Methods for Improving the Quality of Forgings and Blanks Obtained by Forging through Intensifying Shear or Alternating Strain in the Bulk of Deformable Metal

I. E. Volokitina$^1$, A. B. Naizabekov$^2$, E. A. Panin$^1$, and S. N. Lezhnev$^2$

$^1$Karaganda Industrial University, Republic Ave., 30; 101400 Temirtau, Kazakhstan
$^2$Rudny Industrial Institute, 50 Let Oktyabrya Str., 38; 111500 Rudny, Kazakhstan

Received 30.01.2023; final version — 17.11.2023 Download PDF logo PDF

Abstract
The article presents methods for improving the quality of forgings and workpieces obtained by forging by intensifying shear or alternating strain in the bulk of the deformed metal. To increase the metal processing due to shear or alternating strain during forging, forging strikers are most often used, the feature of which is the geometric configuration that creates additional metal flows. Quite a lot of works from research teams from all over the world have been devoted to the problem of intensive metal processing during forging. In these publications, a number of new unique designs of strikers have been proposed and various route technologies have been considered, which can significantly increase the level of shear or alternating strain compared with the use of traditional forging tool designs.

Keywords: plastic deformation, forging, shear deformation, metal.

DOI: https://doi.org/10.15407/ufm.24.04.764

Citation: I. E. Volokitina, A. B. Naizabekov, E. A. Panin, and S. N. Lezhnev, Methods for Improving the Quality of Forgings and Blanks Obtained by Forging through Intensifying Shear or Alternating Strain in the Bulk of Deformable Metal, Progress in Physics of Metals, 24, No. 4: 764–791 (2023)


References  
  1. A.B. Naizabekov, Usloviya Razvitiya Sdvigovyh Deformacij pri Kovke [Conditions of Development of Shear Deformations During Forging] (Almaty, 1997) (in Russian).
  2. A.B. Naizabekov, Nauchnye i Tekhnologicheskie Osnovy Povysheniya Ehffektivnosti Processov Kovki pri Znakoperemennyh Deformaciyah [Scientific and Technological Basis for Increasing the Efficiency of Forging Processes Under Alternating Deformations] (Almaty, 2000) (in Russian).
  3. A. Naizabekov, A. Arbuz, S. Lezhnev, E. Panin, and I.Volokitina, Physica Scripta, 94: 105702 (2019); http://doi.org/10.1088/1402-4896/ab1e6e
  4. I.E. Volokitina, Metal Science and Heat Treatment, 61: 234 (2019); https://doi.org/10.1007/s11041-019-00406-1
  5. I. Volokitina, A. Kolesnikov, R. Fediuk, S. Klyuev, L. Sabitov, A. Volokitin, T. Zhuniskaliyev, B. Kelamanov, D. Yessengaliev, A. Yerzhanov, and O. Kolesnikova, Materials, 15: 2584 (2022); http://doi.org/10.3390/ma15072584
  6. Y. Alemdag, S. Karabiyik, A.V. Mikhaylovskaya, M.S. Kishchik, and G. Purcek, Materials Science and Engineering A, 803: 140709 (2021); https://doi.org/10.1016/j.msea.2020.140709
  7. C. Huang, C. Liu, S. Jiang, Y. Wan, and Y. Gao, Materials Science and Engineering A, 807: 140853 (2021); https://doi.org/10.1016/j.msea.2021.140853
  8. L.B. Tong, J.H. Chu, D.N. Zou, Q. Sun, S. Kamado, H.G. Brokmeier, and M.Y. Zheng, Acta Metallurgica, 34: 265 (2021); https://doi.org/10.1007/s40195-020-01137-6
  9. R.D.S. Septimio and S.T. Button, Proc. 8th Int. Conf. on Computational Plasticity – Fundamentals and Applications, 227 (2015); https://doi.org/10.1051/metal/197572040285
  10. D.-L.Yang, B.-H.Duan, and D.-Z. Wang, Powder Metallurgy Technology, 39: 216 (2021); https://doi.org/10.11868/j.issn.1001-4381.2015.000401
  11. S. Sun, E. Zhao, C. Hu, Y. An, and W. Chen, Journal of Alloys and Compounds, 867: 159051 (2021); https://doi.org/10.1016/j.jallcom.2021.159051
  12. N. Azizi and R. Mahmudi, Materials Science and Engineering A, 817: 141385 (2021); https://doi.org/10.1016/j.msea.2021.141385
  13. I. Volokitina, N. Vasilyeva, R. Fediuk, and A. Kolesnikov, Materials, 15: 3975 (2022); https://doi.org/10.3390/ma15113975
  14. P.-C. Zhao, G.-J. Yuan, R.-Z. Wang, B. Guan, Y.-F. Jia, X.-C. Zhang, and S.-T. Tu, Journal of Materials Science and Technology, 83: 196 (2021); https://doi.org/10.1016/j.jmst.2021.01.019
  15. I.E. Volokitina, J. Chem. Technol. Metall., 55, No. 2: 479 (2020);
  16. I. Volokitina, E. Siziakova, R. Fediuk, and A. Kolesnikov, Materials 15, 4930 (2022); https://doi.org/10.3390/ma15144930
  17. M. Hawryluk, M. Lachowicz, M. Janik, J. Ziemba, and Z. Gronostajski, Archives of Civil and Mechanical Engineering, 21: 151 (2021); https://doi.org/10.1007 / s43452-021-00301-8
  18. J. Marzec, M. Hawryluk, M. Rychlik, M.M. Lachowicz, and M. Suliga, Materials, 14: 1262 (2021); https://doi.org/10.3390/ma14051262
  19. Ł. Dworzak, M. Hawryluk, and M. Janik, Materials, 14: 212 (2021); https://doi.org/10.3390/ma14010212
  20. M. Hawryluk, P. Widomski, M. Kaszuba, and J. Krawczyk, Metallurgical and Materials Transactions A, 51: 4753 (2020); https://doi.org/10.1007/s11661-020-05893- z
  21. Y. Wu, W. Fu, K. Wang, and Y. Yang, Journal of Harbin Engineering University, 42: 301 (2021).
  22. S. Lezhnev , E. Panin , and I. Volokitina, Advanced Materials Research, 814: 68 (2013); https://doi.org/10.4028/www.scientific.net/AMR.814.68
  23. Y. Wu, K. Wang, and S. Ruan, International Journal of Advanced Manufacturing Technology, 112: 2899 (2021); https://doi.org/10.1007/s00170-020-06524-у.
  24. L. Wang, Y. Wu, K. Wang, and H. Li, Heat Treatment of Metals, 46: 184 (2021).
  25. G. Song, H.C. Ji, W.C. Pei, J.S. Li, S. Cai, and B.X. Liu, Metalurgija, 61: 233 (2022).
  26. G. Winiarski and A. Dziubinska, Journal of Manufacturing Science and Engineering, Transactions of the ASME, 143: 081006 (2021); https://doi.org/10.1115/1.4050185
  27. X. Liu, C. Zhu, S. Sun, and R. Ma, Journal of Manufacturing Processes, 56: 656 (2020); https://doi.org/10.1016/j.jmapro.2020.05.037.
  28. Q. Wang, C.-D. Zhu, X. Liu, and R.-F. Ma, Advances in Mechanical Engineering, 13: 1 (2021); https://doi.org/10.1177/16878140211008759
  29. R.F. Ma, C.D. Zhu, Y.F. Gao, and Z.H. Wei, Mechanical Sciences, 12: 625 (2021); https://doi.org/10.5194/ms-12-625-2021
  30. D.X. Ta, V.A. Sheremetyev, A.A. Kudryashova, S.P. Galkin, V.A. Andreev, S.D. Prokoshkin, and V. Brailovski, Russian Journal of Non-Ferrous Metals, 61: 271 (2020); https://doi.org/10.3103/S1067821220030165
  31. V. Sheremetyev, A. Kudryashova, V.Cheverikin, A. Korotitskiy, S. Galkin, S. Prokoshkin, and V. Brailovski, Journal of Alloys and Compounds, 800: 320 (2019); https://doi.org/10.1016/j.jallcom.2019.06.041
  32. V.A. Sheremet’ev, A.A. Kudryashova, X.T. Dinh, S.P. Galkin, S.D. Prokoshkin, and V. Brailovskii, Metallurgist, 63: 51 (2019); https://doi.org/10.1007/s11015-019-00793- z
  33. V.A. Andreev, V.S. Yusupov, M.M. Perkas, V.V. Prosvirnin, A.E. Shelest, S.D. Prokoshkin, I.Yu. Khmelevskaya, A.V. Korotitskii, S.A. Bondareva, and R.D. Karelin, Russ. Metallurgy (Metally), 10: 890 (2017); https://doi.org/10.1134/S0036029517100020
  34. Z. Chval, K. Raz, and M. Cechura, Annals of DAAAM and Proceedings of the International DAAAM Symposium, 30: 359 (2019); https://doi.org/10.2507/30th.daaam.proceedings.048
  35. Z. Chval, K. Raz, and T. Kalina, Annals of DAAAM and Proceedings of the International DAAAM Symposium, 29: 740 (2018); https://doi.org/10.2507/29th.daaam.proceedings.107
  36. A.I. Khaimovich and D.L. Skuratov, Key Engineering Materials, 736: 147 (2017); https://doi.org/10.4028/www.scientific.net/KEM.736.147.
  37. I.E. Volokitina, A.V. Volokitin, and E.A. Panin, Progress in Physics of Metals, 23, No. 4: 684 (2022); https://doi.org/10.15407/ufm.23.04.684
  38. A. Khaimovich, Y. Erisov, S. Surudin, I. Petrov, C. Jiang, and I. Strackbein, Key Engineering Materials, 822: 137 (2019); https://doi.org/10.1016/b978-0-08-044164-1.x5000-2
  39. Ya.G. Zhbankov, A.A. Shvets, and M.A. Turchanin, Issledovanie Napryazhennogo Sostoyaniya Zagotovki pri Protyazhke s Neodnorodnym Temperaturnym Polem Kombinirovannymi Bojkami [Study of the Workpiece Stress State During Broaching with a Heterogeneous Temperature Field by Combined Strikers] (Bulletin of Donbass State Machine-Building Academy, 2013) (in Russian).
  40. L.M. Sokolov, I.S. Aliev, O.E. Markov, and L.I. Alieva, Tekhnologіya Kuvannya [Technology of Forging] (Kramatorsk: DGMA: 2011) (in Ukrainian).
  41. V.V. Kukhar, V.A. Burko, S.A. Korotkiy, and E.Yu, Sovershenstvovanie Tekhnologii Shtampovki na KGShP Pokovok dlya Detaley Pogloshchayushchih Apparatov [Improvement of Forging Technology on KSShP Forgings for Parts of Absorbing Apparatuses] (Kramatorsk, DGMA, 2010) (in Russian).
  42. R.S.S. Nikolenko, E.A. Frolov, and V.V. Kukhar, Modelirovanie Formoizmeneniya Zagotovki pri Osadke Vypuklymi Bojkami s Ispol’zovaniem Metodiki Planirovaniya Eksperimenta [Modeling of Workpiece Shaping During Upsetting by Convex Strikers Using the Method of Planning Experiments] (Kramatorsk, DGMA, 2014) (in Russian).
  43. Patent UK 50412, 2010.
  44. S.B. Kargin, Sovershenstvovanie Protsessov Kovki Valov [Improvement of Processes of Forging Shafts] (Kramatorsk, DGMA, 2012) (in Russian).
  45. Patent USSR 1409394, 1988.
  46. I.S. Aliev, O.E. Markov, Y.G. Zhbankov, and S.A. Bliznyuk, Vliyanie Operatsii Vyvorota Pokovki Konicheskimi Plitami na Raspredelenie Deformaciy [Influence of Forging Eversion Operation with Conical Plates on Strain Distribution] (Kramatorsk, DGMA, 2010) (in Russian).
  47. Patent USSR 988435, 1983.
  48. See website https://tesis.com.ru/infocenter/downloads/deform/deform_es11_dgma.pdf
  49. O.E. Markov, Progressivnaya Skhema Protyazhki Krupnyh Valov iz Ukorochennyh Slitkov [Progressive Scheme of Broaching Large Shafts from Shortened Ingots] (Kramatorsk, DGMA, 2012) (in Russian).
  50. V.V. Kukhar, R.V. Suglobov, T.G. Danilova, E.A. Mkrtchyan, and R.S. Nikolenko, Modelirovanie Formoizmeneniya Tsilindricheskikh Zagotovok pri Osadke Konicheskimi Plitami [Modeling of Shape-Shaping of Cylindrical Workpieces During Upsetting by Conical Plates] (Kramatorsk: DGMA: 2012) (in Russian).
  51. S.B. Kargin, B.S. Kargin, V.V. Kukhar, and O.E. Markov, Issledovanie Protyazhki Vyreznymi Boykami [Investigation of Broaching with Cutout Punches] (Kramatorsk: DGMA: 2010) (in Russian).
  52. M. Nait-Abdelaziz, J. M. Gloaguen, and J. M. Lefebvre, IWCMM-17, 45. No. 3: 646 (2009); https://doi.org/10.1016/j.commatsci.2009.02.002
  53. L.I. Alieva, Ya.G. Zhbankov, M.A. Markova, and L.V. Tagan, Kombinirovannaya Plasticheskaya Deformatsiya so Sdvigom dlya Polucheniya Krupnykh Zagotovok [Combined Plastic Deformation with Shear to Produce Large Billets] (Kramatorsk, DGMA, 2013) (in Russian).
  54. V.K. Vorontsov, A.B. Naizabekov, A.V. Kotelkin, and V.A. Petrov, Usloviya Razvitiya Sdvigovyh Deformacij pri Kovke Zagotovok v Stupenchatykh Boykakh [Conditions for Development of Shear Deformation When Forging Workpieces in Stepped Strikers], Izv. VUZov. Chern. Metall. (1987) (in Russian).
  55. A.B. Naizabekov and J.A. Ashkeev, Issledovanie Protsessa Skruchivaniya Zagotovki [Investigation of Torsion Process of Billet], Izv. VUZov. Chern. Metall. (1995) (in Russian).
  56. Patent USSR 393018, 1973.
  57. Patent USSR 1049157, 1983.
  58. Patent USSR 1315095, 1983.
  59. B.M. Shlyakman and L.P. Belova, Sovershenstvovanie Kuznechnogo Instrumenta i Protsessa Kovki Shirokih Plit [Improvement of Forging Tools and Process of Forging Wide Plates], Forging and Stamping Production (1990) (in Russian).
  60. A.B. Naizabekov, Usloviya Razvitiya Sdvigovykh Deformatsij pri Kovke [Conditions for the Development of Shear Deformation During Forging] (Almaty: Gylym: 1997) (in Russian).
  61. B.M. Shlyakman and L.P. Belova, Vliyanie Tsiklicheskoy Kovki na Mekhanicheskie Svoystva Pokovok iz Konstruktsionnoy, Uglerodistoy i Legirovannoy Stali [Effect of Cyclic Forging on Mechanical Properties of Forgings From Structural, Carbon and Alloy Steel], Forging and Stamping Production (1985) (in Russian).
  62. V.I. Zaleski, V.A. Tyurin, and M.S. Ekirev, Issledovanie Protsessa Kovki s Dopolnitel’nym Sdvigom v Poperechnoy Ploskosti Zagotovki [Investigation of Forging Process with Additional Shear in Transverse Plane of Billet], Izv. VUZov. Chern. Metall. (1976) (in Russian).
  63. Patent USSR 300245, 1969.
  64. Patent USSR 1207604, 1983.
  65. Y.M. Ohrimenko, V.A. Tyurin, and V.P. Barsukov, Issledovanie Protsessa Protyazhki s Pryamolineynym Frontom Podachi [Investigation of Forging Process with Additional Shear in Transverse Plane of Billet], Izv. VUZov. Chern. Metall. (1971) (in Russian).
  66. Patent USSR 498079, 1973.
  67. Patent USSR 592803, 1973.
  68. Patent USSR 564075, 1977.
  69. I.S. Aliyev, Y.G. Zhbankov, and L.V. Tagan, A.A. Shvets, Napravleniya Sovershenstvovaniya Tekhnologiy Kovki Krupnyh Pokovok na Osnove Upravleniya Techeniem Metalla [Trends in Improvement of Forging Technologies of Large Forgings on the Basis of Metal Flow Control] (DGMA Newsletter: 2012) (in Russian).
  70. В.M. Segal, V.I. Reznikov, and D.A. Pavlik, Tekhnologicheskie Osobennosti Kovki-Protyazhki s Prodol’nym Sdvigom Boykov [Technological Peculiarities of Forging–Pulling with Longitudinal Displacement of Strikers], Forging and Stamping Production (1980) (in Russian).
  71. C.Y. Park and D.Y. Yang, Journal of Materials Processing Technology, 72: 32 (1997); https://doi.org/10.1016/S0924-0136(97)00126-X
  72. H. Dyja, G. Banaszek, S. Mroz, and S. Berski, Journal of Materials Processing Technology, 157: 131 (2004); https://doi.org/10.1016/j.jmatprotec.2004.09.022
  73. G. Banaszek and P. Szota, Journal of Materials Processing Technology, 169: 437 (2005); https://doi.org/10.1016/j.jmatprotec.2005.03.018
  74. G. Banaszek and A. Stefanik, Journal of Materials Processing Technology, 177: 238 (2006); https://doi.org/10.1016/j.jmatprotec.2006.04.023
  75. A.B. Naizabekov and S.N. Lezhnev, Materials Science Forum, 575: 555 (2008); https://doi.org/10.4028/www.scientific.net/MSF.575-578.555
  76. Patent USSR 2050217, 1995.
  77. A. Babaei, G. Faraji, M.M. Mashhadi, and M. Hamdi, Materials Science & Engineering A, 558: 150 (2012); https://doi.org/10.1016/j.msea.2012.07.103
  78. Patent USSR 776735, 1981.
  79. Patent USSR 967645, 1982.
  80. A.A. Bogatov and D.Sh. Nukhov, Nauchnyye Osnovy Povysheniya Ehffektivnosti Protsessa Kovki pri Znakoperemennoy Deformatsii [Scientific Basis for Increasing the Efficiency of the Forging Process Under Alternating Strain], Forging and Stamping Production (2015) (in Russian).
  81. Patent USSR 841407, 1981.
  82. Patent UА 50412, 2010.