N. Ramazanov, R.S. Esipov, and G.B. Isyandavletova, Vliyanie vodoroda na process ionnogo azotirovaniya austenitnoi stali 12H18N10 [Influence of hydrogen on the ion nitriding process of austenitic stainless steels], Vestnik UGATU, 21, No. 2: 24–29 (2017) (in Russian).
  82. A.I. Yunusov, Vliyanie sostava gazovoj sredy na process ionnogo azotirovaniya martensitnoj stali 15H16K5N2MVFAB-Sh [The influence of gas mixture on the process of ion nitriding of martensitic steel 15Cr16K5N2MVFAB-Sh], Int. J. Vestnik Nauki, 5, No. 62: 854–864 (in Russian).
  83. P.V. Kaplun, E.B. Soroka, and A.V. Snozik, The impact of hydrogen-free ion nitriding on physicomechanical and performance characteristics of hard alloys T5K10 and T15K6, J. Superhard. Mater., 40: 384–391 (2018). https://doi.org/10.3103/S1063457618060035
  84. R.P. Cardoso, C.E.M. Zarbin, C.J. Scheuer, and S.F. Brunatto, Corrosion resistance of plasma nitrided AISI 420 martensitic stainless steel: influence of the pretreatment and treatment temperature, 69 Congresso Anual da ABM – Internacional, 69, No. 69: 7995–8005 (2014). https://doi.org/10.5151/1516-392X-24785
  85. T.M. Radchenko, O.S. Gatsenko, V.V. Lizunov, and V.A. Tatarenko, Martensitic α″-Fe16N2-type phase of non-stoichiometric composition: current status of research and microscopic statistical-thermodynamic model, Prog. Phys. Met., 21, No. 4: 580–618 (2020). https://doi.org/10.15407/ufm.21.04.580
  86. K.H. Levchuk, T.M. Radchenko, and V.A. Tatarenko, High-temperature entropy effects in tetragonality of the ordering interstitial–substitutional solution based on body-centred tetragonal metal, Metallofiz. Noveishie Tekhnol., 43, No. 1: 1–26 (2021) (in Ukrainian). https://doi.org/10.15407/mfint.43.01.0001
  87. T.M. Radchenko, O.S. Gatsenko, V.V. Lizunov, and V.A. Tatarenko, Fundamentals of Low-Dimensional Magnets (1st Edition) (Eds. R.K. Gupta, S.R. Mishra, and T.A. Nguyen) (Boca Raton: Taylor & Francis, CRC Press: 2022), Ch. 18, p. 343–364. https://doi.org/10.1201/9781003197492-18