Characterization Methods of Heat Flows in Solids

O. Ye. Pogorelov, O. V. Filatov, E. M. Rudenko, I. V. Korotash, and M. V. Dyakin

G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received 06.01.2023; final version — 29.05.2023 Download PDF logo PDF

Abstract
Analysing a wide range of known methods for characterization of the thermal properties of solids, the most effective methods for studying the multilayer systems are determined. Among the considered stationary, quasi-stationary, and non-stationary methods, the Parker’s express method for determining the thermophysical characteristics of flat objects and the 3ω method, as well as their modifications for point and planar studies, particularly, of films, are singled out. Parker’s modified express method for studying the layered structures makes it possible to reveal the effect of heat-transfer irreversibility within the Cu/AlN/Al system. This effect is explained by the peculiarities of heat-transfer processes at the metal–dielectric interface depending on their Debye temperatures and with taking into account the electron–phonon interaction.

Keywords: thermal conductivity, 3ω method, Parker’s express method, temperature measurement, heat-transfer irreversibility effect.

Contents
  1. Introduction
  2. Fundamentals of Methods
    • 2.1. Stationary Methods
    • 2.2. Non-Stationary Methods
    • 2.3. Instant Heat Source Method
    • 2.4. Method of Temperature Waves
    • 2.5. 3ω Method
      • 2.5.1. Anisotropy of Thermal Conductivity in Films
    • 2.6. Quasi-Stationary Methods
      • 2.6.1. Probing Bulk Samples
      • 2.6.2. Probing of Foils and Films by the Laser-Exited Thermal Pulse
      • 2.6.3. Probing of Foils and Films with the Electric-Spark-Excited Thermal Pulse
      • 2.6.4. Thermal Impulse Sounding of Materials on Substrates for Express Measurements of Their Thermophysical Characteristics
  3. Results and Discussion
    • 3.1. Practical Implementation of the Characterization of Thermophysical Properties
      • 3.1.1. Laser-Excited Thermal Pulse
      • 3.1.2. Thermal Impulse Excited by an Electric Spark
      • 3.1.3. Implementation of the Parker’s Method and Differential Method Based on It
      • 3.1.4. Determination of the Transverse Thermal Conductivity of Aluminium–Nickel Films by the 3ω Method
    • 3.2. Thermal Probing of Layered Structures
      • 3.2.1. Measurement of Adhesion and Thermal Resistance of Film Systems
      • 3.2.2. Irreversible Heat Transfer in the Cu/AlN/Al System
    • 3.3. Study of the Thermal Properties of Film Materials by the Point Heating Method
  4. Conclusions

DOI: https://doi.org/10.15407/ufm.24.02.239

Citation: O. Ye. Pogorelov, O. V. Filatov, E. M. Rudenko, I. V. Korotash, and M. V. Dyakin, Characterization Methods of Heat Flows in Solids, Progress in Physics of Metals, 24, No. 2: 239–281 (2023)


References  
  1. Charles Kittel, Introduction to Solid State Physics (John Wiley & Sons: 2005).
  2. L.N. Larikov and Yu.F. Yurchenko, Struktura i Svoistva Metallov i Splavov [Structure and Properties of Metals and Alloys Directory] (Kiev: Naukova Dumka: 1985), p. 438 (in Russian).
  3. H. Carslaw and J. Jaeger, Conduction of Heat in Solids (New York: Oxford University Press: 1959).
  4. T. Borca-Tasciuc, A.R. Kumar, and G. Chen, Rev. Sci. Instrum., 72: 2139 (2001); https://doi.org/10.1063/1.1353189
  5. D.G. Cahill, Rev. Sci. Instrum., 61: 802 (1990); https://doi.org/10.1063/1.1141498
  6. David de Koninck, Thermal Conductivity Measurements Using the 3 Omega Technique: Application to Power Harvesting Microsystems (Department of Mechanical Engineering McGill University Montréal, Canada: 2008), р. 106.
  7. M. Bogner, G. Benstetter, and Y.Q. Fu, Surf. Coat. Technol., 320: 91 (2017); https://doi.org/10.1016/j.surfcoat.2017.01.100
  8. W.J. Parker, R.J. Jenkins, C.P. Butler, and G.L. Abbott, J. Appl. Phys., 32: 1679 (1961); https://doi.org/10.1063/1.1728417
  9. M.E. Gurevich and A.E. Pogorelov, Primeneniye Lazernoy Tekhniki dlya Teplofizicheskikh Issledovaniy [Application of Laser Technology for Thermophysical Research, Physical Methods for the Study of Metals (Kiev: Naukova Dumka: 1981), p. 3–23 (in Russian).
  10. R.E. Taylor and J.A. Cape, Appl. Phys. Letters, 5: 212 (1964).
  11. R.E. Taylor, J. Jortner, and H. Groot, Carbon, 23, No. 2: 215 (1985).
  12. K. Etori, Japan. J. Appl. Phys., 8, No. 11: 1357 (1969).
  13. K. Etori, Bull. Fac. Eng. Miyazaki Univ., No. 16: 70 (1969).
  14. Susumu Namba, Pil Hyon Kim, and Tsutomu Arai, Japan. J. Appl. Phys., 6, No. 8: 1019 (1967).
  15. P.H. Sidles and G.C. Danielson, Japan. J. Appl. Phys., 25: 58 (1954).
  16. S. Nasu, S. Fukushima, T. Ohmichi, and T. Kikuchi, Japan. J. Appl. Phys., 7, No. 6: 682 (1968).
  17. D. Alain, G. Annie, L. Michel, M. Jean-Luc, and S. Gilbert, C.r. Acad. Sci., B278, No. 3: 49 (1974).
  18. Kubičár L’udovit, Fys. Čas., 22, No. 3: 129 (1972).
  19. M.M. Mebed, R.P. Yurchak, and L.P. Filippov, High Temp. High Press., 5, No. 3: 253 (1973).
  20. D. Murfin, Rev. Int. Hautes Temp. et Refract., 7, No. 3: 284 (1970).
  21. Jean-Claude Weilba-Cher and Jean-Claude van Craeynest, Rev. Int. Hautes Temp. et Refract., 7, No. 3: 268 (1970).
  22. F. Cernuschi, A. Russo, L. Lorenzoni, and A. Figari, Rev. Sci. Instrum., 72, No. 10: 3988 (2001).
  23. G. Wróbel, Z. Rdzawski, G. Muzia, and S. Pawlak, JAMME, 36, 49 (2009).
  24. A.V. Lunev and S.A. Pokrovskiy, Metod Lazernoy Vspyshki dlya Opredeleniya Temperaturoprovodnosti [Laser Flash Method for Determining Thermal Diffusivity] (Moskva: MIFI: 2003), p. 347 (in Russian).
  25. A.D. Falileyev, Prakticheskaya Realizatsiya Metoda Parkera dlya Opredeleniya Temperaturoprovodnosti [Practical Implementation of the Parker Method for Determining Thermal Diffusivity] (Tomsk: Izd-vo Tomskogo Politekhnicheskogo Universiteta: 2012), Vol. 3, Ch. 137, p. 447 (in Russian).
  26. V.G. Baranov, A.V. Tenishev, A.V. Lunov, S.A. Pokrovskiy, and A.V. Khlunov, Yadernaya Fizika i Inzhiniring, 2, No. 4: 291 (2011) (in Russian).
  27. A.E. Pogorelov, Metallofiz. Noveishie Tekhnol., 36, No. 3: 383 (2014); https://mfint.imp.kiev.ua/en/abstract/v36/i03/0383.html
  28. S.M. Luhuev, N.V. Luhueva, and A.A. Dunaev, Fiz. Tverd. Tela, 45, No. 3: 424 (2003) (in Russian).
  29. V.L. Bybyk, Fundamentalʹnye Issledovaniya, No. 6: 49 (2006) (in Russian).
  30. V.S. Oskotskiy and I.A. Smirnov, Defekty v Kristallakh i Teploprovodnost’ [Defects in Crystals and Thermal Conductivity] (Leningrad: Nauka: 1972), p. 160 (in Russian).
  31. A.V. Yoffe and A.F. Yoffe, Fiz. Tverd. Tela, 2, No. 5: 781 (1960) (in Russian).
  32. G.F. Pogorelova, B.M. Fal’chenko, and A.Ye. Pogorelov, Metod Opredeleniya Koeffitsienta Diffuzii [The Method of Determining the Diffusion Coefficient]: Patent 1117491 SSSR (Published 1984) (in Russian).
  33. S.D. Gertsriken and I.Ya. Dekhtyar, Diffuziya v Metallakh i Splavakh v Tverdoy Faze [Diffusion in Metals and Alloys in the Solid Phase] (Moskva: Fizmatgiz: 1960), р. 563 (in Russian).
  34. Svoistva Elementov: Spravochnik [Properties of Elements: Handbook)] (Ed. G.V. Samsonov) (Moskva: Metallurgiya: 1976), p. 600 (in Russian).
  35. Svoistva Elementov: Spravochnik [Properties of Elements: Handbook)] (Ed. M.E. Dryts) (Moskva: Metallurgiya: 1985), p. 672 (in Russian).
  36. S.M. Luguev, N.V. Lugueva, and V.V. Sokolov, Fiz. Tverd. Tela, 42, No. 6: 1013 (2000) (in Russian).
  37. N.V. Lugueva, N.L. Kramynina, and S.M. Luguev, Fiz. Tverd. Tela, 43, No. 2: 222 (2001) (in Russian).
  38. N.V. Lugueva and S.M. Luguev, Fiz. Tverd. Tela, 44, No. 2: 251 (2002) (in Russian).
  39. A. Filatov, A. Pogorelov, D. Kropachev, and O. Dmitrichenko, Defect Diffus. Forum, 363: 173 (2015); https://doi.org/10.4028/www.scientific.net/ddf.363.173
  40. O.Ye. Pogorelov, A.F. Zhuravlev, and Ye.O. Pogorielov, Sposib Ekspres-Analizu Teplofizychnykh Kharakterystyk Plivok [Method of Express Analysis of Thermophysical Characteristics of Films]: Ukrainian Patent 43224A (2002) (in Ukrainian).
  41. A. Pogorelov, A. Zhuravlev, Ye. Pogoryelov, and V. Brik, Metallofiz. Noveishie Tekhnol., 23: 194 (2001).
  42. M.E. Gurevich, A.F. Zhuravlev, Yu.V. Kornyushin, and A.E. Pogorelov, Metallofizika, 7, No. 2: 113 (1985) (in Russian).
  43. A.T. Kanaev, E.V. Chumakov, and M.T. Toktarkhanov, Vestnik Kazakhskogo Natsionalnjgo Tekhnicheskogo Universiteta imeni K.Y. Satpaeva, No. 5 (2008).
  44. O.Ye. Pogorelov and K.M. Khranovska, Sposib Vyznachennia Teplofizychnykh Kharakterystyk Metalevoi Plivky [The Method of Determining the Thermophysical Characteristics of a Metal Film]: Ukrainian Patent 111801 (2016) (in Ukrainian).
  45. U. Paek and A. Kestenbaum, J. Appl. Phys., 44: 2260 (1973); https://doi.org/10.1063/1.1662547
  46. M. Naoe, N. Kitamura, and T. Hirata, J. Appl. Phys., 61: 3337 (1987); https://doi.org/10.1063/1.338790
  47. A.E. Pogorelov, Ye.A. Pogoryelov, and A.F. Zhuravlev, J. Magn. Magn. Mater., 249, No. 3: 428 (2002); https://doi.org/10.1016/S0304-8853(02)00463-8
  48. H. Gonska, W. Kiershpe, and R. Kohlhaas, Z. Naturforsh., B23a: 783 (1968).
  49. A.F. Zhuravlev, A.E. Pogoryelov, and K.P. Ryaboshapka, Metallofiz. Noveishie Tekhnol., 24: 1547 (2002) (in Russian).
  50. A.E. Pogoryelov, K.P. Ryaboshapka, and A.F. Zhuravlev, J. Appl. Phys., 92: 5766 (2002); https://doi.org/10.1063/1.1512972
  51. A.E. Pogoryelov, K.P. Ryaboshapka, and A.F. Zhuravlev, Defect and Diffusion Forum, 216–217: 41 (2003); https://doi.org/10.4028/www.scientific.net/DDF.216-217.41
  52. J.C. Jaeger, Notes Australian National University, XI, No. 1: 132 (1953).
  53. D.S. Svinukhov, V.S. Zhdanov, V.V. Baklanov, and V.V. Sabluk, Vestnyk NIaTs RK, No. 2: 86 (2009) (in Russian).
  54. E.M. Rudenko, V.M. Sorokin, I.V. Korotash, D.Yu. Polotsky, A.O. Krakovny, O.Yu. Suvorov, M.A. Belogolovskii, and D.V. Pekur, Dopov. Nac. Akad. Nauk Ukr., No. 3: 59 (2018) (in Ukrainian); https://doi.org/10.15407/dopovidi2018.03.059
  55. E. Rudenko, I. Korotash, M. Dyakin, D. Polotsky, M. Belogolovskii, and Yu. Strzhemechny, Proc. ‘XI Int. Scientific and Practical Conference on Electronics and Information Technologies’ (Sep. 16–18, 2019, Lviv), р. 253.
  56. E. Rudenko, Z. Tsybrii, F. Sizov, I. Korotash, D. Polotskiy, M. Skoryk, M. Vuichyk, and K. Svezhentsova, J. Appl. Phys., 121, No. 13: 135304 (2017); https://doi.org/10.1063/1.4979858
  57. Z. Tsybrii, F. Sizov, M. Vuichyk, I. Korotash, and E. Rudenko, Infrared Phys. & Technol., 107: 103323 (2020); https://doi.org/10.1016/j.infrared.2020.103323
  58. Z. Tsybrii, F. Sizov, M. Vuichyk, K. Svezhentsova, E. Rudenko, I. Korotash, and D. Polotskiy, Advances in Thin Films, Nanostructured Materials, and Coatings. Lecture Notes in Mechanical Engineering (Eds. A. Pogrebnjak and V. Novosad) (Singapore: Springer: 2019), p. 235; https://doi.org/10.1007/978-981-13-6133-3_24
  59. A. Jacquot, B. Lenoir, A. Dauscher, P. Verardi, F. Craciun, M. Stölzer, M. Gartner, and M. Dinescu, Appl. Surf. Sci., 186, No. 1: 507 (2002); https://doi.org/10.1016/S0169-4332(01)00767-X
  60. Y. Zhao, C. Zhu, S. Wang, J.Z. Tian, D.J. Yang, C.K. Chen, H. Cheng, and P. Hing, J. Appl. Phys., 96: 4563 (2004); https://doi.org/10.1063/1.1785850
  61. P.K. Kuo, G.W. Auner, and Z.L. Wu, Thin Solid Films, 253: 223 (1994).
  62. T.S. Pan, Y. Zhang, J. Huang, B. Zeng, D.H. Hong, S.L. Wang, H.Z. Zeng, M. Gao, W. Huang, and Y. Lin, J. Appl. Phys., 112: 044905 (2012); https://doi.org/10.1063/1.4748048
  63. S.-M. Lee and D.G. Cahill, J. Appl. Phys., 81: 2590 (1997); https://doi.org/10.1063/1.363923
  64. D.G. Cahill, K. Goodson, and A. Majumdar, J. Heat Transf., 124: 223 (2002); https://doi.org/10.1115/1.1454111
  65. S.R. Choi, D. Kim, S.-H. Choa, S.-H. Lee, and J.-K. Kim, Int. J. Thermophys., 27: 896 (2006); https://doi.org/10.1007/s10765-006-0062-1
  66. C. Duquenne, M.-P. Besland, P.Y. Tessier, E. Gautron, Y. Scudeller, and D. Averty, J. Phys. D: Appl. Phys., 45: 015301 (2012); https://doi.org/10.1088/0022-3727/45/1/015301
  67. E.M. Rudenko, A.O. Krakovnyy, M.V. Dyakin, I.V. Korotash, D.Yu. Polots’kyy, and M.A. Skoryk, Metallofiz. Noveishie Tekhnol., 44, No. 8: 989 (2022) (in Ukrainian); https://doi.org/10.15407/mfint.44.08.0989
  68. E.M. Rudenko, V.Ye. Panarin, P.O. Kyrychok, M.Ye. Svavilnyi, I.V. Korotash, O.O. Palyukh, D.Yu. Polotskyi, and R.L. Trishchuk, Prog. Phys. Met., 20, No. 3: 485 (2019); https://doi.org/10.15407/ufm.20.03.485
  69. V.F. Semenyuk, V.F. Virko, I.V. Korotash, L.S. Osipov, D.Yu. Polotsky, E.M. Rudenko, V.M. Slobodyan, and K.P. Shamrai, Probl. At. Sci. Technol., No. 4(86): 179 (2013).
  70. L. Osipov, E. Rudenko, V. Semenyuk, I. Korotash V. Odinokov, G. Pavlov, and V. Sologub, Nanoindustriya, No. 2: 4 (2010) (in Russian).
  71. A. Shpak, E. Rudenko, I. Korotash, V. Semenyuk, V. Odinokov, G. Pavlov, and V. Sologub, Nanoindustriya, No. 4: 12 (2009) (in Russian).
  72. I. Korotash, V. Odinokov, G. Pavlov, E. Rudenko, D. Polotsky, V. Semenyuk, and V. Sologub, Nanoindustriya, No. 4: 14 (2010) (in Russian).
  73. V.F. Semenyuk, Eh. M. Rudenko, I.V. Korotash, L.S. Osipov, D.Yu. Polotskiy, K.P. Shamray, V.V. Odinokov, G.Ya. Pavlov, and V.A. Sologub, Metallofiz. Noveishie Tekhnol., 33, No. 2: 223 (2011) (in Russian).
  74. I.P. Zharkov, A.N. Ivashchenko, E.M. Rudenko, I.V. Korotash, A.A. Krakovnyy, V.V. Safonov, and V.A. Khodunov, Science and Innovation, 7, No. 2: 5 (2011).
  75. S. Zeng, Z. Liu, J. Jiang, M. Jean, and S. Yang, Am. Ceram. Soc. Bull., 95, No. 5: 38 (2016).
  76. H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids (New York: Oxford University Press: 1959), p. 101.
  77. A.E. Pogoryelov and A.V. Filatov, Resistance of Layered Structures to Efficient Transmission of Thermal Energy, Proc. Sci. Conf. ‘Functional Materials for Innovative Energy’ (May 13–15, 2019, Kyiv), p. 23.
  78. S.Yu. Mesnyankin, A.G. Vikulov, and D.G. Vikulov, Phys.-Usp., 52, No. 9: 891 (2009); https://doi.org/10.3367/UFNe.0179.200909c.0945
  79. R.J. Stoner and H.J. Maris, Phys. Rev. B, 48: 16373 (1993); https://doi.org/10.1103/PhysRevB.48.16373
  80. Masahiro Susa, Kazuhiro Nagata, and Kazuhiro S. Goto, J. Japan Inst. Metals., 53, No. 5: 543 (1989); https://doi.org/10.2320/jinstmet1952.53.5_543
  81. Y.L. Zhang, C.L. Hapenciuc, E.E. Castillo, T. Borca-Tasciuc, R.J. Mehta, C. Karthik, and G. Ramanath, Appl. Phys. Lett., 96, No. 6: 062107 (2010); https://doi.org/10.1063/1.3300826
  82. B.E. Belkerk, J. Camus, B. Garnier, H. Al Brithen, S. Sahli, and M.-A. Djouadi, Int. J. Therm. Sci., 151: 106259 (2020); https://doi.org/10.1016/j.ijthermalsci.2019.106259