Structural and Phase Transformations in Alloys under the Severe Plastic Deformation

I. E. Volokitina

Rudny Industrial Institute, 50 Let Oktyabrya Str., 38, 111500 Rudny, Kazakhstan

Received 23.12.2022; final version — 05.08.2023 Download PDF logo PDF

Abstract
Despite the large number of works devoted to the structural-phase transformations in alloys, there is still no holistic understanding of the pattern of phase transformations under the intense plastic deformation. It is probably because the plastic deformation is a complex multilevel process, in which various microscopic mechanisms operate, depending on the temperature and intensity of processing. Although the mechanisms of phase transformations have been actively discussed in recent decades, the task of classifying such transformations and identifying the main mechanisms of their implementation depending on external conditions remains urgent.

Keywords: alloys, structure, plastic deformation, transformations.

DOI: https://doi.org/10.15407/ufm.24.03.593

Citation: I. E. Volokitina, Structural and Phase Transformations in Alloys under the Severe Plastic Deformation, Progress in Physics of Metals, 24, No. 3: 593–622 (2023)


References  
  1. I. Volokitina, A. Kolesnikov, R. Fediuk, S. Klyuev, L. Sabitov, A. Volokitin, T. Zhuniskaliyev, B. Kelamanov, D. Yessengaliev, A. Yerzhanov, and O. Kolesnikova, Materials, 15, No. 7: 2584 (2022); https://doi.org/10.3390/ma15072584
  2. Yu.S. Projdak, V.Z. Kutsova, T.V. Kotova, H.P. Stetsenko, and V.V. Prutchykova, Regularities of Formation of Structure, Texture and Properties under the Combined Plastic Deformation of the Low-Carbon and Ultralow-Carbon Steels for Cold Press Forming, Progress in Physics of Metals, 20, No. 2: 213 (2019); https://doi.org/10.15407/ufm.20.02.213
  3. M. Furukawa, Z. Horita, M. Nemoto, and T.G. Langdon, Mater. Sci. Eng. A, 324, Nos. 1–2: 82 (2002); https://doi.org/10.1016/S0921-5093(01)01288-6
  4. I.E. Volokitina, Metal Sci. Heat Treatment, 61: 234 (2019); https://doi.org/10.1007/s11041-019-00406-1
  5. Z. Horita, D.J. Smith, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon, J. Mater. Res., 11: 1880 (1996); https://doi.org/10.1557/JMR.1996.0239
  6. A.B. Naizabekov, A.S. Kolesnikov, M.A. Latypova, T.D. Fedorova, and A.D. Mamitova, Current Trends to Obtain Metals and Alloys with Ultrafine-Grained Structure, Progress in Physics of Metals, 23, No. 4: 629–657 (2022); https://doi.org/10.15407/ufm.23.04.629
  7. H. Ji, J. Liu, B. Wang, X. Tang, J. Lin, and Y. Huo, J. Alloys Compd., 693: 674 (2017); https://doi.org/10.1016/j.jallcom.2016.09.230
  8. A. Javaid and F. Czerwinski, J. Magnes. Alloys, 9, No. 2: 362 (2021); https://doi.org/10.1016/j.jma.2020.10.003
  9. K. Muszka, M. Wielgus, J. Majta, K. Doniec, and M. Stefanska-Kaclziela, Mater. Sci. Forum, 654–656: 314 (2010); https://doi.org/10.4028/www.scientific.net/MSF.654-656.314
  10. A.P. Zhilyaev and T.G. Langdon, Progress in Materials Science, 53, No. 6: 893 (2008); https://doi.org/10.1016/j.pmatsci.2008.03.002
  11. A. Volokitin, A. Naizabekov, I. Volokitina, and A. Kolesnikov, J. Chemical Technology and Metallurgy, 57: 809 (2022).
  12. R.Z. Valiev, Materials Transactions, 55, No. 1: 13 (2014); https://doi.org/10.2320/matertrans.ma201325
  13. X. Xua, J. Zhang, J. Outeiro, B. Xu, and W. Zhao, J. Mater. Process. Tech., 286: 116834 (2020); https://doi.org/10.1016/j.jmatprotec.2020.116834
  14. T.G. Langdon, Rev. Adv. Mater. Sci., 13: 6 (2006).
  15. S. Lezhnev, A. Naizabekov, E. Panin, and I. Volokitina, Procedia Engineering, 81: 1499 (2014); https://doi.org/10.1016/j.proeng.2014.10.180
  16. I.V. Alexandrov, Y.T. Zhu, T.C. Lowe, R.K. Islamgaliev, and R.Z. Valiev, Metall. Mater. Trans. A, 29: 2253 (1998); https://doi.org/10.1007/S11661-998-0103-4
  17. N.V. Lopatin, G.A. Salishchev, and S.P. Galkin, Russ. J. Non-Ferrous Metals, 52: 442 (2011); https://doi.org/10.3103/S1067821211050075
  18. G.J. Raab, R.Z. Valiev, T.C. Lowe, and Y.T. Zhu, Mater. Sci. Eng. A, 382: 30 (2004); https://doi.org/10.1016/J.MSEA.2004.04.021
  19. S. Gialanella, L. Lutterotti, X. Amils, M.D. Barò, S. Suriñach, P. Delcroix, and G. Le Caër, Acta Mater., 46, 9: (1998); http://doi.org/10.1016/S1359-6454(97)00484-9
  20. H. Bakker, G.F. Zhou, and H. Yang, Prog. Mater. Sci., 39: 159 (1995); https://doi.org/10.1016/0079-6425(95)00001-1
  21. C. Suryanarayana, Prog. Mater. Sci., 46: 1 (2001); https://doi.org/10.1016/S0079-6425(99)00010-9
  22. R.B. Schwarz, R.R. Petrich, and C.K. Saw, J. Non-Cryst. Solids, 76: 281 (1985); https://doi.org/10.1016/0022-3093(85)90005-5
  23. V.V. Neverov, V.N. Burov, and P.P. Zhitnikov, Oxide Behaviour under the Action of High Pressure with Simultaneous Application of Shear, Izv. AN SSSR. Ser. Khim. Nauki (1983) (in Russian).
  24. A.R. Yavari, P.J. Desré, and T. Benameur, Phys. Rev. Lett., 68, No. 14: 2235 (1992); https://doi.org/10.1103/PhysRevLett.68.2235
  25. C. Bansal, Z.Q. Gao, L.B. Hong, and B. Fultz, J. Appl. Phys., 76, No. 10: 5961 (1994); https://doi.org/10.1063/1.358375
  26. F. Wu, D. Isheim, P. Bellon, and D.N. Seidman, Acta Mater., 54, No. 10: 2605 (2006); https://doi.org/10.1016/j.actamat.2006.01.042
  27. B.B. Straumal, A.R. Kilmametov, A. Korneva, A.A. Mazilkin, P.B. Straumal, P. Zięba, and B. Baretzky, J. Alloys Compd., 707: 20 (2007); https://doi.org/10.1016/j.jallcom.2016.12.057
  28. V.V. Sagaradze and V.A. Shabashov, Phys. Metals Metallogr., 112: 146 (2011); https://doi.org/10.1134/S0031918X11020256
  29. V.V. Sagaradze, V. Ishalaev, V.L. Arbuzov, B.N. Goshchitskii, Y. Tian, W. Qun, and S. Jiguang, J. Nuclear Mater., 295: 265 (2001); https://doi.org/10.1016/S0022-3115(01)00511-6
  30. V.G. Gavriljuk, Mater. Sci. Eng. A, 345: 81 (2003); https://doi.org/10.1016/S0921-5093(02)00358-1
  31. V.A. Shabashov, K.A. Kozlov, K.A. Lyashkov, N.V. Kataeva, A.V. Litvinov, V.V. Sagaradze, and A.E. Zamatovskii, Physics Metals Metallogr., 115: 392 (2014); https://doi.org/10.1134/S0031918X14040140
  32. A.I. Deryagin, V.A. Zavalishin, V.V. Sagaradze, A R. Kuznetsov, V.A. Ivchenko, N.F. Vil’danova, and B.M. Efros, Phys. Metals Metallogr., 106: 291 (2008); https://doi.org/10.1134/S0031918X08090093
  33. B.B. Straumal, S.G. Protasova, A.A. Mazilkin, E. Rabkin, D. Goll, G. Schütz, B. Baretzky, and R.Z. Valiev, J. Mater. Sci., 47: 360 (2012); https://doi.org/10.1007/s10853-011-5805-0
  34. J. Takahashi, K. Kawakami, J. Hamada, and K. Kimura, Acta Mater., 107: 415 (2016); https://doi.org/10.1016/j.actamat.2016.01.070
  35. Y.J. Li, P. Choi, S. Goto, C. Borchers, D. Raabe, and R. Kirchheim, Acta Mater., 60: 4005 (2012); https://doi.org/10.1016/j.actamat.2012.03.006
  36. X. Sauvage, M.Yu. Murashkin, B.B. Straumal, E.V. Bobruk, and R.Z. Valiev, Adv. Eng. Mater., 17: 1821 (2015); https://doi.org/10.1002/adem.201500151
  37. C.E. Rodríguez Torres, F.H. Sánchez, and L.A. Mendoza Zélis, Phys. Rev. B, 51: 12142 (1995); https://doi.org/10.1103/PhysRevB.51.12142
  38. M. Sherif El-Eskandarany, K. Akoi, K. Sumiyama, and K. Suzuki, Appl. Phys. Lett., 7: 1679 (1997); https://doi.org/10.1063/1.118667
  39. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Prog. Mater. Sci., 60: 130 (2014); https://doi.org/10.1016/j.pmatsci.2013.09.002
  40. A.S. Smirnov, A.V. Konovalov, and O.Yu. Muizemnek, Diagnostics, Resource and Mechanics of Materials and Structures, 61 (2015); https://doi.org/10.17804/2410-9908.2015.1.061-072
  41. H. Hallberg, B. Svendsen, T. Kayser, and M. Ristinma, Computational Mater. Sci., 84: 327 (2014); https://doi.org/10.1016/j.commatsci.2013.12.021
  42. I.E. Volokitina, A.V. Volokitin, and E.A. Panin, Martensitic Transformations in Stainless Steels, Progress in Physics of Metals, 23, No. 4: 684 (2022); https://doi.org/10.15407/ufm.23.04.684
  43. O.I. Gorbatov, Yu.N. Gornostyrev, P.A. Korzhavyi, and A.V. Ruban, Phys. Metals Metallogr., 117: 1293 (2016); https://doi.org/10.1134/S0031918X16130019
  44. A. Naizabekov, S. Lezhnev, E. Panin, I. Volokitina, A. Arbuz, and T. Koinov, and I. Mazur, J. Mater. Eng. Perform., 28: 200 (2019); https://doi.org/10.1007/s11665-018-3790-z
  45. B.B. Straumal, A.R. Kilmametov, A.A. Mazilkin, S.G. Protasova, K.I. Kolesnikova, P.B. Straumal, and B. Baretzky, Mater. Lett., 145: 63 (2015); https://doi.org/10.1016/j.matlet.2015.01.041
  46. C. Borchers, C. Garve, M. Tiegel, M. Deutges, A. Herz, K. Edalati, R. Pippan, Z. Horita, and R. Kirchheim, Acta Mater., 97: 207 (2015); https://doi.org/10.1016/j.actamat.2015.06.049
  47. K. Edalati, S. Toh, M. Watanabe, and Z. Horita, Scripta Materialia, 66: 386 (2012); https://doi.org/10.1016/j.scriptamat.2011.11.039
  48. K. Edalati, Y. Hashiguchi, P. Henrique, R. Pereira, Z. Horita, and G. Langdon; Mater. Transactions, 52: 8 (2011); https://doi.org/10.1016/j.msea.2017.12.095
  49. B. Straumal, R. Kilmametov, Y. Ivanisenko, A. Mazilkin, O. Kogtenkova, L. Kurmanaeva, A. Korneva, P. Zięba, and B. Baretzky, XV Int. Conf. Electron Microscopy (2014); https://doi.org/10.3139/146.111215
  50. R. Kulagin, Y. Beygelzimer, Yu. Ivanisenko, A. Mazilkina, B. Straumal, and H. Hahn, Mater, Lett., 222: 172 (2018); https://doi.org/10.1016/j.matlet.2018.03.200
  51. I.E. Volokitina, Metal Science and Heat Treatment, 63, Nos. 3–4: 163 (2021); https://doi.org/ 10.1007/s11041-021-00664-y
  52. S. Sabbaghianrad, S. Alireza Torbati-Sarraf, and G. Langdon, Mater. Sci. Eng. A, 712: 373 (2018); https://doi.org/10.1016/j.msea.2017.11.090
  53. M. Azabou, T. Makhlouf, Joan Saurina, Luisa Escoda, J.J. Suñol, and M. Khitouni, Int. J. Advanced Manufacturing Technol., 87: 981 (2016).
  54. I. Volokitina, E. Siziakova, R. Fediuk, and A. Kolesnikov, Materials, 15, Iss. 14: 4930 (2022); https://doi.org/10.3390/ma15144930
  55. A. Volokitin, I. Volokitina, and E. Panin, Metallography, Microstructure, and Analysis, 11, No. 4: 673 (2022).
  56. M. Shamsborhan and M. Ebrahimi, J. Alloys Compd., 682: 552 (2016); https://doi.org/10.1016/j.jallcom.2016.05.012
  57. I. Volokitina, J. Chem. Technol. Metallurgy, 55: 479 (2020); https://doi.org/10.1016/j.actamat.2015.06.049
  58. N. Lugo, N. Llorca, J.M. Cabrera, and Z. Horita, Mater. Sci. Eng. A, 477: 366 (2008); https://doi.org/10.1016/j.msea.2007.05.083
  59. Z.N. Mao, R.C. Gu, F. Liu, Y. Liu, X.Z. Liao, and J.T. Wang, Materials Science and Engineering: A, 674: 186 (2016); https://doi.org/10.1016/j.msea.2016.07.050
  60. E. Bagherpour, F. Qods, R. Ebrahimi, and H. Miyamoto, Materials Science and Engineering: A, 666: 324 (2016); https://doi.org/10.1016/j.msea.2016.04.080
  61. P.C. Yadav, A. Sinhal, S. Sahu, A. Roy, and S. Shekhar, J. Mater. Eng. Perform., 25: 2604 (2016); https://doi.org/10.1007/s11665-016-2142-0
  62. M.P. Seah, J.M. Sanz, and S. Hofmann, Thin Solid Films, 81: 239 (1981); https://doi.org/10.1016/0040-6090(81)90486-7
  63. D. Raabe, S. Sandlöbes, J. Millán, D. Ponge, H. Assadi, M. Herbig, and P.P. Choi, Acta Mater., 61: 6132 (2013); https://doi.org/10.1016/j.actamat.2013.06.055
  64. T. Chookajorn, H.A. Murdoch, and C.A. Schuh, Science, 337: 951 (2012); https://doi.org/10.1126/science.1224737
  65. X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, R.Z. Valiev, Mater. Sci. Eng. A, 540: 1 (2012); https://doi.org/10.1016/j.msea.2012.01.080
  66. J.B. Bay, N. Hansen, D.A. Hugnes, and D. Kuhlmann-Wilsdorf, Mater. Sci. Eng. A, 113: 385 (1989); https://doi.org/10.1016/0921-5093(89)90325-0
  67. R.Z. Valiev, Yu.V. Ivanisenko, E.F. Rauch, and B. Baudelet, Acta Mater., 44: 4705 (1997); https://doi.org/10.1016/S1359-6454(96)00156-5
  68. J.A. Venables, Philos. Mag., 6: 3779 (1961); https://doi.org/10.1080/14786436108235892
  69. A. Mishra, B.K. Kad, F. Gregori, and M.A. Meyers, Acta Mater., 55: 13 (2007); https://doi.org/10.1016/j.actamat.2006.07.008
  70. S. Mahajan, Scr. Mater., 68: 95 (2013); https://doi.org/10.1016/j.scriptamat.2012.09.011
  71. A. Naizabekov, S. Lezhnev, E. Panin, A. Arbuz, and I. Volokitina, Phys. Scr., 94: 105702 (2019); https://doi.org/10.1088/1402-4896/ab1e6e
  72. Y. Cao, Y.B. Wang, Z.B. Chen, X.Z. Liao, M. Kawasaki, S.P. Ringer, T.G. Langdon, and Y.T. Zhu, Mater. Sci. Eng. A, 578: 110 (2013); https://doi.org/10.1016/j.msea.2013.04.075
  73. N. Nakada, H. Ito, Y. Matsuoka, T. Tsuchiyama, and S. Takaki, Acta Mater., 58: 895 (2010); https://doi.org/10.1016/j.actamat.2009.10.004
  74. Y. Zhang, N.R. Tao, and K. Lu, Scr. Mater., 60: 211 (2009); https://doi.org/10.1016/j.scriptamat.2008.10.005
  75. D. Gutierrez-Urrutia, Acta Mater., 59: 6449 (2011); https://doi.org/10.1016/j.actamat.2011.07.009
  76. G.B. Olson and M. Cohen, Metal. Trans. A, 7: 18907 (1976); https://doi.org/10.1007/BF02659822
  77. X. Wang, A. Zhao, Zheng Zhao, Yao Huang, and Zh. Geng, J. Iron Steel Res., 12: 1141 (2014).
  78. D. Panov, A. Pertsev, A. Smirnov, V. Khotinov, and Y. Simonov, Materials, 12: 2058 (2019); https://doi.org/10.3390/ma12132058
  79. P. Kusakin, A. Belyakov, R. Kaibyshev, and D. Molodov, Adv. Mater. Res., 922: 394 (2014); https://doi.org/10.4028/www.scientific.net/AMR.922.394
  80. M. Seefeldt, Computational Mater. Sci., 76: 12 (2011); https://doi.org/10.1016/j.commatsci.2013.03.039
  81. S.V. Bobylev and I.A. Ovid’ko, Acta Mater., 124: 333 (2017); https://doi.org/10.1016/j.actamat.2016.11.026
  82. Y. Li, B. Gu, S. Jiang, Y. Liu, Z. Shi, and J. Lin, Int. J. Plasticity, 134: 102844 (2020); https://doi.org/10.1016/j.ijplas.2020.102844
  83. C. Xu, M. Furukawa, Z. Horita, and T.G. Langdon, The deformation characteristics of pure aluminum processed by equal-channel angular pressing, Nanostructured Materials by High-Pressure Severe Plastic Deformation (Eds. Y.T. Zhu and V. Varyukhin) (Springer: 2006), p. 201; https://doi.org/10.1007/1-4020-3923-9
  84. M.P. Kashchenko, V.V. Letuchev, L.A. Teplyakova, and T.N. Yablonskaya, Phys. Metals Metallogr., 82, No. 4: 329 1996.
  85. T.E. Konstantinova and V.V. Tokiy, Voprosy Materialovedeniya, 52: 317 (2007) (in Russian).
  86. V.V. Rybin, Large Plastic Deformations and Fracture of Metals (Moskva: Metallurgiya: 1986) (in Russian).
  87. A.Р. Zhilyaev, S. Swaminathan, A.I. Pshenichnyuk, T.G. Langdon, and T.R. McNelley, J. Mater. Sci., 48: 4626 (2013); https://doi.org/10.1007/s10853-013-7254-4
  88. V. Taupin, L. Capolungo, C. Freesengeas, A. Das, and M. Upadhyay, Adv. Struct. Mater., 22: 303 (2013); https://doi.org/10.1007/978-3-642-36394-8_18
  89. V. Taupin, K. Gbemou, C. Fressengeas, and L. Capolungo, J. Mechan. Phys. Solids, 100: 62 (2017); https://doi.org/10.1016/j.jmps.2017.01.003
  90. I. Volokitina, N. Vasilyeva, R. Fediuk, and A. Kolesnikov, Materials, 15: 3975 (2022); https://doi.org/10.3390/ma15113975
  91. A.E. Romanov and A.L. Kolesnikova, Prog. Mater. Sci., 54: 740 (2009); https://doi.org/10.1016/j.pmatsci.2009.03.002
  92. S. Cleja-Ţigoiua, R. Paşcana, and V. Ţigoiu, Int. J. Plasticity, 114: 227 (2019); https://doi.org/10.1016/j.ijplas.2018.11.003
  93. I.G. Brodova, V.I. Zel’dovich, and I.V. Khomskaya, Phys. Metals Metallogr., 7: 631 (2020); https://doi.org/10.1134/S0031918X20070029
  94. T.V. Ostanina, A.I. Shveikin, and P.V. Trusov, Grinding of Grain Structure of Metals and Alloys. Grain Structure Grinding of Metals and Alloys under Intensive Plastic Plastic Deformation: Experimental Data and Analysis of Grinding Mechanisms], Vestnik PNRPU. Mechanics (2020) (in Russian).
  95. P.V. Trusov, T.V. Ostanina, and A.I. Shveykin, PNRPU Mechanics Bulletin, 1: 123 (2022); https://doi.org/10.15593/perm.mech/2022.1.11
  96. Р.V. Trusov, and A.Yu. Yanz, Phys. Mesomech., 19: 13 (2016); https://doi.org/10.1134/S1029959916020156
  97. D. Kuhlman-Wilsdorf, S.S. Kulkarni, J.T. Moore, and E.A. Starke, Metal. Mater. Trans. A, 30: 2491 (1999); https://doi.org/10.1007/s11661-999-0258-7
  98. E. Cosserat and F. Cosserat, Théorie des Corps Déformables (Paris: A. Hermann et fils: 1909) (in French); Théorie des Corps Déformables, Nature, 81: 67 (1909); https://doi.org/10.1038/081067a0
  99. L.S. Metlov, Mesoscopic Nonequilibrium Thermal Dynamics of Solids, Visnyk Donetskoho Universytety (2008) (in Ukrainian).
  100. L.S. Metlov, A.M. Glaser, and V.N. Varyukhin, Cyclic evolution of the defect structure and properties of metallic materials during megaplastic deformation, Deformation and Fracture of Materials (2014) (in Russian).
  101. S. Takeuchi and A.S. Argon, J. Mater. Sci., 11: 1542 (1976); https://doi.org/10.1007/BF00540888
  102. Yu.M. Vainblat, N.A. Sharshagin, and E.A. Varfolomeeva, Kinetics of spontaneous recrystallization, Technology of Light Alloys (1981) (in Russian).
  103. Yu.M. Vainblat, S.Yu. Klepachevskaya, and P.Sh. Lantsman, Diagrams of structural states and recrystallization of hot-deformed AK4-1 alloy, Phys. Metals Metallogr. (1977).
  104. E. Sherif, M. Eskandarany, K. Aoki, K. Sumiyama, and K. Suzuki, Appl. Phys. Lett., 70: 1679 (1997); https://doi.org/10.1063/1.118667
  105. V.A. Barinov, G.A. Dorofeev, and L.V. Ovechkin, Phys. Status Solidi A, 123: 527 (1991); https://doi.org/10.1002/pssa.2211230217
  106. A. Korznikov, O. Dimitrov, and G. Korznikova, Ann. Chim. Fr., 21: 443 (1996).
  107. F.V. Nolfi, Phase Transformations under Irradiation (Chelyabinsk: Metallurgiya: 1989) (in Russian).
  108. N.M. Vlasov and V.A. Zaznoba, Diffusion processes in the vicinity of ternary joints of special grain boundaries, Phys. Metals Metallogr. (1999).
  109. A.E. Ermakov, V.L. Gapontsev, V.V. Kondratyev, and Yu.N. Gornostyrev, The deformation-stimulated phenomenon of phase instability of nanocrystalline alloys, Phys. Metals Metallogr. (1999).
  110. M.O. Vasylyev, V.K. Nosenko, I.V. Zagorulko, and S.M. Voloshko, Nanocrystallization of Amorphous Fe-Based Alloys under Severe Plastic Deformation, Progress in Physics of Metals, 21, No. 3: 319 (2020); https://doi.org/10.15407/ufm.21.03.319
  111. М. Guttman, Equilibrium segregation in a ternary solution: A model for temper embrittlement, Surf. Sci., 53, No. 1: 213 (1975); https://doi.org/10.1016/0039-6028(75)90125-9
  112. M.P. Seah, Grain boundary segregation, J. Phys., 10: 1043 (1980); https://doi.org/10.1088/0305-4608/10/6/006
  113. C.L. Briant and N.S. Grabke, Grain boundary segregation in iron and its alloys and its effect on intergranular fracture, Mater. Sci. Forum, 46: 253 (1989); https://doi.org/10.4028/www.scientific.net/MSF.46.253
  114. V.V. Slezov, L.N. Davydov, and V.V. Rogozhkin, Kinetics of segregation of impurity on the grain boundaries in polycrystals. I. The weak solution, Phys. Metals Metallogr. (1995).
  115. E.P. Feldman, V.M. Yurchenko, and T.N. Melnik, Co-operation and competition phenomena in adsorption of impurities at the interfaces in solids, Metallofizika i Noveishie Tekhnologii, 22, No. 1: 60 (2000).
  116. A.H. Cottrell and B.A. Bilby, Proc. Phys. Soc. A, 62: 49 (1949); https://doi.org/10.1088/0370-1298/62/1/308
  117. N.M. Vlasov and B.Y. Lubov, Fixation of edge dislocations due to redistribution impurity atoms, Phys. Metals Metallogr. (1969).
  118. B.Y. Lubov and N.M. Vlasov, Some effects of interaction of interaction of point and extended structural defects, Phys. Metals Metallogr. (1979).
  119. T.M. Radchenko, O.S. Gatsenko, V.V. Lizunov, and V.A. Tatarenko, Martensitic αʺ-Fe16N2-Type Phase of Non-Stoichiometric Composition: Current Status of Research and Microscopic Statistical-Thermodynamic Model, Prog. Phys. Met., 21, No. 4: 580 (2020); https://doi.org/10.15407/ufm.21.04.580
  120. V.B. Molodkin, S.I. Olikhovskii, S.V. Dmitriev, A.I. Nizkova, and V.V. Lizunov, Acta Crystallographica Section A: Foundations and Advances, 76: 45 (2020); https://doi.org/10.1107/S2053273319014281
  121. V.B. Molodkin, S.I. Olikhovskii, S.V. Dmitriev, and V.V. Lizunov, Acta Crystallographica Section A: Foundations and Advances, 77: 433 (2021); https://doi.org/10.1107/S2053273321005775
  122. S.V. Lizunova, V.B. Molodkin, B.V. Sheludchenko, and V.V. Lizunov, Metallofizika i Noveishie Tekhnologii, 35, No. 11: 1585 (2013).
  123. S.P. Repetsky, T.S. Len, and V.V. Lizunov, Metallofizika i Noveishie Tekhnologii, 28, No. 9: 1143 (2006).
  124. S.P. Repetsky, E.G. Len, and V.V. Lizunov, Metallofizika i Noveishie Tekhnologii, 28, No. 8: 989 (2006).
  125. E.G. Len, I.M. Melnyk, S.P. Repetsky, V.V. Lizunov, and V.A. Tatarenko, Materialwissenschaft und Werkstofftechnik, 42, No. 1: 47 (2011); https://doi.org/10.1002/mawe.201100729
  126. G. Martin, Ann. Chim. Fr., 6: 46 (1981);
  127. V.V. Neverov, P.P. Zhitnikov, V.N. Burov, and S.S. Efremov, Formation of Amorphous States during Joint Plastic Deformation of Elements (Moskva: Nauka: 1985) (in Russian).
  128. Т.М. Radchenko and V.А. Tatarenko, Fe–Ni Alloys at High Pressures and Temperatures: Statistical Thermodynamics and Kinetics of the L12 or D019 Atomic Order, Usp. Fiz. Met., 9, No. 1: 1 (2008) (in Ukrainian); https://doi.org/10.15407/ufm.09.01.001
  129. K.H. Levchuk, T.M. Radchenko, and V.A. Tatarenko, High-Temperature Entropy Effects in Tetragonality of the Ordering Interstitial–Substitutional Solution Based on Body-Centred Tetragonal Metal, Metallofiz. Noveishie Tekhnol., 43, No. 1: 1 (2021) (in Ukrainian); https://doi.org/10.15407/mfint.43.01.0001
  130. J.P. Poirier, Mat. Sci. Eng., 13, No. 2: 191 (1974); https://doi.org/10.1016/0025-5416(74)90187-6
  131. S.D. Kalashkin, I.A. Tomilin, and E.V. Shelekhov, The formation of supersaturated solid solutions in the Fe–Cu system during system upon mechanical melting, Phys. Metals Metallogr. (1997).
  132. V.V. Cherdyntsev, S.D. Kalashkin, and V.N. Serdyukov, Features of evolution of the phase composition at mechanical alloying composition of Fe(86.5)Cu(13.5), Phys. Metals Metallogr. (2003).
  133. M.O. Vasylyev, B.M. Mordyuk, S.M. Voloshko, and D.A. Lesyk, Microstructure Evolution of the Carbon Steels During Surface Severe Plastic Deformation, Progress in Physics of Metals, 22, No. 4: 562 (2021); https://doi.org/10.15407/ufm.22.04.562
  134. A.V. Volokitin, I.E. Volokitina, and E.A. Panin, Thermomechanical treatment of stainless steel piston rings, Progress in Physics of Metals, 23, No. 3: 411 (2022); https://doi.org/10.15407/ufm.23.03.411
  135. I.E. Volokitina, A.V. Volokitin, M.A. Latypova, V.V. Chigirinsky, and A.S. Kolesnikov, Effect of controlled rolling on the structural and phase transformations, Progress in Physics of Metals, 24, No. 1: 132 (2023); https://doi.org/10.15407/ufm.24.01.132