Methods of Improving the Structure and Properties of High-Speed Steels

O. V. Movchan and K. O. Chornoivanenko

Ukrainian State University of Science and Technologies, 2 Lazaryana Str., UA-49010 Dnipro, Ukraine

Received 11.04.2023; final version — 05.08.2023 Download PDF logo PDF

Abstract
We review the works on the technologies of high-speed steels (HSSs) production. Different methods for improving the structure homogeneity of HSSs are considered. State-of-the-art techniques for controlling the structure of steels, the advantages and disadvantages of technologies are formulated. Modification methods for improving the structure of HSSs using various alkali metals, alkaline earth metals, rare-earth metals, misch metals are studied. An increase in cooling rate and the implementation of a spheroidizing treatment process to refine carbide dimensions in HSSs are considered. The sub-zero treatment for improving the fatigue characteristics, impact strength, hardness and wear resistance of HSSs are studied. Powder metallurgy is able to promote the refined and more uniform microstructures. This is their main advantage leading to improved properties and higher isotropy of HSSs. The regularities of phase and structural transformations by diffusion composition changing in the pressed powder mixture of alloys (in which the concentration of the alloying elements is similar to standard HSSs, but with different carbon content) are considered. As shown, using metal injection moulding and coating technologies are efficient ways to improve hardness and wear resistance of HSSs. The possibility of applying chemical-heat treatment to improve the structure of HSSs is shown. Diffusion changes in composition due to chemical-heat treatment allow obtaining in situ composite with a high level of physical and mechanical properties. The influence of additional doping on the structure and properties of composite materials of the eutectic type of binary systems, as well as the features of the structure formation of ternary colonies in the composite are considered.

Keywords: high-speed steel, structure homogeneity, modification, sub-zero treatment, powder metallurgy, coating technologies, thermochemical treatment, in situ composite.

DOI: https://doi.org/10.15407/ufm.24.03.446

Citation: O. V. Movchan and K. O. Chornoivanenko, Methods of Improving the Structure and Properties of High-Speed Steels, Progress in Physics of Metals, 24, No. 3: 446–469 (2023)


References  
  1. W. Bochnowski, H. Leitner, L. Major, R. Ebner, and B. Major, Mater. Chem. Phys., 81: 503 (2003); https://doi.org/10.1016/S0254-0584(03)00058-0
  2. A.S. Chaus and M. Hudakova, Wear, 267: 1051 (2009); https://doi.org/10.1016/j.wear.2008.12.101
  3. X.G. Yan and D.Y. Li, Wear, 302, Nos. 1–2: 854 (2013); https://doi.org/10.1016/j.wear.2012.12.037
  4. V.D. Eisenhttenleute und V. Stahleisen, Werkstoffkunde Stahl (Dusseldorf: 1984) (in German); https://doi.org/10.1007/978-3-642-82091-5
  5. E. Haberling und I. Schruff, Thyssen Edelstahl Technische Berichte, 11: 99 (1985) (in German).
  6. E. Pippel, J. Woltersdorf, G. Pockl, and G. Lichtenegger, Mater. Characterization, 43, No. 1: 41 (1999); https://doi.org/10.1016/S1044-5803(99)00003-0
  7. R.H. Barkalow, R.W. Kraft, and J.I. Goldstein, Metall. Mater. Trans. B, 3: 919 (1972); https://doi.org/10.1007/BF02647667
  8. I.C. Ernst and D. Duh, J. Mater. Sci., 39: 6831 (2004); https://doi.org/10.1023/B:JMSC.0000045613.54700.35
  9. A.S. Chaus, M. Bračik, M. Sahul, and M. Domankova, Vacuum, 162: 183 (2019); https://doi.org/10.1016/j.vacuum.2019.01.041
  10. H.F. Fischmeister, R. Riedl, and S. Karagoz, Metall. Mater. Trans. A, 20: 2133 (1989); https://doi.org/10.1007/BF02650299
  11. H. Fredriksson and S. Brising, Scand. J. Metal., 5: 268 (1976).
  12. N.B. Dhokey, A. Hake, and S. Kadu, Metall. Mater. Trans. A, 45: 1508 (2014); https://doi.org/10.1007/s11661-013-2067-2
  13. V. Alves, C. Brett, and A. Cavaleiro, J. Appl. Electrochem., 31: 65 (2001); https://doi.org/10.1023/A:1004157623466
  14. A.S. Chaus, M. Bogachik, and P. Uradnik, Phys. Metals Metallogr., 112: 470 (2011); https://doi.org/10.1134/S0031918X11020189
  15. X.F. Zhou, X.Y. Yin, F. Fang, J.Q. Jiang, and W.L. Zhu, J. Rare Earths, 30: 1075 (2012); https://doi.org/10.1016/S1002-0721(12)60181-1
  16. A.S. Chaus and M. Domankova, J. Material. Eng. Perform., 22: 1412 (2013); https://doi.org/10.1007/s11665-012-0407-9
  17. S.S. Gill, JERS, 3, No. 2: 45 (2012).
  18. H.G. Fu, J.M. Du, Z.Q. Zhang, and J.D. Xing, J. Rare Earths, 21: 664 (2003).
  19. X.W. Zong and Z.Q. Jiang, Trans. Nonferrous Metal. Soc. China, 15: 194 (2005).
  20. M.J. Wang, S.M. Mu, F.F. Song, and Y. Wang, J. Rare Earths, 25: 490 (2007); https://doi.org/10.1016/S1002-0721(07)60462-1
  21. Y.K. Luan, N.N. Song, Y.L. Bai, X.H. Kang, and D.Z. Li, J. Mater. Process. Technol., 210: 536 (2010); https://doi.org/10.1016/j.jmatprotec.2009.10.017
  22. M.G. Qu, S.H. Sun, X.H. Bai, Z.P. Shi, Y. Gao, and W.T. Fu, Iron Steel Res. Int., 21, No. 1: 60 (2014); https://doi.org/10.1016/S1006-706X(14)60010-8
  23. B. Zhou, Y. Shen, J. Chen, and Z.S. Cui, Iron Steel Res. Int., 18, No. 1: 41 (2011); https://doi.org/10.1016/S1006-706X(11)60009-5
  24. Y.C. Pan, H. Yang, X.F. Liu, and X.F. Bian, Mater. Lett., 58: 1912 (2004); https://doi.org/10.1016/j.matlet.2003.12.005
  25. J.T. Duan, Z.Q. Jiang, and H.G. Fu, J. Rare Earths, 25: 259 (2007); https://doi.org/10.1016/S1002-0721(07)60484-0
  26. Q.X. Liu, D.P. Lu, L. Lu, Q. Hu, Q.F. Fu, and Z. Zhou, J. Iron Steel Res.Int., 22, No.3: 245 (2015); https://doi.org/10.1016/S1006-706X(15)60037-1
  27. J. Yang, D.N. Zou, X.M. Li, and Z.Z. Du, J. Iron Steel Res. Int., 14, No. 1: 47 (2007); https://doi.org/10.1016/S1006-706X(07)60011-9
  28. E.S. Lee, W.J. Park, J.Y. Jung, and S. Ahn, Metall. Mater. Trans. A, 29: 1395 (1998); https://doi.org/10.1007/s11661-998-0354-0
  29. H.S. Di, X.M. Zhang, G.D. Wang, and X.H. Liu, J. Mater. Process. Technol., 166: 359 (2005); https://doi.org/10.1016/j.jmatprotec.2004.07.085
  30. X.F. Zhou, F. Fang, J.Q. Jiang, W.L. Zhu, and H.X. Xu, Mater. Sci. Technol., 30: 116 (2014); https://doi.org/10.1179/1743284713Y.0000000338
  31. X.F. Zhou, F. Fang, G. Li, and J.Q. Jiang, ISIJ Int., 50: 1151 (2010); https://doi.org/10.2355/isijinternational.50.1151
  32. F.S. Pan, W.Q. Wang, A.T. Tang, L.Z. Wu, T.T. Liu, and R.J. Cheng, Prog. Nat. Sci., 21: 180 (2011); https://doi.org/10.1016/S1002-0071(12)60053-7
  33. M.G. Qu, Z.H. Wang, H. Li, Z.Q. Lv, S.H. Sun, and W.T. Fu, J. Rare Earths, 31: 628 (2013); https://doi.org/10.1016/S1002-0721(12)60332-9
  34. M. Boccalini Jr., A.V.O. Correa, and H. Goldenstein, Mater. Sci. Technol., 15, No. 6: 621 (1999); https://doi.org/10.1179/026708399101506355
  35. P. Chena, Y. Liu, X. Ping, W. Li, and Y. Yi, Mater. Sci. Eng. A, 863: 144520 (2023); https://doi.org/10.1016/j.msea.2022.144520
  36. X. Ren, H. Fu, J. Xing, and Y. Yi, Mater. Sci. Eng. A, 742: 617 (2019); https://doi.org/10.1016/j.msea.2018.10.087
  37. X.F. Zhou, W.L. Zhu, and H.B. Jiang, J. Iron Steel Res. Int., 23: 800 (2016); https://doi.org/10.1016/S1006-706X(16)30123-6
  38. C.H. Surberg, P. Stratton, and K. Lingenhoe, Cryogenics, 48: 42 (2008); https://doi.org/10.1016/j.cryogenics.2007.10.002
  39. P. Baldissera, Mater. Design, 30: 3636 (2009); https://doi.org/10.1016/j.matdes.2009.02.019
  40. Y.M. Rhyim, S.H. Han, Y.S. Na, and J.H. Lee, Solid State Phenom., 118: 9 (2006); https://doi.org/10.4028/www.scientific.net/SSP.118.9
  41. D. Das, R Sarkar, A.K. Dutta, and K.K. Ray, Mater. Sci. Eng. A, 528: 589 (2010); https://doi.org/10.1016/j.msea.2010.09.057
  42. S. Li, Y. Xie, and X. Wu, Cryogenics, 50: 89 (2010); https://doi.org/10.1016/j.cryogenics.2009.12.005
  43. F. Meng, K. Tagashira, R. Azuma, and H. Sohma, ISIJ International, 34: 205 (1994); https://doi.org/10.2355/isijinternational.34.205
  44. D. Yun, L. Xiaoping, and X. Hongshen, Heat Treatment of Metals, 3: 55 (1998); https://doi.org/10.1179/174951508X358482
  45. R.F. Barron, Cryogenics, 22: 409 (1982); https://doi.org/10.1016/0011-2275(82)90085-6
  46. D. MohanLal, S. Renganarayanan, and A. Kalanidhi, Cryogenics, 41: 149 (2001); https://doi.org/10.1016/S0011-2275(01)00065-0
  47. F.J. Silva, S.D. Franco, A.R. Machado, E.O Ezugwu, and A.M.J. Souza, Wear, 261: 674 (2006); https://doi.org/10.1016/j.wear.2006.01.017
  48. V. Leskovsek, M. Kalin, and J. Vizintin, Vacuum, 80: 507 (2006); https://doi.org/10.1016/j.vacuum.2005.08.023
  49. M. Kalin, V. Leskovsek, and J. Vizintin, Mater. Manufacturing Processes, 21: 741 (2006); https://doi.org/10.1080/10426910600727924
  50. K. Rajendra, N. Philip, and Z. Yuntian, Heat Treating Progress, 7: 57 (2007).
  51. D. Das, A.K. Dutta, V. Toppo, and K.K. Ray, Mater. Manufacturing Processes, 22: 474 (2007); https://doi.org/10.1080/10426910701235934
  52. M. Pellizzari, A. Molinari, L. Girardini, and L. Maldarelli, Int. J. Microstruct. Mater. Properties, 3: 383 (2008); https://doi.org/10.1504/IJMMP.2008.018742
  53. D. Das, A.K. Dutta, and K.K. Ray, Phil. Magazine Lett., 88: 801 (2008); https://doi.org/10.1080/09500830802380788
  54. D. Das, A.K. Dutta, and K.K. Ray, Wear, 266: 297 (2009); https://doi.org/10.1016/j.wear.2008.07.001
  55. F. Cajner, V. Leskovsek, D. Landek, and H. Cajner, Mater. Manufacturing Processes, 24: 743 (2009); https://doi.org/10.1080/10426910902809743
  56. D. Das, A.K. Dutta, and K.K. Ray, Mater. Sci. Eng. A, 527: 2194 (2010); https://doi.org/10.1016/j.msea.2009.10.071
  57. K. Amini, S. Nategh, and A. Shafyei, Mater. Design, 31: 4666 (2010); https://doi.org/10.1016/j.matdes.2010.05.028
  58. B. Podgornik, F. Majdic, V. Leskovsek, and J. Vizintin, Wear, 288: 88 (2012); https://doi.org/10.1016/j.wear.2011.04.001
  59. N.B. Dhokey and J.V. Dandawate, Transactions of the Indian Institute of Metals, 65: 405 (2012); https://doi.org/10.1007/s12666-012-0145-6
  60. S.S. Gill, J. Singh, R. Singh, and Harpreet Singh, J. Mater. Eng. Perform., 21: 1320 (2012); https://doi.org/10.1007/s11665-011-0032-z
  61. N.B. Dhokey, J. Dandawate, H. Gangurde, and A. Harle, Engineering Failure Analysis, 21: 52 (2012); https://doi.org/10.1016/j.engfailanal.2011.11.013
  62. H. Yan, H. Xu, and Y. Liu, Adv. Mater. Res., 97–101: 457 (2010); https://doi.org/10.4028/www.scientific.net/AMR.97-101.457
  63. A. Cicek, T. Kivak, I. Uygur, E. Ekici, and Y. Turgut, Int. J. Adv. Manufacturing Technol., 60: 65 (2012); https://doi.org/10.1007/s00170-011-3616-8
  64. X.G. Yan, S.Q. Pang, Y.T. Li, Z.Q. Liu, and H. Guo, Adv. Mater. Res., 426: 317 (2012); https://doi.org/10.4028/www.scientific.net/AMR.426.317
  65. D. Das, A.K. Dutta, and K.K. Ray, Mater. Sci. Eng. A, 527: 2182 (2010); https://doi.org/10.1016/j.msea.2009.10.070
  66. V. Firouzdor, E. Nejati, and F. Khomamizadeh, J. Mater. Processing Technol., 206: 467 (2008); https://doi.org/10.1016/j.jmatprotec.2007.12.072
  67. J.Y. Huang, Y.T. Zhu, X.Z. Liao, I.J. Beyerlein, M.A. Bourke, and T.E. Mitchell, Mater. Sci. Eng. A, 399: 241 (2003); https://doi.org/10.1016/S0921-5093(02)00165-X
  68. X.G.Yan and D.Y.Li, Wear, 302, Nos. 1–2: 854 (2013); https://doi.org/10.1016/j.wear.2012.12.037
  69. A.M. Adaskin and Y.E. Sedov, Met. Sci. Heat Treat., 18: 936 (1976); https://doi.org/10.1007/BF00706898
  70. W.J. Shen, L. Yu, Z. Li, Y.H. He, Q.K. Zhang, and H.B. Zhang, Met. Mater. Int., 23: 1150 (2017); https://doi.org/10.1007/s12540-017-7116-8
  71. P. Hellman, Metal. Powder Report, 47: 25 (1992).
  72. R. A. Mesquita and C. A. Barbosa, J. Mater. Sci., 416–418, No. 1: 235 (2003); https://doi.org/10.4028/www.scientific.net/MSF.416-418.235
  73. Q.K. Zhang, Y. Jiang, W.J. Shen, H.B. Zhang, Y.H. He, and N. Li, Material. Design, 112: 469 (2016); https://doi.org/10.1016/j.matdes.2016.09.044
  74. S. Imashuku and K. Wagatsuma, Metall. Mater. Trans. B, 51: 79 (2020); https://doi.org/10.1007/s11663-019-01732-8
  75. M.J. Wang, S.M. Mu, F.F. Sun, and Y. Wang, J. Rare Earths, 25: 490 (2007); https://doi.org/10.1016/S1002-0721(07)60462-1
  76. Y.J. Li, Q.C. Jiang, Y.G. Zhao, Z.M. He, and X.Y. Zhong, J. Rare Earths, 18: 132 (2000).
  77. Y. Ikawa, I. T. Itami, K. Kumagai, and I. Ando, ISIJ International, 30: 757 (1990).
  78. S. Annavarapu, D. Apelian, and A. Lawley, Metall. Mater. Trans. A, 19: 3077 (1988); https://doi.org/10.1007/BF02647735
  79. A.G. Leatham, A.J.W. Ogilvy, and P.F. Chesney, Modern Developments in Powder Metallurgy, 18–21: 475 (1988).
  80. R.A. Mesquita and C.A. Barbosa, Mater. Sci. Forum, 498–499: 244 (2005); https://doi.org/10.4028/www.scientific.net/MSF.498-499.244
  81. Z. Liu, N. Loh, K. Khor, and S. Tor, Mater. Sci. Eng. A, 293: 46 (2000); https://doi.org/10.1016/S0921-5093(00)01244-2
  82. C.S. Wright and B. Ogel, Powder Metall., 36: 213 (1993), https://doi.org/10.1179/pom.1993.36.3.213
  83. C. S. Wright, B. Ogel, F. Lemoisson, and Y. Bienvenu, Powder Metall., 38, Iss. 3: 221 (1995); https://doi.org/10.1179/pom.1995.38.3.221
  84. V. Trabadelo, S. Gimenez, and I. Iturriza, Mater. Sci. Eng. A, 499: 360 (2009); https://doi.org/10.1016/j.msea.2008.08.043
  85. H.B. Wang, L.G. Hou, P. Ou, X.F. Wang, Y.B. Li, L. Shen, and H.J. Zhao, J. Mater. Res., 34: 1043 (2019); https://doi.org/10.1039/C8CS00457A
  86. G.Q. Zhang, H. Yuan, D.L. Jiao, Z. Li, Y. Zhang, and Z.W. Liu, Mater. Sci. Eng. A, 558: 566 (2012); https://doi.org/10.1016/j.msea.2012.08.050
  87. S.L. Zhao, J.F. Fan, J.Y. Zhang, K.C. Chou, and H.R. Le, Adv. Manuf., 4: 115 (2016).
  88. K.M. McHugh, Y. Lin, Y. Zhou, and E.J. Lavernia, Mater. Sci. Eng. A, 477: 50 (2008); https://doi.org/10.1016/j.msea.2007.05.121
  89. L. Lu, L. Hou, J. Zhang, H. Wang, H. Cui, J. Huang, Y. Zhang, and J. Zhang, Mater. Char., 117: 1 (2016).
  90. R.A. Mesquita and C.A. Barbosa, Mater. Sci. Eng. A, 383: 87 (2004); https://doi.org/10.1016/j.msea.2004.02.035
  91. B. Yang, X. Xiong, R. Liu, J. Chen, J. Yang, and H. Luan, J. Mater. Res. and Tech., 14: 1275 (2021); https://doi.org/10.1016/j.jmrt.2021.07.056
  92. O.V. Movchan and K.O. Chernoivanenko, Metallofiz. Noveishie Tekhnol., 39, No. 11: 1469 (2017) (in Russian); https://doi.org/10.15407/mfint.39.11.1469
  93. R.M. German and A. Bose, Injection Moulding of Metals and Ceramics (Princeton, NJ: Metal Powder Industries Federation: 1997).
  94. J.M. Torralba, J.M. Ruiz-Roman, L.E.G. Cambronero, J.M. Ruiz-Prieto, and M. Gutierrez-Stampa, J. Mater. Proc. Technol., 64: 387 (1997); https://doi.org/10.1016/S0924-0136(96)02590-3
  95. L. Chen, J. Pei, and F. Li, Metall. Mater. Trans. A, 47: 5662 (2016); https://doi.org/10.1007/s11661-016-3795-x
  96. A.S. Chaus, M. Bračík, M. Sahul, and M. Domankova, Vacuum, 162: 183 (2019); https://doi.org/10.1016/j.vacuum.2019.01.041
  97. M. Gsellmann, T. Klunsner, C. Mitterer, S. Marsoner, G. Skordaris, K. Bouzakis, H. Leitner, and G. Ressel, Surf. Coating. Technol., 394: 125854 (2020); https://doi.org/10.1016/j.surfcoat.2020.125854
  98. E. Franco, C.E. da Costa, J.C.G. Milan, S.A. Tsipas, and E. Gordo, Surf. Coating. Technol., 384: 125306 (2020); https://doi.org/10.1016/j.surfcoat.2019.125306
  99. M.S. Liborio, G.B. Praxedes, L.L.F. Lima, I.G. Nascimento, R.R.M. Sousa, M. Naeem, T.H. Costa, S.M. Alves, and J. Iqbal, Surf. Coating. Technol., 384: 125327 (2020); https://doi.org/10.1016/j.surfcoat.2019.125327
  100. A.S. Chaus, P. Pokorny, L. Caplovic, M.V. Sitkevich, and J. Peterka, Appl. Surf. Sci., 437: 257 (2018); https://doi.org/10.1016/j.apsusc.2017.12.173
  101. C. Liu, Z. Liu, and B. Wang, Ceram. Int., 44: 3430 (2018); https://doi.org/10.1016/j.ceramint.2017.11.142
  102. X. Wei, Z. Chen, J. Zhong, and Y. Xiang, Surf. Coating. Technol., 296: 58 (2016); https://doi.org/10.1016/j.surfcoat.2016.03.090
  103. S. Chang, T. Tang, K. Huang, and C. Liu, Surf. Coating. Technol., 261: 331 (2015) 331–336; https://doi.org/10.1016/j.surfcoat.2014.11.005
  104. W. Wu, W. Chen, S. Yang, Y. Lin, S. Zhang, T. Cho, G.H. Lee, and S. Kwon, Appl. Surf. Sci., 351: 803 (2015); https://doi.org/10.1016/j.apsusc.2015.05.191
  105. I.S. Cho, A. Amanov, and J.D. Kim, Tribology International, 81: 61 (2015); https://doi.org/10.1016/j.triboint.2014.08.003
  106. M.A. Donu Ruiz, N. Lopez Perrusquia, D. Sanchez Huerta, C.R. Torres San Miguel, G.M. Urriolagoitia Calderon, E.A. Cerillo Moreno, and J.V. Cortes Suarez, Thin Solid Films, 596: 147 (2015); https://doi.org/10.1016/j.tsf.2015.07.086
  107. E.J. Bienk and N.J. Mikkelsen, Surf. Coat. Technol., 76–77: 475 (1995); https://doi.org/10.1016/0257-8972(95)02498-0
  108. H.G. Prengel, A.T. Santhanam, R.M. Penich, P.C. Jindal, and K.H. Wendt, Surf. Coat. Technol., 94–95: 597 (1997); https://doi.org/10.1016/S0257-8972(97)00503-3
  109. W. Kalss, A. Reiter, V. Derflinger, C. Gey, and J.L. Endrino, Int. J. Refract. Met. Hard Mater., 24: 399 (2005).
  110. P. Carlsson and M. Olsson, Surf. Coat. Technol., 200, Nos. 14–15: 4654 (2006); https://doi.org/10.1016/j.surfcoat.2004.10.127
  111. S.C. Santos, W.F. Sales, F.J. Silva, S.D. Franco, and M.B. Silva, Surf. Coat. Technol., 184: 141 (2004); https://doi.org/10.1016/j.surfcoat.2003.10.153
  112. M. Okada, A. Hosokawa, R. Tanaka, and T. Ueda, Int. J. Mach. Tool Manuf., 51: 127 (2011); https://doi.org/10.1016/j.ijmachtools.2010.10.007
  113. M. Kathrein, C. Michotte, M. Penoy, P. Polcik, and C. Mitterer, Surf. Coat. Technol., 200: 1867 (2005); https://doi.org/10.1016/j.surfcoat.2005.08.105
  114. K.H. Park and P.Y. Kwon, Wear, 270: 771 (2011); https://doi.org/10.1016/j.wear.2011.01.030
  115. J.J. Moore, I.W. Park, J. Lin, B. Mishra, and K.H. Kim, Nanostructured Multifunctional Tribological Coatings, Nanocomposites, Thin Films and Coatings (Processing Properties and Performance) [London: Imperial College Press: 2007], pp. 329–379.
  116. C.S. Pande and K.P. Cooper, Prog. Mater. Sci., 54, No. 6:689 (2009); https://doi.org/10.1016/j.pmatsci.2009.03.008
  117. R.A. Masumura, P.M. Hazzledine, and C.S. Pande, Acta Mater., 46, No. 13: 4527 (1998); https://doi.org/10.1016/S1359-6454(98)00150-5
  118. M.G. Faga, G. Gautier, R. Calzavarini, M. Perucca, E.A. Boot, F. Cartasegna, and L. Settineri, Wear, 263 Nos. 7–12: 1306 (2007) https://doi.org/10.1016/j.wear.2007.01.109
  119. S. Veprek and Maritza J.G. Veprek-Heijman, Surf. Coat. Technol., 202, No. 21: 5063 (2008); https://doi.org/10.1016/j.surfcoat.2008.05.038
  120. L. Settineri, M.G. Faga, G. Gautier, and M. Perucca, CIRP Ann-Manuf. Technol., 57: 575 (2008); https://doi.org/10.1016/j.cirp.2008.03.103
  121. D. Jakubeczyova and M. Hagarova, The Acta Metall Slovaca, 18, No. 4: 191 (2012).
  122. J.L. Endrino, G.L. Fox-Rabinovich, and C. Gey, Surf. Coat. Technol., 200: 597 (2006); https://doi.org/10.1016/j.surfcoat.2005.10.030
  123. K.D. Bouzakis, S. Hadjiyiannis, G. Skordaris, J. Anastopoulos, I. Mirisidisa, N. Michailidis, K. Efstathiou, O. Knotek, G. Erkens, R. Cremer, S. Rambadt, and I. Wirth, Surf. Coat. Technol., 174–175: 393 (2003); https://doi.org/10.1016/S0257-8972(03)00678-9
  124. G. Skordaris, K.D. Bouzakis, T. Kotsanis, P. Charalampous, E. Bouzakis, O. Lemmer, and S. Bolz, Surf. Coat. Technol., 307: 452 (2016); https://doi.org/10.1016/j.surfcoat.2016.09.026
  125. V.G. Sargade, S. Gangopadhyay, S. Paul, and A.K. Chattopadhyay, Mater. Manuf. Process., 26, No. 8: 1028 (2011); https://doi.org/10.1080/10426914.2010.526978
  126. K. Mughal, M.Q. Saleem and M.P. Mughal, Int. J. Adv. Manuf. Technol., 96: 4195 (2018); https://doi.org/10.1007/s00170-018-1829-9
  127. M. Bar-Hen and I. Etsion, Tribol. Int., 110: 341 (2017); https://doi.org/10.1016/j.triboint.2016.11.011
  128. K. Tuffy, G. Byrne, and D. Dowling, J. Mater. Process. Technol., 155–156: 1861 (2004); https://doi.org/10.1016/j.jmatprotec.2004.04.277
  129. Z. Liu, Q. An, J. Xu, M. Chen, and S. Han, Wear, 305, Nos. 1–2: 249 (2013); https://doi.org/10.1016/j.wear.2013.02.001
  130. S. Veprek, M.G.J. Veprek-Heijman, P. Karvankova, and J. Prochazka, Thin Solid Films, 476, No. 1: 1 (2005); https://doi.org/10.1016/j.tsf.2004.10.053
  131. R. Ravi Raja Malar Vannan, T.V. Moorthy, P. Hariharan, B.K. Gnanavel, Effect of physical vapour deposition coatings on high speed steel single point cutting tool. Advances in Material Sciences and Engineering. Lecture Notes in Mechanical Engineering (Singapore: Springer: 2020); https://doi.org/10.1007/978-981-13-8297-0_1
  132. O.V. Movchan and K.O. Chornoivanenko, In situ Composites: a Review, Progress in Physics of Metals, 22, No. 1: 58 (2021); https://doi.org/10.15407/ufm.22.01.058
  133. A.V. Movchan, A.P. Bachurin, and L.G. Pedan, Dopovіdі NAN Ukrainy, 7: 104 (2000) (in Russian).
  134. K.P. Bunin, V.I. Movchan, and L.G. Pedan, Izv. VUZov. Chernaya Metallurgiya, 2: 123 (1973) (in Russian).
  135. K.P. Bunin, V.I. Movchan, and L.G. Pedan, Izv. AN SSSR. Metally, 3: 164 (1975) (in Russian).
  136. V.I. Movchan, L.G. Pedan, and V.P. Gerasimenko, MiTOM, 9: 19 (1983) (in Russian).
  137. V.I. Movchan, A.V. Movchan, and Yu.S. Dvoryadkin, Problemy Metallurgicheskogo Proizvodstva, 110: 90 (1993) (in Russian).
  138. A.V. Movchan, L.G. Pedan, and A.P. Bachurin, Metally, 5: 53 (1999) (in Russian).
  139. V.I. Movchan, L.G. Pedan, and V.I. Ivanitsa, MiTOM, 8: 12 (1990) (in Russian).
  140. V.M. Gavrilenko, V.P. Gerasimenko, and V.I. Movchan, Izv. AN SSSR. Metally, 3: 71 (1984) (in Russian).
  141. O.V. Movchan and K.O. Chornoivanenko, Mizhnarodna Naukova Konferentsiya ‘Materialy dlya Roboty v Ehkstremalnykh Umovakh-10’ (Kyiv: 2020), p. 48 (in Ukrainian).
  142. E.A. Chernoivanenko, X Yezhehodnaya Konferentsiya Molodykh Nauchnykh Sotrudnykov i Aspirantov ‘Fiziko-Khimiya i Tekhnologiya Neorganicheskikh Materialov’ (Moskva: IMET: 2013), p. 429 (in Russian).
  143. A.V. Movchan, S.I. Gubenko, A.P. Bachurin, and E.A. Chernoivanenko, Stroitel’stvo, Materialovedenie, Mashinostroenie: Sb. Nauch. Trudov, 64: 262 (2012) (in Russian); http://nbuv.gov.ua/UJRN/smmsc_2012_64_46
  144. O.V. Movchan and K.O. Chornoivanenko, XV Mіzhnarodna Konferentsіya ‘Strategіya Yakostі v Promyslovostі i Osvіtі’ (Dnіpro–Varna: 2019), p. 133 (in Ukrainian).
  145. S.I. Gubenko, A.V. Movchan, A.P. Bachurin, and E.A. Chernoivanenko, Novyny Nauky Prydnіprov’ya. Serіya ‘Іnzhenernі Nauky’, 2: 87 (2012) (in Russian).
  146. A.P. Bachurіn, O.V. Movchan, and L.G. Pedan, MiTOM, 1–2: 18 (2001) (in Ukrainian).
  147. O.V. Movchan and K.O. Chornoivanenko, Metallurgical and Ore Mining Industry, 5–6: 76 (2019) (in Ukrainian). https://doi.org/10.34185/0543-5749.2019-5-6-76-83
  148. A.V. Movchan and E.A. Chernoivanenko, Aktualni Napryamy Rozvytku Tekhnichnoho ta Vyrobnychoho Potentsialu Natsionalnoi Ehkonomiky (Dnipro: Porohy: 2021), p. 69 (in Russian).