Green Synthesized Plant-Based Metallic Nanoparticles for Antimicrobial and Anti-Corrosion Applications

A. Royani$^{1,2}$, C. Verma$^3$, M. Hanafi$^4$, V. S. Aigbodion$^{5,6}$, and A. Manaf$^2$

$^1$Research Centre for Metallurgy, National Research and Innovation Agency (BRIN), 15314 South Tangerang, Indonesia
$^2$Postgraduate Program of Materials Science Study, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, Indonesia
$^3$Interdisciplinary Research Centre for Advanced Materials, King Fahd University of Petroleum and Minerals, 31261 Dhahran, Saudi Arabia
$^4$Research Centre for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), 15314 South Tangerang, Indonesia
$^5$Department of Metallurgy and Materials Engineering, University of Nigeria, 410001 Nsukka, Nigeria
$^6$Faculty of Engineering and Built Environment, University of Johannesburg, 2006 Johannesburg, South Africa

Received 21.01.2023; final version — 02.02.2023 Download PDF logo PDF

Abstract
Metal nanoparticles (MNPs) developed through green synthesis with various plant extracts have piqued the scientific community due to their antimicrobial and anticorrosion properties. Several synthesis methods and characteristics have been successfully implemented and developed to evaluate the pharmacological properties and performance of these MNPs. This article discusses the synthesis and characteristics of plant-based metallic nanoparticles, the different types of plant-based metallic nanoparticles, and their prospective applications. This review intends to understand, what is commonly reported in scientific papers about MNPs as antimicrobial and anticorrosion agents, as well as highlight the essential parameters and procedures, which affect the antimicrobial and anticorrosion investigation of plant-based MNPs. However, despite the many antibacterial and anticorrosion approaches reported in the literature, very few platforms have achieved large scale. The difficulty in attaining large-scale success could be due, in part, to the complexity of the problem and the various parameters. Therefore, systematic research will be required to establish a standardized, widely accepted validation methodology for synthesizing and characterizing plant-based metallic nanoparticles.

Keywords: anticorrosion agent, antimicrobial agent, green synthesis, plant extracts, nanotechnology, metal nanoparticles.

DOI: https://doi.org/10.15407/ufm.24.01.197

Citation: A. Royani, C. Verma, M. Hanafi, V. S. Aigbodion, and A. Manaf, Green Synthesized Plant-Based Metallic Nanoparticles for Antimicrobial and Anti-Corrosion Applications, Progress in Physics of Metals, 24, No. 1: 197–221 (2023)


References  
  1. P. Mulvaney, ACS Nano, 9, No. 3: 2215–2217 (2015); https://doi.org/10.1021/acsnano.5b01418
  2. S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani, F. Rizzolio, and A. Baeza, Molecules, 25, No. 112: 1–15 (2020); https://doi.org/10.3390/molecules25010112
  3. N. Pantidos, J. Nanomed. Nanotechnol., 05, No. 05: 1–10 (2014); https://doi.org/10.4172/2157-7439.1000233
  4. M. Shah, D. Fawcett, S. Sharma, S.K. Tripathy, and G.E.J. Poinern, Materials (Basel)., 8, No. 11: 7278–7308 (2015); https://doi.org/10.3390/ma8115377
  5. A.M. El Shafey, Green Process. Synth., 9, No. 1: 304–339 (2020).
  6. J.A. Aboyewa, N.R.S. Sibuyi, M. Meyer, and O.O. Oguntibeju, Plants, 10, No. 1929: 1–24 (2021); https://doi.org/10.3390/plants10091929
  7. H. Kumar, K. Bhardwaj, D.S. Dhanjal, E. Nepovimova, F. Șen, H. Regassa, R. Singh, R. Verma, V. Kumar, D. Kumar, S.K. Bhatia, and K. Kuca, Int. J. Mol. Sci., 21, No. 22: 1–18 (2020); https://doi.org/10.3390/ijms21228458
  8. S. Ahmed, Saifullah, M. Ahmad, B. L. Swami, and S. Ikram, J. Radiat. Res. Appl. Sci., 9, No. 1: 1–7 (2016); https://doi.org/10.1016/j.jrras.2015.06.006
  9. M.S. Akhtar, J. Panwar, and Y.S. Yun, ACS Sustain. Chem. Eng., 1, No. 6: 591–602 (2013); https://doi.org/10.1021/sc300118u
  10. N.S. Al-Radadi and S.I.Y. Adam, Arab. J. Chem., 13, No. 2: 4386–4403 (2020); https://doi.org/10.1016/j.arabjc.2019.08.008
  11. G. Marslin, K. Siram, Q. Maqbool, R.K. Selvakesavan, D. Kruszka, P. Kachlicki, and G. Franklin, Materials, 11, No. 6: 940 (2018); https://doi.org/10.3390/ma11060940
  12. P. Roy, B. Das, A. Mohanty, and S. Mohapatra, Appl. Nanosci., 7, No. 8: 843–850 (2017); https://doi.org/10.1007/s13204-017-0621-8
  13. T.P. Chau, S. Kandasamy, A. Chinnathambi, T.A. Alahmadi, and K. Brindhadevi, Appl. Nanosci. (2021); https://doi.org/10.1007/s13204-021-02041-w
  14. M.M. Luzala, C.K. Muanga, J. Kyana, J.B. Safari, E.N. Zola, G.V. Mbusa, Y.B. Nuapia, J.M.I. Liesse, C.I. Nkanga, R.W.M. Krause, A. Balciunaitien, and P.B. Memvanga, Nanomaterials, 12, No. 11: 1–99 (2022); https://doi.org/10.3390/nano12111841
  15. S.H. Alrefaee, K.Y. Rhee, C. Verma, M.A. Quraishi, and E.E. Ebenso, J. Mol. Liq., 321, No. 114666: 1–14 (2021); https://doi.org/10.1016/j.molliq.2020.114666
  16. C. Verma, E.E. Ebenso, I. Bahadur, and M.A. Quraishi, J. Mol. Liq., 266: 577–590 (2018); https://doi.org/10.1016/j.molliq.2018.06.110
  17. H. Chopra, S. Bibi, I. Singh, M.M. Hasan, M.S. Khan, Q. Yousafi, A.A. Baig, M.M. Rahman, F. Islam, T. Bin Emran, and S. Cavalu, Front. Bioeng. Biotechnol., 10: 874742 (2022); https://doi.org/10.3389/fbioe.2022.874742
  18. M. Naghdi, M. Taheran, S.K. Brar, M. Verma, R.Y. Surampalli, and J.R. Valero, Beilstein J. Nanotechnol., 6, No. 1: 2354–2376 (2015); https://doi.org/10.3762/bjnano.6.243
  19. F. Pacheco-Torgal and J.A. Labrincha, Constr. Build. Mater., 40: 729–737 (2013); https://doi.org/10.1016/j.conbuildmat.2012.11.007
  20. Q. Liu, Y. Zhu, W. Yang, and X. Wang, Sustainability, 14, No. 1714: 1–23 (2022); https://doi.org/10.3390/su14031714
  21. S.S.C. Tay, C.C. Lee, and L.X. Yi, Global megatrends: Implications for the ASEAN Economic Community, (China: 2017), p. 98–122.
  22. R.H. Salih, S.H. Ahmed, R.S. Hameed, and I.H.T. Al-karkhi, Med. Leg. Updat., 21, No. 2: 977–981 (2021); https://doi.org/10.37506/mlu.v21i2.2810
  23. A.K. Shukla and S. Iravani, Environ. Chem. Lett., 15, No. 2: 223–231 (2017); https://doi.org/10.1007/s10311-017-0618-2
  24. H. Alfarisi, S. Sa’diah, B. Juliandi, and T. Wresdiyati, Molekul, 17, No. 1: 68–75 (2022); https://doi.org/10.20884/1.jm.2022.17.1.5601
  25. S. Aryal, H. Park, J.F. Leary, and J. Key, Int. J. Nanomedicine, 14: 6631–6644 (2019); https://doi.org/10.2147/IJN.S212037
  26. S. Kumar, P. Bhushan, and S. Bhattacharya, Energy, Environment, and Sustainability, (Eds. A. Bhattacharya, S. Agarwal, A. Chanda, N. Pandey, and A. Sen) (Singapore: Springer Singapore: 2018), p. 167–198.
  27. P.G. Jamkhande, N.W. Ghule, A.H. Bamer, and M.G. Kalaskar, J. Drug Deliv. Sci. Technol., 53: 101174 (2019); https://doi.org/10.1016/j.jddst.2019.101174
  28. G. Suriati, M. Mariatti, and A. Azizan, Int. J. Automot. Mech. Eng., 10, No. 1: 1920–1927 (2014); https://doi.org/10.15282/ijame.10.2014.9.0160
  29. Y. Liu, S. Mai, N. Li, C.K.Y. Yiu, J. Mao, D.H. Pashley, and F.R. Tay, Acta Biomater, 7, No. 4: 1742–1751 (2011); https://doi.org/10.1016/j.actbio.2010.11.028
  30. E. Burlacu, C. Tanase, N.A. Coman, and L. Berta, Molecules, 24, No. 23: 4354 (2019); https://doi.org/10.3390/molecules24234354
  31. H. Kumar, K. Bhardwaj, K. Kuča, A. Kalia, E. Nepovimova, R. Verma, and D. Kumar, Nanomaterials, 10, No. 4: 766 (2020); https://doi.org/10.3390/nano10040766
  32. L.N. Khanal, K.R. Sharma, H. Paudyal, K. Parajuli, B. Dahal, G.C. Ganga, Y.R. Pokharel, and S.K. Kalauni, J. Nanomater., 2022: 1–11 (2022); https://doi.org/10.1155/2022/1832587
  33. E.A. Ibadi, H.R.A.K. Al-Hetty, M.A.W. Alwardi, R.S. Alazragi, H.A. Almashhadani, and M.M. Kadhim, J. Corros. Scale Inhib., 11, No. 4: 1569–1582 (2022); https://doi.org/10.17675/2305-6894-2022-11-4-9
  34. S.P. Patil and P.M. Rane, Beni-Suef Univ. J. Basic Appl. Sci., 9, No. 60: 1–7 (2020); https://doi.org/10.1186/s43088-020-00088-2
  35. O.A. Olaseinde and O. Oluwafemi, J. Multidiscip. Eng. Sci. Stud., 5, No. 2: 2509–2517 (2019).
  36. S.S. Salem and A. Fouda, Biol. Trace Elem. Res., 199, No. 1: 344–370 (2021); https://doi.org/10.1007/s12011-020-02138-3
  37. P. Kurhade, S. Kodape, and R. Choudhury, Chem. Pap., 75, No. 10: 5187–5222 (2021); https://doi.org/10.1007/s11696-021-01693-w
  38. A. Royani, M. Hanafi, and A. Manaf, Int. J. Corros. Scale Inhib., 11, No. 3: 862–888 (2022); https://doi.org/10.17675/2305-6894-2022-11-3-1
  39. R.Z. Maarebia, A. Wahid Wahab, and P. Taba, J. Akta Kim. Indones. (Indonesia Chim. Acta), 12, No. 1: 29 (2019); https://doi.org/10.20956/ica.v12i1.5881
  40. S.J.P. Begum, S. Pratibha, J.M. Rawat, D. Venugopal, P. Sahu, A. Gowda, K.A. Qureshi, and M. Jaremko, Pharmaceuticals, 15, No. 455: 1–20 (2022); https://doi.org/10.3390/ph15040455
  41. S. Kazi, S. Nirwan, S. Kunde, S. Jadhav, M. Rai, D. Kamble, S. Sayyed, and P. Chavan, Bionanoscience, 12, No. 3: 731–740 (2022); https://doi.org/10.1007/s12668-022-01006-9
  42. S. Yasmin, S. Nouren, H.N. Bhatti, D.N. Iqbal, S. Iftikhar, J. Majeed, R. Mustafa, N. Nisar, J. Nisar, A. Nazir, M. Iqbal, and H. Rizvi, Green Process. Synth., 9, No. 1: 87–96 (2020), https://doi.org/10.1515/gps-2020-0010
  43. S. Pal, S. Mondal, J. Maity, and R. Mukherjee, Int. J. Nanosci. Nanotechnol., 14, No. 2: 111–119 (2018).
  44. K. Sathish Kumar, G.R. Venkatakrishnan, R. Rengaraj, P.K. Gayathri, G. Lavanya, and D. Hemapriya, J. Niger. Soc. Phys. Sci., 3, No. 3: 144–147 (2021); https://doi.org/10.46481/jnsps.2021.237
  45. S. Faisal, H. Jan, S.A. Shah, S. Shah, A. Khan, M.T. Akbar, M. Rizwan, F. Jan, Wajidullah, N. Akhtar, A. Khattak, and S. Syed, ACS Omega, 6, No. 14: 9709–9722 (2021); https://doi.org/10.1021/acsomega.1c00310
  46. J.R. Manullang, R.A. Nugroho, M. Rohmah, R. Rudianto, and A. Qorysuchi, Nusant. Biosci., 13, No. 2: 247–254 (2021); https://doi.org/10.13057/nusbiosci/n130216
  47. N. Muthulakshmi, A. Kathirvel, R. Subramanian, and M. Senthil, Biointerface Res. Appl. Chem., 13, No. 2: 1–12 (2023); https://doi.org/10.33263/BRIAC132.190
  48. M. Gholami-Shabani, F. Sotoodehnejadnematalahi, M. Shams-Ghahfarokhi, A. Eslamifar, and M. Razzaghi-Abyaneh, IET Nanobiotechnology, 16, No. 1: 1–13 (2022); https://doi.org/10.1049/nbt2.12070
  49. N.K. Sharma, J. Vishwakarma, S. Rai, T.S. Alomar, N. Almasoud, and A. Bhattarai, ACS Omega, 7: 27004–27020 (2022); https://doi.org/10.1021/acsomega.2c01400
  50. B.S. Tüzün, J. Hohmann, and B. Kivcak, Green Process. Synth., 7, No. 4: 372–379 (2018); https://doi.org/10.1515/gps-2017-0027
  51. A.A. Kamnev, Y.A. Dyatlova, O.A. Kenzhegulov, A.A. Vladimirova, P.V. Mamchenkova, and A.V. Tugarova, Molecules, 26, No. 1146: 1–14 (2021); https://doi.org/10.3390/molecules26041146
  52. M.A. Huq, Int. J. Mol. Sci., 21, No. 1510: 1–14 (2020); https://doi.org/10.3390/ijms21041510
  53. N. Karikalan, Rasayan J. Chem., 11, No. 4: 1451–1457 (2018); https://doi.org/10.31788/RJC.2018.1143068
  54. Y. Gu, Hong. Xie, J. Gao, D. Liu, C.T. Williams, C.J. Murphy, and H.J. Ploehn, Langmuir, 21, No. 7: 3122–3131 (2005); https://doi.org/10.1021/la047843e
  55. A.A. Ahmed and P. Dutta, Int. J. Chem. Stud., 8, No. 2: 1162–1165 (2020); https://doi.org/10.22271/chemi.2020.v8.i2r.8926
  56. J. Jalab, W. Abdelwahed, A. Kitaz, and R. Al-Kayali, Heliyon, 7, No. 9: 1–9 (2021); https://doi.org/10.1016/j.heliyon.2021.e08033
  57. S. Arora, M. Latwal, K.D. Bahukhandi, D. Kumar, T. Vemulapalli, S. Egutoori, and N.A. Siddiqui, Nat. Environ. Pollut. Technol., 20, No. 2: 481–490 (2021); https://doi.org/10.46488/NEPT.2021.v20i02.004
  58. J. Pulit, M. Banach, and Z. Kowalski, J. Comput. Theor. Nanosci., 10, No. 2: 1–9 (2013); https://doi.org/10.1166/jctn.2013.2691
  59. M. Bishwokarma, A. Bhujel, M. Baskota, and R. Pandit, J. Nepal Chem. Soc., 42, No. 1: 45–50 (2021); https://doi.org/10.3126/jncs.v42i1.35328
  60. H. Barabadi, M. Najafi, H. Samadian, A. Azarnezhad, H. Vahidi, M.A. Mahjoub, M. Koohiyan, and A. Ahmadi, Med., 55, No. 8: 439 (2019); https://doi.org/10.3390/medicina55080439
  61. S.H. Mohammed, A.M. Rheima, F.M.D. Aljaafari, M.F. Al Marjani, and Z.S. Abbas, Egypt. J. Chem., 65, No. 4: 377–382 (2022); https://doi.org/10.21608/EJCHEM.2021.91747.4355
  62. S. Amaliyah, D.P. Pangesti, M. Masruri, A. Sabarudin, and S.B. Sumitro, Heliyon, 6, No. 8: 1–12 (2020); https://doi.org/10.1016/j.heliyon.2020.e04636
  63. E. Ituen, L. Yuanhua, C. Verma, A. Alfantazi, O. Akaranta, and E.E. Ebenso, JCIS Open, 3, No. 100012: 1–10 (2021); https://doi.org/10.1016/j.jciso.2021.100012
  64. E. Ituen, E. Ekemini, L. Yuanhua, and A. Singh, J. Mol. Struct., 1207, No. 127819: 1–11 (2020); https://doi.org/10.1016/j.molstruc.2020.127819
  65. S. Ying, Z. Guan, P.C. Ofoegbu, P. Clubb, C. Rico, F. He, and J. Hong, Environ. Technol. Innov., 26, No. 102336: 1–20 (2022); https://doi.org/10.1016/j.eti.2022.102336
  66. K. Parveen, V. Banse, and L. Ledwani, AIP Conf. Proc., 1724: 2016, https://doi.org/10.1063/1.4945168
  67. X. Hu, Y. Zhang, T. Ding, J. Liu, and H. Zhao, Front. Bioeng. Biotechnol., 8, No. 990: 1–17 (2020); https://doi.org/10.3389/fbioe.2020.00990
  68. H. Daraee, A. Eatemadi, E. Abbasi, S.F. Aval, M. Kouhi, and A. Akbarzadeh, Artif. Cells, Nanomedicine Biotechnol., 44, No. 1: 410–422 (2016); https://doi.org/10.3109/21691401.2014.955107
  69. E. Rodríguez-León, B.E. Rodríguez-Vázquez, A. Martínez-Higuera, C. Rodríguez-Beas, E. Larios-Rodríguez, R.E. Navarro, R. López-Esparza, and R.A. Iñiguez-Palomares, Nanoscale Res. Lett., 14, No. 334: 1–16 (2019); https://doi.org/10.1186/s11671-019-3158-9
  70. P. Anbu, S.C.B. Gopinath, and S. Jayanthi, Nanomater. Nanotechnol., 10: 1–9 (2020); https://doi.org/10.1177/1847980420961697
  71. K. Xin Lee, K. Shameli, M. Miyake, N. Kuwano, N.B. Bt A. Khairudin, S.E. Bt Mohamad, and Y.P. Yew, J. Nanomater., 2016, No. 8489094: 1–7 (2016); https://doi.org/10.1155/2016/8489094
  72. P. Elia, R. Zach, S. Hazan, S. Kolusheva, Z. Porat, and Y. Zeiri, Int. J. Nanomedicine, 9: 4007–4021 (2014).
  73. A. Sobczak-Kupiec, D. Malina, M. Zimowska, and Z. Wzorek, Dig. J. Nanomater. Biostructures, 6, No. 2: 803–808 (2011).
  74. S. Cortés-Camargo, A. Jiménez-Rosales, and P.E. Acuña-Avila, J. Nanotechnol., 2022: 1–7 (2022); https://doi.org/10.1155/2022/2494882
  75. M. Tariq, K.N. Mohammad, B. Ahmed, M.A. Siddiqui, and J. Lee, Molecules, 27, No. 4754: 1–27 (2022); https://doi.org/10.3390/molecules27154754
  76. N.M. Alabdallah and M.M. Hasan, Saudi J. Biol. Sci., 28, No. 10: 5631–5639 (2021); https://doi.org/10.1016/j.sjbs.2021.05.081
  77. M.S. Sadak, Bull. Natl. Res. Cent., 43, No. 38: 1–6 (2019); https://doi.org/10.1186/s42269-019-0077-y
  78. T. Dhanalakshmia and S. Rajendran, Arch. Appl. Sci. Res., 4, No. 3: 1289–1293 (2012).
  79. A.S. Abdelbaky, T.A. Abd El-Mageed, A.O. Babalghith, S. Selim, and A.M.H.A. Mohamed, Antioxidants, 11, No. 1444: 1–25 (2022); https://doi.org/10.3390/antiox11081444
  80. M.G. Demissie, F.K. Sabir, G.D. Edossa, and B.A. Gonfa, J. Chem., 2020, No. 7459042: 1–9 (2020); https://doi.org/10.1155/2020/7459042
  81. A. Jayachandran, A. TR, and A.S. Nair, Biochem. Biophys. Reports, 26: 100995 (2021); https://doi.org/10.1016/j.bbrep.2021.100995
  82. G.M. Al-Senani, (2020); https://doi.org/10.3390/ma13040890
  83. T.P. Chau, G.R. Veeraragavan, M. Narayanan, A. Chinnathambi, S.A..Alharbi, B. Subramani, K. Brindhadevi, T. Pimpimon, and S. Pikulkaew, Environ. Res., 209, No. 112771: 1–8 (2022); https://doi.org/10.1016/j.envres.2022.112771
  84. A.F.V. da Silva, A.P. Fagundes, D.L.P. Macuvele, E.F.U. de Carvalho, M. Durazzo, N. Padoin, C. Soares, and H.G. Riella, Colloids Surfaces A Physicochem. Eng. Asp., 583, No. 123915: 1–10 (2019); https://doi.org/10.1016/j.colsurfa.2019.123915
  85. S. Suprapto, C.A.H. Handoyo, P.A. Senja, V.B. Ramadhan, and Y.L. Ni’mah, IJCA (Indonesian J. Chem. Anal., 3, No. 1: 9–16 (2020); https://doi.org/10.20885/ijca.vol3.iss1.art2
  86. M. Bhaumik, A. Maity, and H.G. Brink, J. Colloid Interface Sci., 611: 408–420 (2022); https://doi.org/10.1016/j.jcis.2021.11.181
  87. U.R. Sharma and N. Sharma, Biointerface Res. Appl. Chem., 11, No. 1: 8402–8412 (2021); https://doi.org/10.33263/BRIAC111.84028412
  88. M. Benkova, O. Soukup, and J. Marek, J. Appl. Microbiol., 129, No. 4: 806–822 (2020); https://doi.org/10.1111/jam.14704
  89. R. Temmerman, K. Goethals, A. Garmyn, G. Vanantwerpen, M. Vanrobaeys, F. Haesebrouck, G. Antonissen, and M. Devreese, Front. Microbiol., 11, No. 570975: 1–8 (2020); https://doi.org/10.3389/fmicb.2020.570975
  90. M. Naseer, U. Aslam, B. Khalid, and B. Chen, Sci. Rep., 10, No. 9055: 1–10 (2020); https://doi.org/10.1038/s41598-020-65949-3
  91. U.S. Patil, OIE Terr. Man., 1–11 (2012); https://www.woah.org/fileadmin/Home/eng/Our_scientific_expertise/docs/pdf/GUIDE_2.1_ANTIMICROBIAL.pdf
  92. A. Rautela, J. Rani, and M. Debnath (Das), J. Anal. Sci. Technol., 10, No. 5: 1–10 (2019) https://doi.org/10.1186/s40543-018-0163-z
  93. Y.Y. Loo, Y. Rukayadi, M.Ab.R. Nor-Khaizura, C.H. Kuan, B.W. Chieng, M. Nishibuchi, and S. Radu, Front. Microbiol., 9, No. 1555: 1–7 (2018); https://doi.org/10.3389/fmicb.2018.01555
  94. A. Royani, M. Hanafi, H. Julistiono, and A. Manaf, Mater. Today: Proc., 72, Pt. 6: 2796–2802; https://doi.org/10.1016/j.matpr.2022.06.466
  95. E. Van de Vel, I. Samper, and K. Raes, Crit. Rev. Food Sci. Nutr., 59, No. 3: 357–378 (2019); https://doi.org/http10.1080/10408398.2017.1371112
  96. J. Li, S. Xie, S. Ahmed, F. Wang, Y. Gu, C. Zhang, X. Chai, Y. Wu, J. Cai, and G. Cheng, Front. Pharmacol., 8, No. 364: 1–11 (2017); https://doi.org/10.3389/fphar.2017.00364
  97. A.M. Atta, G.A. El-Mahdy, H.A. Al-Lohedan, and A.O. Ezzat, Molecules, 19: 6246–6262 (2014); https://doi.org/10.3390/molecules19056246
  98. S. Prifiharni, A. Royani, J. Triwardono, G. Priyotomo, and Sundjono, AIP Conf. Proc., 2232, No. 1: 020007 (2020); https://doi.org/10.1063/5.0006768
  99. A. Royani, S. Prifiharni, G. Priyotomo, J. Triwardono, and Sundjono, IOP Conf. Ser.: Earth Environ. Sci., 399: 012089; https://doi.org/10.1088/1755-1315/399/1/012089
  100. H.A. Fetouh, B. Abd-El-Nabey, Y.M. Goher, and M.S. Karam, J. Electrochem., 24, No. 1: 89–100 (2018); https://doi.org/10.13208/j.electrochem.160427
  101. A. Mathiazhagan and R. Joseph, Int. J. Chem. Eng. Appl., 2, No. 4: 225–237 (2011).
  102. P.A. Rasheed, K.A. Jabbar, H.R. Mackey, and K.A. Mahmoud, Curr. Opin. Chem. Eng., 25: 35–42 (2019); https://doi.org/10.1016/j.coche.2019.06.003
  103. D. Zhang, X.L. Ma, Y. Gu, H. Huang, and G.W. Zhang, Front. Chem., 8: 1–18 (2020); https://doi.org/10.3389/fchem.2020.00799
  104. G.Z. Gayda, O.M. Demkiv, N.Y. Stasyuk, R.Y. Serkiz, M.D. Lootsik, A. Errachid, M.V. Gonchar, and M. Nisnevitch, Appl. Sci., 9, No. 4: 720 (2019); https://doi.org/10.3390/app9040720
  105. H. Tabassum and I.Z. Ahmad, Lett. Appl. Microbiol., 75, No. 4: 731–743 (2022); https://doi.org/10.1111/lam.13588
  106. A. Kamal, S. Zaki, H. Shokry, and D. Abd-El-haleem, J. Pure Appl. Microbiol., 14, No. 2: 1227–1236 (2020); https://doi.org/10.22207/JPAM.14.2.17
  107. P. Singh, S. Pandir, J. Garnaes, S. Tujic, V.R. Mokkapati, A. Sultan, A. Thygesen, A. Mackevica, R.V. Mateiu, A.E. Daugaard, A. Baun, and I. Mijakovic, Int. J. Nanomedicine, 13: 3571–3591 (2018); https://doi.org/10.2147/IJN.S157958
  108. G. Vijayakumar, H. Kesavan, A. Kannan, D. Arulanandam, J.H. Kim, K.J. Kim, H.J Song, H.J. Kim, and S.K. Rangarajulu, Processes, 9, No. 1341: 1–18 (2021); https://doi.org/10.3390/pr9081341
  109. L.V. Hublikar, S.V. Ganachari, N. Raghavendra, N.R. Banapurmath, V.B. Patil, T.M.Y. Khan, and I.A. Badruddin, Coatings, 11, No. 1215: 1–19 (2021); https://doi.org/10.3390/coatings11101215
  110. E.A. Essien, D. Kavaz, E.B. Ituen, and S.A. Umoren, J. Adhes. Sci. Technol., 1–20 (2018); https://doi.org/10.1080/01694243.2018.1445800
  111. E. Ituen, A. Singh, L. Yuanhua, and O. Akaranta, Clean. Eng. Technol., 3, No. 100119: 1–13 (2021); https://doi.org/10.1016/j.clet.2021.100119
  112. R.Md. Akhir, M.H. Norashikin, M.M. Mahat, and N.N. Bonnia, Int. J. Eng. Technol., 7, No. 4.14: 488492 (2018); https://doi.org/10.14419/ijet.v7i4.14.27775
  113. M. Idrees, S. Batool, T. Kalsoom, S. Raina, H.M.A. Sharif, and S. Yasmeen, Environ. Technol., 40, No. 8: 1071–1078 (2019); https://doi.org/10.1080/09593330.2018.1435738
  114. G.A. Ijuo, S. Nguamo, and J.O. Igoli, Prog. Chem. Biochem. Res., 5, No. 2: 133–146 (2022); https://doi.org/10.22034/pcbr.2022.324366.1208