Basics of Additive Manufacturing Processes for High-Entropy Alloys

A. V. Zavdoveev$^1$, T. Baudin$^2$, D. G. Mohan$^3$, D. L. Pakula$^4$, D. V. Vedel$^5$, and M. A. Skoryk$^4$

$^1$E. O. Paton Electric Welding Institute of the N.A.S. of Ukraine, 11, Kazimir Malevich Str., UA-03150 Kyiv, Ukraine
$^2$Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d’Orsay, F-91405 Orsay, France
$^3$Department of Material Processing Engineering, Zhengzhou Research Institute of Harbin Institute of Technology, Zhengzhou, China
$^4$G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36, Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^5$I. M. Frantsevych Institute for Problems of Materials Science of the N.A.S. of Ukraine, 3, Omeljan Pritsak Str., UA-03142 Kyiv, Ukraine

Received 31.05.2023; final version — 18.07.2023 Download PDF logo PDF

Abstract
The review offers a comprehensive analysis of additive manufacturing (AM) processes in the application of high-entropy alloys (HEAs). HEAs have gained considerable attention in recent years due to their unique mechanical and physical properties. We provide the historical background and a clear definition of HEAs, outlining their development over time. The focus is concentrated on examining the utilization of AM processes in HEAs. Specifically, three prominent AM techniques are discussed: electron-beam processes, laser-processed HEAs, and wire-arc additive manufacturing. Each technique is explored in detail, including its advantages, restrictions, and current applications within the HEAs field. An attention is stressed on the significance of AM-process parameters during the fabrication of HEAs. Parameters such as laser power, scanning speed, and powder-feed rate are analysed for their influences on the microstructure and mechanical properties of the final product. The post-processing techniques for additive-manufactured HEAs are considered. The importance of steps such as heat treatment, surface finishing, and machining in achieving the desired material properties and dimensional accuracy in AM-produced HEA components is underlined. Over viewing the HEAs, their application in AM processes, the influence of process parameters, and post-processing considerations, this work can act as useful source of information for researchers on the way of amendment of the understanding and implementation of AM in the HEAs.

Keywords: additive manufacturing, high-entropy alloys, processing, structure, properties.

DOI: https://doi.org/10.15407/ufm.24.03.561

Citation: A. V. Zavdoveev, T. Baudin, D. G. Mohan, D. L. Pakula, D. V. Vedel, and M. A. Skoryk, Basics of Additive Manufacturing Processes for High-Entropy Alloys, Progress in Physics of Metals, 24, No. 3: 561–592 (2023)


References  
  1. P. Ashtari, K. Tetley-Gerard, and K. Sadayappan, Removal of iron from recycled aluminium alloys, Can. Metall. Q., 51: 75–80 (2012).
  2. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater., 6: 299–303 (2004). https://doi.org/10.1002/adem.200300567
  3. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375–377: 213–218 (2004); https://doi.org/10.1016/j.msea.2003.10.257
  4. S. Chen, Y. Tong, and P.K. Liaw, Additive manufacturing of high-entropy alloys: a review, Entropy, 20: 937 (2018).
  5. Z. Wu, H. Bei, G.M. Pharr, and E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Mater., 81: 428–441 (2014); https://doi.org/10.1016/j.actamat.2014.08.026
  6. E. Johnson, Cohesion in metals: (Cohesion and structure, vol. 1) by F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema and A.K. Niessen (Elsevier, Amsterdam, 1988) pp. xiv + 758, hardbound, US $ 131.50/Dfl 250-. ISBN 0-444-87098-9, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 42, No. 3: 403 (1989); https://doi.org/10.1016/0168-583X(89)90456-4
  7. K. Wu, N. Ding, T. Yin, M. Zeng, and Z. Liang, Effects of single and double pulses on microstructure and mechanical properties of weld joints during high-power double-wire GMAW, J. Manuf. Process., 35: 728–734 (2018); https://doi.org/10.1016/j.jmapro.2018.08.025
  8. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345, No. 6201: 1153–1158 (2014); https://doi.org/10.1126/science.1254581
  9. A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, and W. Zhang, High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams, JOM, 66: 1984–1992 (2014); https://doi.org/10.1007/s11837-014-1085-x
  10. C.L. Tracy, S. Park, D.R. Rittman, S.J. Zinkle, H. Bei, M. Lang, R.C. Ewing, and W.L. Mao, High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi, Nat. Commun., 8: 15634 (2017); https://doi.org/10.1038/ncomms15634
  11. Y.-J. Liang, L. Wang, Y. Wen, B. Cheng, Q. Wu, T. Cao, Q. Xiao, Y. Xue, G. Sha, Y. Wang, Y. Ren, X. Li, L. Wang, F. Wang, and H. Cai, High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys, Nat. Commun., 9: 4063 (2018); https://doi.org/10.1038/s41467-018-06600-8
  12. W. Ji, W. Wang, H. Wang, J. Zhang, Y. Wang, F. Zhang, and Z. Fu, Intermetallics, 56: 24–27 (2015); https://doi.org/10.1016/j.intermet.2014.08.008
  13. Z. Tang, T. Yuan, C.-W. Tsai, J.-W. Yeh, C.D. Lundin, and P.K. Liaw, Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy, Acta Mater., 99: 247–258 (2015); https://doi.org/10.1016/j.actamat.2015.07.004
  14. Y. Zhou, Y. Zhang, X. Wang, Y. Wang, and G. Chen, Effect of component substitution on the microstructure and mechanical properties of MCoCrFeNiTix (M = Cu, Al) solid-solution alloys, Rare Met., 27: 627–631 (2008); https://doi.org/10.1016/S1001-0521(08)60195-3
  15. W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, and Z.P. Lu, Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy, Scr. Mater., 68: 526–529 (2013); https://doi.org/10.1016/j.scriptamat.2012.12.002
  16. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics., 19: 698–706 (2011); https://doi.org/10.1016/j.intermet.2011.01.004
  17. J.M. Park, J. Choe, J.G. Kim, J.W. Bae, J. Moon, S. Yang, K.T. Kim, J.-H. Yu, and H.S. Kim, Superior tensile properties of 1%C–CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting, Mater. Res. Lett., 8: 1–7 (2020); https://doi.org/10.1080/21663831.2019.1638844
  18. F. Zhang, S. Zhao, K. Jin, H. Bei, and D. Popov, Pressure-induced fcc to hcp phase transition in Ni-based high entropy solid solution alloys, Appl. Phys. Lett., 110: 011902 (2017); https://doi.org/DOI:101063/14973627
  19. S. Mridha, M. Sadeghilaridjani, and S. Mukherjee, Activation volume and energy for dislocation nucleation in multi-principal element alloys, Metals, 9, No. 2: 263 (2019); https://doi.org/10.3390/met9020263
  20. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater., 10: 534–538 (2008); https://doi.org/10.1002/adem.200700240
  21. C. Zhu, Z.P. Lu, and T.G. Nieh, Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy, Acta Mater., 61: 2993–3001 (2013); https://doi.org/10.1016/j.actamat.2013.01.059
  22. Y. Brif, M. Thomas, and I. Todd, The use of high-entropy alloys in additive manufacturing, Scr. Mater., 99: 93–96 (2015); https://doi.org/10.1016/j.scriptamat.2014.11.037
  23. Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, and D. Raabe, Design of a twinning-induced plasticity high entropy alloy, Acta Mater., 94: 124–133 (2015). https://doi.org/10.1016/j.actamat.2015.04.014
  24. C. Li, J.C. Li, M. Zhao, and Q. Jiang, Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys, J. Alloys Compd., 475: 752–757 (2009); https://doi.org/10.1016/j.jallcom.2008.07.124
  25. O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloys Compd., 509: 6043–6048 (2011); https://doi.org/10.1016/j.jallcom.2011.02.171
  26. N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, Y.Q. Su, J.J. Guo, and H.Z. Fu, Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy, Mater. Des., 81: 87–94 (2015); https://doi.org/10.1016/j.matdes.2015.05.019
  27. S. Maiti and W. Steurer, Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy, Acta Mater., 106: 87–97 (2016); https://doi.org/10.1016/j.actamat.2016.01.018
  28. M.C. Gao, B. Zhang, S.M. Guo, J.W. Qiao, and J.A. Hawk, High-entropy alloys in hexagonal close-packed structure, Metall. Mater. Trans. A, 47: 3322 (2016); https://doi.org/10.1007/s11661-015-3091-1
  29. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off, Nature, 534: 227–230., (2016). https://doi.org/10.1038/nature17981
  30. J.M. Zhu, H. Fu, H. Zhang, A.M. Wang, H. Li, and Z. Hu, Microstructures and compressive properties of multicomponent AlCoCrFeNiMo x alloys, Mater. Sci. Eng. A, 527: 6975–6979 (2010); https://doi.org/10.1016/j.msea.2010.07.028
  31. G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, and E.P. George, Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy, Acta Mater., 118: 152–163 (2016); https://doi.org/10.1016/j.actamat.2016.07.038
  32. M.J. Jang, S.-H. Joo, C.-W. Tsai, J.-W. Yeh, and H. Kim, Compressive deformation behavior of CrMnFeCoNi high-entropy alloy, Met. Mater. Int., 22: 982–986 (2016); https://doi.org/10.1007/s12540-016-6304-2
  33. M. Chinababu, N. Naga Krishna, K. Sivaprasad, K.G. Prashanth, and E. Bhaskara Rao, Evolution of microstructure and mechanical properties of LM25–HEA composite processed through stir casting with a bottom pouring system, Materials, 15: 230 (2022); https://doi.org/10.3390/ma15010230
  34. Q.H. Li, T.M. Yue, Z.N. Guo, and X. Lin, Microstructure and corrosion properties of AlCoCrFeNi high entropy alloy coatings deposited on AISI 1045 steel by the electrospark process, Metall. Mater. Trans. A, 44: 1767–1778 (2013); https://doi.org/10.1007/s11661-012-1535-4
  35. N. Eißmann, B. Klöden, T. Weißgärber, and B. Kieback, High-entropy alloy CoCrFeMnNi produced by powder metallurgy, Powder Metall., 60: 184–197 (2017); https://doi.org/10.1080/00325899.2017.1318480
  36. Y. Wang, T. Voisin, J. McKeown, J. Ye, N. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T. Roehling, R. Ott, M. Santala, P.J. Depond, M. Matthews, A. Hamza, and T. Zhu, Additively manufactured hierarchical stainless steels with high strength and ductility, Nat. Mater., 17: 63–71 (2018); https://doi.org/10.1038/nmat5021
  37. W. Xu, E.W. Lui, A. Pateras, M. Qian, and M. Brandt, In situ tailoring microstructure in additively manufactured Ti–6Al–4V for superior mechanical performance, Acta Mater., 125: 390–400 (2017); https://doi.org/10.1016/j.actamat.2016.12.027
  38. W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, and M. Qian, Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition, Acta Mater., 85: 74–84 (2015); https://doi.org/10.1016/j.actamat.2014.11.028
  39. R. Zhou, Y. Liu, B. Liu, L. Jia, and Q. Fang, Precipitation behavior of selective laser melted FeCoCrNiC 0.05 high entropy alloy, Intermetallics, 106: 20–25 (2019); https://doi.org/10.1016/j.intermet.2018.12.001
  40. T. Fujieda, H. Shiratori, K. Kuwabara, M. Hirota, T. Kato, K. Yamanaka, Y. Koizumi, A. Chiba, and S. Watanabe, CoCrFeNiTi-based high-entropy alloy with superior tensile strength and corrosion resistance achieved by a combination of additive manufacturing using selective electron beam melting and solution treatment, Mater. Lett., 189: 148–151 (2017); https://doi.org/10.1016/j.matlet.2016.11.026
  41. X.H. An, X. Liao, Z.G. Zhu, B. Nguyen, F. Ng, P.K. Liaw, M.L.S. Nai, and J. Wei, Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting, Scr. Mater., 154: 20–24 (2018); https://doi.org/10.1016/j.scriptamat.2018.05.015
  42. A. Piglione, B. Dovgyy, C. Liu, C.M. Gourlay, P.A. Hooper, and M.S. Pham, Printability and microstructure of the CoCrFeMnNi high-entropy alloy fabricated by laser powder bed fusion, Mater. Lett., 224: 22–25 (2018). https://doi.org/10.1016/j.matlet.2018.04.052
  43. W. Wu, R. Zhou, B. Wei, S. Ni, Y. Liu, and M. Song, Nanosized precipitates and dislocation networks reinforced C-containing CoCrFeNi high-entropy alloy fabricated by selective laser melting, Mater. Charact., 144: 605–610 (2018); https://doi.org/DOI:101016/jmatchar201808019.
  44. T. Borkar, V. Chaudhary, B. Gwalani, D. Choudhuri, C. V Mikler, V. Soni, T. Alam, R.V. Ramanujan, and R. Banerjee, A combinatorial approach for assessing the magnetic properties of high entropy alloys: role of Cr in AlCoxCr1xFeNi, Adv. Eng. Mater., 19: 1700048 (2017); https://doi.org/10.1002/adem.201700048
  45. B. Zheng, Y. Zhou, J.E. Smugeresky, J.M. Schoenung, and E. Lavernia, Thermal behavior and microstructural evolution during laser deposition with laser-engineered net shaping: Part I. Numerical calculations, Metall. Mater. Trans. A, 39: 2228–2236 (2008); https://doi.org/10.1007/s11661-008-9557-7
  46. Z. Sun, X. Tan, M. Descoins, D. Mangelinck, S. Tor, and C. Lim, Revealing hot tearing mechanism for an additively manufactured high-entropy alloy via selective laser melting, Scr. Mater., 168: 129–133 (2019); https://doi.org/10.1016/j.scriptamat.2019.04.036
  47. C. Haase, F. Tang, M.B. Wilms, A. Weisheit, and B. Hallstedt, Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys — Towards rapid alloy screening and design, Mater. Sci. Eng. A, 688: 180–189 (2017); https://doi.org/10.1016/j.msea.2017.01.099
  48. Z. Qiu, C. Yao, K. Feng, Z. Li, and P. Chu, Cryogenic deformation mechanism of CrMnFeCoNi high-entropy alloy fabricated by laser additive manufacturing process, Int. J. Light. Mater. Manuf., 1: 33–39 (2018); https://doi.org/10.1016/j.ijlmm.2018.02.001
  49. Y. Chew, G. Bi, Z.G. Zhu, F. Ng, F. Weng, S. Liu, M.L.S. Nai, and B.Y. Lee, Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy, Mater. Sci. Eng. A, 744: 137–144 (2018); https://doi.org/10.1016/j.msea.2018.12.005
  50. M. Moorehead, K. Bertsch, M. Niezgoda, C. Parkin, M. Elbakhshwan, K. Sridharan, C. Zhang, D. Thoma, and A. Couet, High-throughput synthesis of Mo–Nb–Ta–W high-entropy alloys via additive manufacturing, Mater. Des., 187: 108358 (2020); https://doi.org/10.1016/j.matdes.2019.108358
  51. H. Dobbelstein, E.L. Gurevich, E.P. George, A. Ostendorf, and G. Laplanche, Laser metal deposition of compositionally graded TiZrNbTa refractory high-entropy alloys using elemental powder blends, Addit. Manuf., 25: 252–262 (2019); https://doi.org/10.1016/j.addma.2018.10.042
  52. I. Kunce, M. Polanski, and J. Bystrzycki, Structure and hydrogen storage properties of a high entropy ZrTiVCrFeNi alloy synthesized using Laser Engineered Net Shaping (LENS), Int. J. Hydrogen Energy, 38: 12180–12189 (2013); https://doi.org/10.1016/j.ijhydene.2013.05.071
  53. P.K. Sarswat, S. Sarkar, A. Murali, W. Huang, W. Tan, and M.L. Free, Additive manufactured new hybrid high entropy alloys derived from the AlCoFeNiSmTiVZr system, Appl. Surf. Sci., 476: 242–258 (2019); https://doi.org/10.1016/j.apsusc.2018.12.300
  54. L. Ladani and M. Sadeghilaridjani, Review of powder bed fusion additive manufacturing for metals, Metals, 11: 1391 (2021); https://doi.org/10.3390/met11091391
  55. M. Sadeghilaridjani, S. Muskeri, V. Hasannaeimi, M. Pole, and S. Mukherjee, Strain rate sensitivity of a novel refractory high entropy alloy: Intrinsic versus extrinsic effects, Mater. Sci. Eng. A, 766: 138326 (2019); https://doi.org/10.1016/j.msea.2019.138326
  56. P.J. Barron, A.W. Carruthers, J.W. Fellowes, N.G. Jones, H. Dawson, and E.J. Pickering, Towards V-based high-entropy alloys for nuclear fusion applications, Scr. Mater., 176: 12–16 (2020); https://doi.org/10.1016/j.scriptamat.2019.09.028
  57. T. Yang, Y.L. Zhao, J.H. Luan, B. Han, J. Wei, J.J. Kai, and C.T. Liu, Nanoparticles-strengthened high-entropy alloys for cryogenic applications showing an exceptional strength-ductility synergy, Scr. Mater., 164: 30–35 (2019); https://doi.org/10.1016/j.scriptamat.2019.01.034
  58. T. Fujieda, H. Shiratori, K. Kuwabara, T. Kato, K. Yamanaka, Y. Koizumi, and A. Chiba, First demonstration of promising selective electron beam melting method for utilizing high-entropy alloys as engineering materials, Mater. Lett., 159: 12–15 (2015); https://doi.org/10.1016/j.matlet.2015.06.046
  59. K. Kuwabara, H. Shiratori, T. Fujieda, K. Yamanaka, Y. Koizumi, and A. Chiba, Mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy fabricated with selective electron beam melting, Addit. Manuf., 23: 264–271 (2018); https://doi.org/10.1016/j.addma.2018.06.006
  60. H. Shiratori, T. Fujieda, K. Yamanaka, Y. Koizumi, K. Kuwabara, T. Kato, and A. Chiba, Relationship between the microstructure and mechanical properties of an equiatomic AlCoCrFeNi high-entropy alloy fabricated by selective electron beam melting, Mater. Sci. Eng. A, 656: 39–46 (2016); https://doi.org/10.1016/j.msea.2016.01.019
  61. P. Wang, P. Huang, F.L. Ng, W.J. Sin, S. Lu, M.L.S. Nai, Z. Dong, and J. Wei, Additively manufactured CoCrFeNiMn high-entropy alloy via pre-alloyed powder, Mater. Des., 168: 107576 (2019). https://doi.org/10.1016/j.matdes.2018.107576
  62. P.D. Niu, R.D. Li, T.C. Yuan, S.Y. Zhu, C. Chen, M.B. Wang, and L. Huang, Microstructures and properties of an equimolar AlCoCrFeNi high entropy alloy printed by selective laser melting, Intermetallics., 104: 24–32 (2019); https://doi.org/10.1016/j.intermet.2018.10.018
  63. S. Luo, C. Zhao, Y. Su, Q. Liu, and Z. Wang, Selective laser melting of dual phase AlCrCuFeNix high entropy alloys: Formability, heterogeneous microstructures and deformation mechanisms, Addit. Manuf., 31: 100925 (2020); https://doi.org/10.1016/j.addma.2019.100925
  64. D. Lin, L. Xu, H. Jing, Y. Han, L. Zhao, and F. Minami, Effects of annealing on the structure and mechanical properties of FeCoCrNi high-entropy alloy fabricated via selective laser melting, Addit. Manuf., 32: 101058 (2020). https://doi.org/10.1016/j.addma.2020.101058
  65. R. Li, P. Niu, T. Yuan, P. Cao, C. Chen, and K. Zhou, Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property, J. Alloys Compd., 746: 125–134 (2018); https://doi.org/10.1016/j.jallcom.2018.02.298
  66. Z. Tong, X. Ren, J. Jiao, W. Zhou, Y. Ren, Y. Ye, E.A. Larson, and J. Gu, Laser additive manufacturing of FeCrCoMnNi high-entropy alloy: Effect of heat treatment on microstructure, residual stress and mechanical property, J. Alloys Compd., 785: 1144–1159 (2019); https://doi.org/10.1016/j.jallcom.2019.01.213
  67. Z. Xu, H. Zhang, X. Du, Y. He, H. Luo, G. Song, L. Mao, T. Zhou, and L. Wang, Corrosion resistance enhancement of CoCrFeMnNi high-entropy alloy fabricated by additive manufacturing, Corros. Sci., 177: 108954 (2020); https://doi.org/10.1016/j.corsci.2020.108954
  68. Z. Xu, H. Zhang, W. Li, A. Mao, L. Wang, G. Song, and Y. He, Microstructure and nanoindentation creep behavior of CoCrFeMnNi high-entropy alloy fabricated by selective laser melting, Addit. Manuf., 28: 766–771 (2019); https://doi.org/10.1016/j.addma.2019.06.012
  69. A. Ostovari Moghaddam, N.A. Shaburova, M.N. Samodurova, A. Abdollahzadeh, and E.A. Trofimov, Additive manufacturing of high entropy alloys: A practical review, J. Mater. Sci. Technol., 77: 131–162 (2021). https://doi.org/10.1016/j.jmst.2020.11.029
  70. Z. Zhu, X.H. An, W. Lu, Z. Li, F. Ng, X. Liao, U. Ramamurty, M.L.S. Nai, and J. Wei, Selective laser melting enabling the hierarchically heterogeneous microstructure and excellent mechanical properties in an interstitial solute strengthened high entropy alloy, Mater. Res. Lett., 7: 453–459 (2019); https://doi.org/10.1080/21663831.2019.1650131
  71. Z. Li, C.C. Tasan, H. Springer, B. Gault, and D. Raabe, Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys, Sci. Rep., 7: 40704 (2017); https://doi.org/10.1038/srep40704
  72. M.R.U. Ahsan, G.-J. Seo, X. Fan, P.K. Liaw, S. Motaman, C. Haase, and D.B. Kim, Effects of process parameters on bead shape, microstructure, and mechanical properties in wire + arc additive manufacturing of Al0.1CoCrFeNi high-entropy alloy, J. Manuf. Process., 68: 1314–1327 (2021); https://doi.org/10.1016/j.jmapro.2021.06.047
  73. Q. Shen, X. Kong, and X. Chen, Fabrication of bulk Al–Co–Cr–Fe–Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties, J. Mater. Sci. Technol., 74: 136–142 (2021); https://doi.org/10.1016/j.jmst.2020.10.037
  74. A. Zavdoveev, A. Klapatyuk, T. Baudin, E. MacDonald, D. Mohan, J. Oliveira, A. Gajvoronskiy, V. Poznyakov, H.S. Kim, F. Brisset, M. Khokhlov, M. Heaton, M. Rogante, M. Skoryk, D. Vedel, R. Kozin, I. Klochkov, and S. Motrunich, Non-equimolar Cantor high entropy alloy fabrication using metal powder cored wire arc additive manufacturing, Addit. Manuf. Lett., 6: 100124 (2023); https://doi.org/10.1016/j.addlet.2023.100124
  75. A. Zavdoveev, T. Baudin, E. Pashinska, H.S. Kim, F. Brisset, M. Heaton, V. Poznyakov, M. Rogante, V. Tkachenko, I. Klochkov, and M. Skoryk, Continuous severe plastic deformation of low-carbon steel: physical–mechanical properties and multiscale structure analysis, Steel Res. Int., 92: 2000482 (2021); https://doi.org/10.1002/srin.202000482
  76. N.H. Sateesh, G.C.M. Kumar, K. Prasad, S. C.K., and A.R. Vinod, Microstructure and mechanical characterization of laser sintered inconel-625 superalloy, Procedia Mater. Sci., 5: 772–779 (2014); https://doi.org/10.1016/j.mspro.2014.07.327
  77. Q. Jia and D. Gu, Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties, J. Alloys Compd., 585: 713–721 (2014); https://doi.org/10.1016/j.jallcom.2013.09.171
  78. J.A. Muñiz-Lerma, A. Nommeots-Nomm, K.E. Waters, and M. Brochu, A comprehensive approach to powder feedstock characterization for powder bed fusion additive manufacturing: a case study on AlSi7Mg, Mater., 11: 2386 (2018); https://doi.org/10.3390/ma11122386
  79. X. Zhao, J. Chen, X. Lin, and W. Huang, Study on microstructure and mechanical properties of laser rapid forming Inconel 718, Mater. Sci. Eng. A, 478: 119–124 (2008); https://doi.org/10.1016/j.msea.2007.05.079
  80. A.H. Nickel, D.M. Barnett, and F.B. Prinz, Thermal stresses and deposition patterns in layered manufacturing, Mater. Sci. Eng. A, 317: 59–64 (2001); https://doi.org/10.1016/S0921-5093(01)01179-0
  81. L. Wang, N. Wang, W.J. Yao, and Y. Zheng, Effect of substrate orientation on the columnar-to-equiaxed transition in laser surface remelted single crystal superalloys, Acta Mater., 88: 283–292(2015); https://doi.org/10.1016/j.actamat.2015.01.063
  82. D. Gu and Y. Shen, Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods, Mater. Des., 30: 2903–2910 (2009); https://doi.org/10.1016/j.matdes.2009.01.013
  83. D.B. Hann, J. Iammi, and J. Folkes, A simple methodology for predicting laser-weld properties from material and laser parameters, J. Phys. D: Appl. Phys., 44: 445401 (2011). https://doi.org/10.1088/0022-3727/44/44/445401
  84. T. Vilaro, C. Colin, J.D. Bartout, L. Nazé, and M. Sennour, Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy, Mater. Sci. Eng. A, 534: 446–451 (2012); https://doi.org/10.1016/j.msea.2011.11.092
  85. K.G. Prashanth, S. Scudino, H.J. Klauss, K.B. Surreddi, L. Löber, Z. Wang, A.K. Chaubey, U. Kühn, and J. Eckert, Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment, Mater. Sci. Eng. A, 590: 153–160 (2014); https://doi.org/10.1016/j.msea.2013.10.023
  86. W. Wu, J. Jiang, H. Jiang, W. Liu, G. Li, B. Wang, M. Tang, and J. Zhao, Improving bending and dynamic mechanics performance of 3D printing through ultrasonic strengthening, Mater. Lett., 220: 317–320 (2018). https://doi.org/10.1016/j.matlet.2018.03.048
  87. Q.H. Tang, Y. Huang, Y.Y. Huang, X.Z. Liao, T.G. Langdon, and P.Q. Dai, Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing, Mater. Lett., 151: 126–129 (2015); https://doi.org/10.1016/j.matlet.2015.03.066
  88. A. V Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, and O.N. Senkov, Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions, Mater. Sci. Eng. A, 533: 107–118 (2012); https://doi.org/10.1016/j.msea.2011.11.045.
  89. C.-W. Tsai, Y.-L. Chen, M.-H. Tsai, J.-W. Yeh, T.-T. Shun, and S.-K. Chen, Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi, J. Alloys Compd., 486: 427–435 (2009); https://doi.org/10.1016/j.jallcom.2009.06.182
  90. Y.-F. Kao, T.-J. Chen, S.-K. Chen, and J.-W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0  x  2) high-entropy alloys, J. Alloys Compd., 488: 57–64 (2009); https://doi.org/10.1016/j.jallcom.2009.08.090
  91. T.-T. Shun and Y.-C. Du, Age hardening of the Al0.3CoCrFeNiC0.1 high entropy alloy, J. Alloys Compd., 478: 269–272 (2009); https://doi.org/10.1016/j.jallcom.2008.12.014
  92. J. Joseph, P. Hodgson, T. Jarvis, X. Wu, N. Stanford, and D.M. Fabijanic, Effect of hot isostatic pressing on the microstructure and mechanical properties of additive manufactured AlxCoCrFeNi high entropy alloys, Mater. Sci. Eng. A, 733: 59–70 (2018); https://doi.org/10.1016/j.msea.2018.07.036
  93. X. Zhao, X. Lin, J. Chen, L. Xue, and W. Huang, The effect of hot isostatic pressing on crack healing, microstructure, mechanical properties of Rene88DT superalloy prepared by laser solid forming, Mater. Sci. Eng. A, 504: 129–134 (2009). https://doi.org/10.1016/j.msea.2008.12.024
  94. M.T. Kim, S.Y. Chang, and J.B. Won, Effect of HIP process on the micro-structural evolution of a nickel-based superalloy, Mater. Sci. Eng. A, 441: 126–134 (2006); https://doi.org/10.1016/j.msea.2006.09.060
  95. C.-M. Lin and H.-L. Tsai, Effect of annealing treatment on microstructure and properties of high-entropy FeCoNiCrCu0.5 alloy, Mater. Chem. Phys., 128: 50–56 (2011). https://doi.org/10.1016/j.matchemphys.2011.02.022
  96. N.D. Stepanov, D.G. Shaysultanov, N.Y. Yurchenko, S.V. Zherebtsov, A.N. Ladygin, G.A. Salishchev, and M.A. Tikhonovsky, High temperature deformation behavior and dynamic recrystallization in CoCrFeNiMn high entropy alloy, Mater. Sci. Eng. A, 636: 188–195 (2015); https://doi.org/10.1016/j.msea.2015.03.097
  97. Y. Geng, S.V. Konovalov, and X. Chen, Research status and application of the high-entropy and traditional alloys fabricated via the laser cladding, Prog. Phys. Met., 21, No. 1: 26–45 (2020); https://doi.org/10.15407/ufm.21.01.026
  98. M.O. Vasylyev, B.M. Mordyuk, and S.M. Voloshko, Wire-feeding based additive manufacturing of the Ti–6Al–4V Alloy. Part I. Microstructure, Prog. Phys. Met., 24, No. 1: 5–37 (2023); https://doi.org/10.15407/ufm.24.01.005
  99. M.O. Vasylyev, B.M. Mordyuk, and S.M. Voloshko, Wire-feeding based additive manufacturing of the Ti–6Al–4V Alloy. Part II. Mechanical properties, Prog. Phys. Met., 24, No. 1: 38–74 (2023); https://doi.org/10.15407/ufm.24.01.038
  100. O.M. Ivasishin, D.V. Kovalchuk, P.E. Markovsky, D.G. Savvakin, O.O. Stasiuk, V.I. Bondarchuk, D.V. Oryshych, S.G. Sedov, and V.A. Golub, Additive manufacturing of titanium-based materials using electron beam wire 3D printing approach: peculiarities, advantages, and prospects, Prog. Phys. Met., 24, No. 1: 75–105 (2023); https://doi.org/10.15407/ufm.24.01.075