Synthetic-Hydroxyapatite-Based Coatings on the Ultrafine-Grained Titanium and Zirconium Surface

A. T. Turdaliev$^1$, M. A. Latypova$^2$, and E. N. Reshotkina$^3$

$^1$International Transport and Humanitarian University, 32 Zhetisu 1 Microdistrict, 050063 Almaty, Kazakhstan
$^2$Karaganda Industrial University, 30 Republic Ave., 101400 Temirtau, Kazakhstan
$^3$‘ArcelorMittal Temirtau’ Corporation, 1 Republic Ave., 101400 Temirtau, Kazakhstan

Received 27.06.2023; final version — 17.11.2023 Download PDF logo PDF

Abstract
The development of biocompatible materials is a multidisciplinary task and requires the interaction of physicists, chemists, biologists, and physicians, since the functional reliability of materials depends on their biochemical, cellular, tissue, and biomechanical compatibility. This area has been developing intensively in recent years, resulting in numerous research articles. As assumed, the composition of the biocompatible coating of the new generation should coincide as much as possible with the composition of natural human bone and be able to simulate bone tissue on its surface. As a result of the approximation of the phase-structural state and properties of the resulting coatings on implants to the parameters of bone tissue, improved compatibility between them can be achieved. When forming biocompatible coatings, special attention is paid to creating a definite relief (roughness) on the implant surface. There is a current search for new technological solutions for creating a biocompatible rough surface on implants that ensures reliable integration of the implant into bone tissue, since existing technologies do not fully meet state-of-the-art medical requirements.

Keywords: ultrafine-grained materials, titanium, zirconium, coating, implant.

DOI: https://doi.org/10.15407/ufm.24.04.792

Citation: A. T. Turdaliev, M. A. Latypova, and E. N. Reshotkina, Synthetic-Hydroxyapatite-Based Coatings on the Ultrafine-Grained Titanium and Zirconium Surface, Progress in Physics of Metals, 24, No. 4: 792–818 (2023)


References  
  1. E. Chicardi, C.F. Gutiérrez-González, M.J. Sayagués, and C. García-Garrido, Materials and Design, 145: 88–96 (2018); https://doi.org/10.1016/j.matdes.2018.02.042
  2. K.M. Reyes, N.K. Kuromoto, A.P.R. Alves Claro, and C.E.B. Marino, Mater. Res. Express, 4: 075402 (2017); https://doi.org/10.1088/2053-1591/aa6ee4
  3. I.E. Volokitina, Metal Science and Heat Treatment, 63, Nos. 3–4: 163 (2021); https://doi.org/10.1007/s11041-021-00664-y
  4. I.E. Volokitina, Journal of Chemical Technology and Metallurgy, 55: 479 (2020).
  5. S. Lezhnev, A. Naizabekov, and E. Panin, Procedia Engineering, 81: 1499 (2014); https://doi.org/10.1016/j.proeng.2014.10.180
  6. B. Sapargaliyeva, A. Agabekova, G. Ulyeva, A. Yerzhanov, and P. Kozlov, Case Studies in Construction Materials, 18: e02162 (2023); https://doi.org/10.1016/j.cscm.2023.e02162
  7. S. Syrlybekkyzy, R. Fediuk, A. Yerzhanov, R. Nadirov, A. Utelbayeva, A. Agabekova, M. Latypova, L. Chepelyan, N. Vatin, A. Kolesnikov, and M. Amran, Materials, 15: 6980 (2022); https://doi.org/10.3390/ma15196980
  8. M.A. Latypova, V.V. Chigirinsky, and A.S. Kolesnikov, Progress in Physics of Metals, 24: 132–156 (2023); https://doi.org/10.15407/ufm.24.01.132
  9. A. Naizabekov, S. Lezhnev, E. Panin, A. Arbuz, T. Koinov, and I. Mazur, Materials Engineering and Performance, 28: 200–210 (2019); https://doi.org/10.1007/s11665-018-3790-z
  10. C.E. Lekka, J.J. Gutiérrez-Moreno, and M. Calin, Journal of Physics and Chemistry of Solids, 102: 49–61 (2017); https://doi.org/10.1016/j.jpcs.2016.10.013
  11. I.V. Okulov, A.S. Volegov, H. Attar, M. Bönisch, S. Ehtemam-Haghighi, M. Calin, and J. Eckert, Journal of the Mechanical Behavior of Biomedical Materials, 65: 866–871 (2017); https://doi.org/10.1016/j.jmbbm.2016.10.013
  12. S. Lezhnev and A. Naizabekov, Journal of Chemical Technology and Metallurgy, 52(4): 626-635 (2017).
  13. S. Lezhnev, A. Naizabekov, and A. Volokitin, Procedia Engineering, 81: 1505–1510 (2014); https://doi.org/10.1016/j.proeng.2014.10.181
  14. A. Bychkov and A. Kolesnikov, Metallography, Microstructure, and Analysis, 12, No. 3: 564–566 (2023); https://doi.org/10.1007/s13632-023-00966-y
  15. I.E. Volokitinа and A.V. Volokitin, Metallurgist, 67: 232-239 (2023); https://doi.org/10.1007/s11015-023-01510-7
  16. A. Kolesnikov and O. Kolesnikova, Metallurgist, 66, Nos. 11–12: 1601–1606 (2023).
  17. A. Volokitin, A. Naizabekov, and I. Volokitina, Journal of Chemical Technology and Metallurgy, 57: 809 (2022).
  18. I.E. Volokitina, A.V. Volokitin, and E.A. Panin, Metallography, Microstructure, and Analysis, 11: 673–675 (2023); https://doi.org/10.1007/s13632-022-00877-4
  19. A. Naizabekov, A. Arbuz, S. Lezhnev, and E. Panin, Physica Scripta, 94, No. 10: 105702 (2019); https://doi.org/ 10.1088/1402-4896/ab1e6e
  20. W. Lacefield, An Introduction in Bioceramics (New York: 1996).
  21. Y. Ikarashi, T. Tsuchiya, and A. Nakamura, Proc. Fifth World Biomaterials Congress (Toronto: Canada: 1996).
  22. S.G. Steinemann and S.M. Persen, Ti’84 Science and Technology (DGM: 1984).
  23. R. Thull, Z. Mitteilungen, 82: 39–45 (1992).
  24. R. Thull, Medical Progress Through Technology, 5: 103–112 (1977).
  25. B. Kasemo and J. Lausmaa, Osseointegration in Clinical Dentistry: 99–115 (1985).
  26. E. Merian, Analytik und Biologische Relevanz. Weinheim. Verlag Chemie, 12–17 (1984).
  27. G.K. Smith, Systematic Aspects of Biocompatibility, II: 1–22 (1981).
  28. K. Gomi, S. Saiton, M. Kanazashi, T. Arai, and J. Nakamura, Proc. Fifth World Biomaterial Congress (1996), p. 741.
  29. N. Vasilyeva, R. Fediuk, and A. Kolesnikov, Materials, 15: 3975 (2022); https://doi.org/10.3390/ma15113975
  30. A.B. Nayzabekov and I.E. Volokitina, Physics of Metals and Metallography, 120, No. 2: 177–183 (2019); https://doi.org/10.1134/S0031918X19020133
  31. E. Palazzo, International Journal of Legal Medicine, 125: 21–26 (2009); https://doi.org/10.1007/s00414-009-0394-z
  32. S.M. Jafari, Clinical Orthopaedics and Related Research, 468: 2046–2051 (2010); https://doi.org/10.1007/s11999-010-1251-6
  33. S. Mandl and B. Rauenbach, Surface and Coatings Technology, 156: 583–589 (2002); https://doi.org/10.1016/S0257-8972(02)00085-3
  34. R.Z. Valiev, A.V. Sergueeva, and A.K. Mukherjee, Scripta Mater., 49: 666–674 (2003); https://doi.org/10.1016/S1359-6462(03)00395-6
  35. M. Hawryluk, J. Ziemba, and P. Sadowski, Materials Science, 50: 74–78 (2017); https://doi.org/10.1177/0020294017707161
  36. A.B. Naizabekov and S.N. Lezhnev, Metal Science and Heat Treatment, 57, No. 5–6: 254–260 (2015); https://doi.org/ 10.1007/s11041-015-9870-x.
  37. S. Lezhnev and E. Panin, Advanced Materials Research, 814: 68–75 (2013); https://doi.org/10.4028/www.scientific.net/AMR.814.68
  38. I.E. Volokitina, Metal Science and Heat Treatment, 61: 234 (2019); https://doi.org/10.1007/s11041-019-00406-1
  39. G. Raab, A. Raab, R. Asfandiyarov, and E. Fakhretdinova, Non-Eequilibrium Phase Transformations, 1: 10–11 (2017).
  40. S. Dobatkin, J. Zrnik, and I. Mamuzi, Metalurgija, 49: 343–347 (2010).
  41. I.E. Volokitina, Metal Science and Heat Treatment, 62: 253 (2020); https://doi.org/10.1007/s11041-020-00544-x
  42. I. Volokitina and A. Volokitin, Physics of Metals and Metallography, 119, No. 9: 917–921 (2018); https://doi.org/ 10.1134/S0031918X18090132
  43. A. Naizabekov and E. Panin, Journal of Materials Engineering and Performance, 28, No. 3: 1762 (2019).
  44. R.Z. Valiev, Investigations and Applications of Severe Plastic Deformation (Netherlands: Springer: 2000), p. 221–230.
  45. E. Mostaed, A. Fabrizi, F. Bonollo, and M. Vedani, Metallurgia Italiana, 107, No. 11: 5–12 (2016).
  46. N. Zhangabay, B. Sapargaliyeva, U. Suleimenov, K. Abshenov, A. Utelbayeva, K. Baibolov, R. Fediuk, D. Arinova, B. Duissenbekov, A. Seitkhanov, and M. Amran, Materials, 15: 5732 (2022); https://doi.org/10.3390/ma15165732
  47. C. Banjongprasert, A. Jak-Ra, C. Domrong, U. Patakham, W. Pongsaksawad, and T. Chairuangsri, Archives of Metallurgy and Materials, 60: 887–890 (2015); https://doi.org/10.1515/amm-2015-0224.
  48. M.I. Latypov, M.G. Lee, Y. Beygelzimer, D. Prilepo, Y. Gusar, and H.S. Kim, Metallurgical and Materials Transactions A, 47: 1248–1260 (2016); https://doi.org/10.1007/s11661-015-3298-1
  49. I.E. Volokitina, Journal of Chemical Technology and Metallurgy, 57: 631–636 (2022).
  50. A. Volokitin and D. Kuis, Journal of Chemical Technology and Metallurgy, 56, No. 3: 643–647 (2021).
  51. I.E. Volokitina, A.V. Volokitin, and E.A. Panin, Progress in Physics of Metals, 23, No. 4: 684–728 (2022); https://doi.org/10.15407/ufm.23.04.684
  52. G.A. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, R.V. Safiulin, R.Y. Lutfullin, O.N. Senkov, F.H. Froes, and O.A. Kaibyshev, Journal of Materials Processing Technology, 116: 265–268 (2001); https://doi.org/10.1016/S0924-0136(01)01037-8
  53. S.V. Zherebtsov, G.A. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, S.Y. Mironov, and S.L. Semiatin, Scripta Mater., 51: 1147–1151 (2004); https://doi.org/ 10.1016/j.scriptamat.2004.08.018
  54. B.B. Straumal, A.A. Mazilkin, S.G. Protasova, D. Goll, B. Baretzky, A.S. Bakai, and S.V. Dobatkin, Kovove Mater., 49: 17–22 (2011); https://doi.org/10.4149/km-2011-1-17
  55. Y.G. Ko, W.S. Jung, D.H. Shin, and C.S. Lee, Scripta Mater., 48: 197–202 (2003); https://doi.org/10.1016/s1359-6462(02)00356-1
  56. S.M. Kim, J. Kim, D.H. Shin, Y.G. Ko, C.S. Lee, and S.L. Semiatin, Scripta Mater., 50: 927–930 (2004); https://doi.org/10.1016/j.scriptamat.2004.01.020
  57. S.L. Semiatin and T.R. Bieler, Acta Mater., 49: 3565–3573 (2001).
  58. A. Ambard, L. Guetaz, F. Louchet, and D. Guichard, Mater. Sci. Eng. A, 319–321: 404–408 (2001); https://doi.org/10.1016/S0921-5093(00)02003-7
  59. G.H. Atmaram, H. Mohammed, and F.J. Biomater, Med. Devices Artif. Organ, 99–104 (1979).
  60. Y. Sharkeev, A. Eroshenko, E. Legostaeva, Z. Kovalevskaya, O. Belyavskaya, M. Khimich, M. Epple, O. Prymak, V. Sokolova, Q. Zhu, S. Zeming, and Z. Hongju, Metals, 12, No. 7: 1136 (2022); https://doi.org/10.3390/met12071136
  61. N.V. Bekrenev, V.N. Liasnikov, and D.V. Trofimov, Method of Plasma Spraying of Coatings. Patent RF No. 2283364 (Published 10.09.2006).
  62. P. Prevey, J. Thermal Spray Tech., 9: 369–376 (2000).
  63. K.D. Roger and S.E. Etok, J. Mater. Sci., 39: 5747–5754 (2004); https://doi.org/10.1023/B:JMSC.0000040085.43633.8a
  64. L.A. De Sena, M.C. Andrade, A.M. Rossi, and G.D. Soares, J. Biomed. Mater. Res., 60: 1–7 (2002); https://doi.org/ 10.1002/jbm.10003
  65. E.P. Aves and G.F. Estevez, J. Mater. Sci., 20: 543–547 (2009); https://doi.org/10.1007/s10856-008-3609-9
  66. H-W. Kim, H-E. Kim, and J.C. Knowles, J. Amer. Ceram. Soc., 88: 154–159 (2005).
  67. T. Kokubo and H. Takadama, Biomaterials, 27: 2907–2915 (2006); https://doi.org/ 10.1016/j.biomaterials.2006.01.017
  68. X. Chen, A. Nouri, and Y. Li, Biotechnol. Bioeng., 101: 378–387 (2008); https://doi.org/10.1002/bit.21900
  69. A.R. Boyd, B.J. Meenan, and N.S. Leyland, Surface and Coating Technology, 200, Nos. 20–21: 6002–6013 (2006); https://doi.org/10.1016/j.surfcoat.2005.09.032
  70. V.F. Pichugin, M.A. Surmeneva, R.A. Surmenev, I.A. Khlusov, and M. Epple, Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques, 5, No. 5: 863–869 (2011); https://doi.org/10.1134/S1027451011090138
  71. R.A. Surmenev, Surf. Coat. Technol., 206, Nos. 8–9: 2035–2056 (2012); https://doi.org/10.1016/j.surfcoat.2011.11.002
  72. Y.N. Tyurin and A.P. Arbuzov, Method of Applying Detonation Coating. USSR Author’s Cert. No. 1045491 (1983).
  73. V.A. Popov and E.A. Mironov, Installation for the Detonation Spraying of Powder Materials. Inventor’s Note. USSR Author’s Cert. No. 551053.
  74. V.V. Stolyarov, Journal of Ultrafine Grained and Nanostructured Materials, 55, No. 1: 10–14 (2022); https://doi.org/10.22059/jufgnsm.2022.01.02
  75. M. Asgari, M. Honarpisheh, and H. Mansouri, Journal of Ultrafine Grained and Nanostructured Materials, 53, No. 1: 48–59 (2020); https://doi.org/10.22059/jufgnsm.2020.01.07
  76. W.B. Donohue and C. Maseres, Oral Maxillofac Surgery, 48: 1196–1200 (1990).
  77. L. Tuantuan and H. Aoki, 12th Eur. Conf. on Biomaterials (1995), p. 63.
  78. C.M. Horwitz, J. Vac. Sci. Technol. Bd., 1: 60–68 (1983).
  79. W.S. Harun, R.I. Asri, J. Alias, F.H. Zulkifli, K. Kadirgama, S.A. Ghani, and J.H. Shariffuddin, Ceramics International, 44: 1250–1268 (2018); https://doi.org/10.1016/j.ceramint.2017.10.162
  80. S. Vahabzadeh, M. Roy, and A. Bandyopadhyay, Acta Biomaterialia, 17: 47–55 (2015); https://doi.org/10.1016/j.actbio.2015.01.022
  81. H. Melero, M. Torrell, J. Fernández, J.R. Gomes, and J.M. Guilemany, Wear, 305: 8–13 (2013); https://doi.org/10.1016/j.wear.2013.05.009
  82. B. Fotovvati, N. Namdari, and A. Dehghanghadikolaei, Journal of Manufacturing and Materials Processing, 3, No. 1: 28–32 (2019); https://doi.org/10.3390/jmmp3010028
  83. G. Choi, A.H. Choi, L.A. Evans, S. Akyol, and B. Ben-Nissan, Journal of the American Ceramic Society, 103, No. 10: 5442–5453 (2020); https://doi.org/10.1111/jace.17118
  84. A.V. Rane, K. Kanny, V.K. Abitha, and S. Thomas, Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites, Synthesis of inorganic nanomaterials (Woodhead Publishing: 2018), Ch. 4, p. 121–139; https://doi.org/10.1016/B978-0-08-101975-7.00005-1
  85. D. Milovac, Materials Science and Engineering C, 34: 437–445 (2014); https://doi.org/10.1016/j.msec.2013.09.036
  86. A. Pal, S. Maity, S. Chabri, S. Bera, A.R. Chowdhury, M. Das, and A. Sinha, Biomedical Physics & Engineering Express, 3: 015010 (2017); https://doi.org/10.1088/2057-1976/aa54f5
  87. S.K. Padmanabhan, Journal of Nanoscience and Nanotechnology, 15, No. 1, 504–509 (2015); https://doi.org/10.1166/jnn.2015.9489
  88. F. Heidari, M.E. Bahrololoom, D. Vashaee, and L. Tayebi, Ceramics International, 41: 3094–3100 (2015); https://doi.org/10.1016/j.ceramint.2014.10.153
  89. F. Chen, W.M. Lam, C.J. Lin, G.X. Qiu, Z.H. Wu, K.D. Luk, and W.W. Lu, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 82B, No. 1: 183–191 (2007); https://doi.org/10.1002/jbm.b.30720
  90. C. Pierlot, L. Pawlowski, M. Bigan, and P. Chagnon, Surface and Coatings technology, 202: 4483–4490 (2008); https://doi.org/10.1016/j.surfcoat.2008.04.031
  91. M.S. Safavi, F.C. Walsh, M.A. Surmeneva, R.A. Surmenev, and J. Khalil-Allafi, Coatings, 11, No. 1: 110–118 (2021); https://doi.org/10.3390/coatings11010110
  92. W.S. Harun, R.I. Asri, J. Alias, F.H. Zulkifli, K. Kadirgama, S.A. Ghani, and J.H. Shariffuddin, Ceramics International, 44: 1250–1268 (2018); https://doi.org/10.1016/j.ceramint.2017.10.162
  93. A.S. Kolesnikov, Russ. J. Non-Ferrous Metals, 55: 513–518 (2014); https://doi.org/10.3103/S1067821214060121
  94. A.K. Lynn and D.L. DuQuesnay, Biomaterials, 23: 1937–1946 (2002); https://doi.org/10.1016/S0142-9612(01)00321-0
  95. S.F. Robertson, A. Bandyopadhyay, and S. Bose, Surface and Coatings Technology, 372: 140–147 (2019); https://doi.org/10.1016/j.surfcoat.2019.04.071
  96. S. Kumar, S. Saralch, U. Jabeen, and D. Pathak, Colloidal Metal Oxide Nanoparticles, 471–504 (2020); https://doi.org/10.1016/B978-0-12-813357-6.00017-6
  97. A.Ç. Kılınç, S. Köktaş, and A.A. Göktaş, Journal of the Australian Ceramic Society, 57: 47–53 (2021); https://doi.org/10.1007/s41779-020-00511-y
  98. F.C. Walsh and C. Larson, Transactions of the IMF, 98, No. 6: 288–299 (2020); https://doi.org/10.1080/00202967.2020.1819022
  99. Y. Ma, J. Han, M. Wang, X. Chen, and S. Jia, Journal of Materiomics, 4: 108–120 (2018); https://doi.org/10.1016/j.jmat.2018.02.004
  100. N. Horandghadim, J. Khalil-Allafi, and M. Urgen, Surface and Coatings Technology, 386: 125458 (2020); https://doi.org/10.1016/j.surfcoat.2020.125458
  101. L. Besra and M. Liu, Progress in Materials Science, 52: 1–61 (2007); https://doi.org/10.1016/j.pmatsci.2006.07.001
  102. Y.F. Chou, W.A. Chiou, Y. Xu, J.C. Dunn, and B.M. Wu, Biomaterials, 25: 5323–5331 (2004); https://doi.org/10.1016/j.biomaterials.2003.12.037
  103. J. Gómez-Morales, J. Torrent-Burgués, T. Boix, J. Fraile, and R. Rodríguez-Clemente, Cryst. Res. Technol., 36: 15–26 (2001); https://doi.org/10.1002/1521-4079(200101)36:1<15::AID-CRAT15>3.0.CO;2-E
  104. Preparation Method of Ultrasonic Microarc Oxidation Silver-Carrying Antibiotic Bioactive Coating on Magnesium and Titanium Surface. Patent No. 101899700, CN (Publ. 01.12.2010).
  105. Preparation Process of Pleated Hole-Slot Shaped Titanium Dioxide Thin Film with Super Wetting Ability. Patent No. 102605411, CN (Publ. 25.07.2012).
  106. P. Wang, L. Zhao, J. Liu, M.D. Weir, X. Zhou, and H.H.K. Xu, Bone Research., 2: 14017 (2014); https://doi.org/0.1038/boneres.2014.17
  107. D.M. Liu, H.M. Chou, and O.V. Wu, J. Mater. Sci. Mater. Mad., 5: 147–153 (1994); https://doi.org/10.1007/BF00053335
  108. A. Anders, Surface and Coatings Technology, 205: S1–S9 (2011); https://doi.org/10.1016/j.surfcoat.2011.03.081
  109. G.E. Stan, D.A. Marcov, I. Pasuk, F. Miculescu, S. Pina, and D.U. Tulyaganov, Appl. Surf. Sci., 256: 7102–7110 (2010); https://doi.org/10.1016/j.apsusc.2010.05.035
  110. E.R. Urquia Edreira, J.G.C. Wolke, A.A. Aldosari, S.S. Al-Johany, S. Anil, and J.A. Jansen, J. Biomed. Mater. Res. Pt. A, 103: 300–310 (2015).
  111. A.R. Boyd, C. O’Kane, P. O’Hare, G.A. Burke, and B.J. Meenan, J. Mater. Sci: Mater. Med., 24: 2845–2861 (2013); https://doi.org/10.1007/s10856-013-5021-3
  112. K. Takahashi, J.G.C. Wolke, T. Hayakawa, N. Nishiyama, and J.A. Jansen, J.Biomed. Mater. Res., 84A, No. 3: 682–690 (2008); https://doi.org/10.1002/jbm.a.31341
  113. Y. Yonggang, J.G.C. Wolke, L. Yubao, and J.A. Jansen, J. Mater. Sci.: Mater. Med., 18: 1061–1069 (2007); https://doi.org/10.1007/s10856-007-0119-0
  114. K. Ozeki, Y. Fukui, and H. Aoki, Applied Surface Science, 253: 5040–5044 (2007); https://doi.org/10.1016/j.apsusc.2006.11.011
  115. A.G. Solomenko, R.M. Balabai, T.M. Radchenko, and V.A. Tatarenko, Prog. Phys. Met., 23, No. 2: 147 (2022); https://doi.org/10.15407/ufm.23.02.147
  116. P. Szroeder, I.Yu. Sagalianov, T.M. Radchenko, V.A. Tatarenko, Yu.I. Prylutskyy, and W. Strupiński, Appl. Surf. Sci., 442: 185 (2018); https://doi.org/10.1016/j.apsusc.2018.02.150
  117. P. Szroeder, I. Sahalianov, T. Radchenko, V. Tatarenko, and Yu. Prylutskyy, Optical Mater., 96: 109284 (2019); https://doi.org/10.1016/j.optmat.2019.109284
  118. O. Kolesnikova, N. Vasilyeva, A. Kolesnikov, and A. Zolkin, Mining Inf. Anal. Bull., 10: 103–115 (2022); https://doi.org/10.25018/0236_1493_2022_101_0_103
  119. N.N. Zhanikulov, T.M. Khudyakova, B.T. Taimasov, B.K. Sarsenbayev, M.S. Dauletiarov, and R.O. Karshygayev, Eurasian Chemico-Technological Journal, 21: 333–340 (2019).
  120. N. Zhangabay, U. Suleimenov, A. Utelbayeva, K. Baibolov, K. Imanaliyev, A. Moldagaliyev, G. Karshyga, B. Duissenbekov, R. Fediuk, and M. Amran, Buildings, 12: 1445 (2022); https://doi.org/10.3390/buildings12091445
  121. V.G. Golubev, A.E. Filin, A.B. Agabekova, and T.K. Akilov, Rasayan Journal of Chemistry, 15, No. 3: 1905–1915 (2022); https://doi.org/10.31788/RJC.2022.1536695
  122. N. Zhangabay, B. Sapargaliyeva, A. Utelbayeva, Z. Aldiyarov, S. Dossybekov, E. Esimov, B. Duissenbekov, R. Fediuk, and N. Vatin, M. Yermakhanov, and S. Mussayeva, Materials, 15: 4996 (2022); https://doi.org/10.3390/ma15144996
  123. Q. He, L. Pan, Y. Wang, and F.C. Meldrum, Cryst. Growth Des., 15: 723 (2015); https://doi.org/10.1021/cg501515c
  124. X. Meng, T.Y. Kwon, Y. Yang, J.L. Ong, and K.H. Kim, Journal of Biomedical Materials Research. Part B: Applied Biomaterials, 15, No. 14: 373-377 (2006); https://doi.org/10.1002/jbm.b.30497
  125. D.S. Gomes, A.M. Santos, G.A. Neves, and R.R. Menezes, Ceramica, 65, No. 374: 282–302 (2019); https://doi.org/10.1590/0366-69132019653742706
  126. S. Mahieu, P. Ghekiere, D. Depla, and R. De Gryse, Thin Solid Films, 515: 1229–1249 (2006); https://doi.org/10.1016/j.tsf.2006.06.027
  127. J.A. Thornton, Journal of Vacuum Science & Technology, 11: 666–670 (1974); https://doi.org/10.1116/1.1312732