Properties of Rare-Earth Element in Magnetic Material and Its Processing

F. Bahfie$^1$, N. O. Br Kaban$^2$, S. Suprihatin$^2$, F. Nurjaman$^1$, E. Prasetyo$^{1,3}$, and D. Susanti$^4$

$^1$Research Centre of Mining Technology, National Research and Innovation Agency of Indonesia, South Lampung, 35361 Lampung, Indonesia
$^2$Physics Department, University of Lampung, Bandar Lampung, 35141 Lampung, Indonesia
$^3$Department of Chemical Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
$^4$Department of Metallurgical and Material Engineering, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember, 60111 Surabaya, East Java, Indonesia

Received 21.11.2022; final version — 27.01.2023 Download PDF logo PDF

Abstract
Rare-earth metal is one of the critical elements because of its small amount with a lot of demand for this metal in a variety of the latest technologies, which are currently developed fast and intensively. The use of rare-earth metals can contribute to the development of innovations in the production of new materials in various fields, because these metals have strong, hard and heat-resistant properties. Rare-earth metals are found in complex compounds that makes it difficult to separate from ore. Obtaining of the rare-earth metals is realized by recycling the product from a secondary source of magnets containing rare-earth metals, such as NdFeB and SmCo magnets. Hydrometallurgical and pyrometallurgical processes can carry out the process of recovering of the rare-earth metals from secondary materials. There is a new research using bacteria as a rare-earth metal extractor to minimize environmental impact. Oxalic acid and other organic acids have potential in the recovery of rare-earth metals. As alternative, the rare-earth-free materials as candidates for permanent magnets are also mentioned.

Keywords: rare-earth elements, magnetic material, processing of magnetic materials.

DOI: https://doi.org/10.15407/ufm.24.01.157

Citation: F. Bahfie, N. O. Br Kaban, S. Suprihatin, F. Nurjaman, E. Prasetyo, and D. Susanti, Properties of Rare-Earth Element in Magnetic Material and Its Processing, Progress in Physics of Metals, 24, No. 1: 157–172 (2023)


References  
  1. N. Krishnamurthy and C.K. Gupta, Extractive Metallurgy of Rare-earths, 2nd Edition (Boca Raton: Taylor & Francis, CRC Press: 2015); https://doi.org/10.1201/b19055
  2. S.J. Suprapto, Buletin Sumber Daya Geologi, 4, No. 1: 36 (2009); https://doi.org/10.47599/bsdg.v4i1.173
  3. A. Ummaradiah, M. Yusuf, and Mukiat, Jurnal Pertambangan, 4, No. 2: 98 (2020); http://ejournal.ft.unsri.ac.id/index.php/JP/article/view/38
  4. E. Smincakova and P. Raschman, Inter. J. Ener. Eng., 1, No. 2: 85 (2011); https://doi.org/10.5963/ijee0102006
  5. K.T. Rim, Toxicol. Environ. Health Sci., 8, No. 3: 189 (2016); https://doi.org/10.1007/s13530-016-0276-y
  6. N.A. Mancheri, B. Sprecher, G. Bailey, J. Ge, and A. Tukker, Resources, Conservation and Recycling, 142: 101 (2019); https://doi.org/10.1016/j.resconrec.2018.11.017
  7. D. Jiles, Introduction to Magnetism and Magnetic Materials, 3rd Edition (Boca Raton: Taylor & Francis, CRC Press: 2015); https://doi.org/10.1201/b18948
  8. J.H. Rademaker, R. Kleijn, and Y. Yang, Env. Sci. Tech., 47, No. 18: 10129 (2013); https://doi.org/10.1021/es305007w
  9. S. Massari and M. Ruberti, Resources Policy, 38, No. 1: 36 (2013); https://doi.org/10.1016/j.resourpol.2012.07.001
  10. S. Shaw and S. Constantinides, Permanent Magnets: the Demand for Rare-earths (8th Int. Rare-earth Conf. in Hong Kong) (Publishing Arnold Magnetic Technologies: 2012).
  11. M. Orefice, H. Audoor, and Z. Li, and K. Binnemans, Separation and Purification Technol., 219: 281 (2019); https://doi.org/10.1016/j.seppur.2019.03.029
  12. M.K. Sinha, S. Pramanik, A. Kumari, S.K. Sahu, L.B Prasad, M.K. Jha, K. Yoo, and B.D. Pandey, Separation and Purification Technol., 179: 1 (2017); https://doi.org/10.1016/j.seppur.2017.01.056
  13. T. Xu, X. Zhang, Z. Lin, B. Lü, C. Ma, and X. Gao, J. Rare-earths, 28: 485 (2010); https://doi.org/10.1016/s1002-0721(10)60355-9
  14. K. Zhou, A. Wang, D. Zhang, X. Zhang, and T. Yang, Hydrometallurgy, 174: 66 (2017); https://doi.org/10.1016/j.hydromet.2017.09.014
  15. D.M. Nicholas, P. Barnfield, and J. Mendham, J. Mater. Sci. Lett., 7, No. 3: 304 (1988); https://doi.org/10.1007/bf01730207
  16. G. Inman, D. Prodius, and I.C. Nlebedim, Clean Technologies and Recycling, 1, No. 2: 112 (2021); https://doi.org/10.3934/ctr.2021006
  17. J.W. Lyman and G.R. Palmer, High Temperature Mater. Proc., 11, Nos. 1–4: 175 (1993); https://doi.org/10.1515/htmp.1993.11.1-4.175
  18. S.T. Abrahami, Y. Xiao, and Y. Yang, Mineral Processing and Extractive Metallurgy, 124, No. 2: 106 (2014); https://doi.org/10.1179/1743285514y.0000000084
  19. H.M.D. Bandara, K.D. Field, and M.H. Emmert, Green Chemistry, 18, No. 13: 753 (2016); https://doi.org/10.1039/c5gc01255d
  20. J.H.L. Voncken, The Rare-Earth Elements: An Introduction (Springer International Publishing: 2016); https://doi.org/10.1007/978-3-319-26809-5
  21. S. Cotton, Lanthanide and Actinide Chemistry (John Wiley and Sons: 2006); https://doi.org/10.1002/0470010088
  22. T. Monecke, U. Kempe, J. Monecke, M. Sala, and D. Wolf, Geochimica et Cosmochimica Acta, 66, No. 7: 1185 (2002); https://doi.org/10.1016/s0016-7037(01)00849-3
  23. K. Nakashima, F. Kubota, T. Maruyama, and M. Goto, A. Sci., 19, No. 8: 1097 (2003); https://doi.org/10.2116/analsci.19.1097
  24. F. Kuboto, Y. Baba, and M. Got, Solvent Extraction Research and Development. Japan, 19: 17 (2012); https://doi.org/10.15261/serdj.19.17
  25. Y. Baba, F. Kubota, N. Kamiya, and M. Goto, J. Chem. Eng. Japan, 44, No. 10: 679 (2011); https://doi.org/10.1252/jcej.10we279
  26. J. Park, Y. Jung, P. Kusumah, J. Lee, K. Kwon, and C. Lee, Int. J. Mol. Sci., 15, No. 9: 15320 (2014); https://doi.org/10.3390/ijms150915320
  27. T. Makanyire, S.S. Segado, and A. Jha, Adv. Manuf., 4: 33 (2016); https://doi.org/10.1007/s40436-015-0132-3
  28. Y. Sasaki, Y. Sugo, S. Suzuki, and S. Tachimori, Solvent Extraction and Ion Exchange, 19, No. 1: 91 (2001); https://doi.org/10.1081/sei-100001376
  29. K. Shimojo, H. Naganawa, F. Kubota, and M. Goto, J. Ion Exchange, 18, No. 4: 370 (2007); https://doi.org/10.5182/jaie.18.370
  30. K. Shimojo, H. Naganawa, J. Noro, F. Kubota, and M. Goto, Anal. Sci., 23, No. 12: 1427 (2007); https://doi.org/10.2116/analsci.23.1427
  31. Y. Kikuchi, M. Matsumiya, and S. Kawakami, Solvent Extraction Research and Development, Japan, 21, No. 2: 137 (2014); https://doi.org/10.15261/serdj.21.137
  32. K. Binnemans, P.T. Jones, B. Blanpain, T.V. Gerven, Y. Yang, A. Walton, and M. Buchert, J. Cleaner Production, 51: 1 (2013); https://doi.org/10.1016/j.jclepro.2012.12.037
  33. M. Tanaka, T. Oki, K. Koyama, H. Narita, and T. Oishi, Handbook on the Physics and Chemistry of Rare-earths (Eds. J.-C.G. Bünzli and V.K. Pecharsky) (Elsevier: 2013); https://doi.org/10.1016/b978-0-444-59536-2.00002-7
  34. O. Takeda and T.H. Okabe, Metallurgical and Materials Transactions E, 1, No. 2: 160 (2014); https://doi.org/10.1007/s40553-014-0016-7
  35. M. Firdaus, M.A. Rhamdhani, Y. Durandet, W.J. Rankin, and K.M. Gregor, J. Sustain. Metall., 2, No. 4: 276 (2016); https://doi.org/10.1007/s40831-016-0045-9
  36. M.A.R. Önal, C.R. Borra, M. Guo, B. Blanpain, and T.V. Gerven, J. Sust. Metal., 1, No. 3: 199 (2015); https://doi.org/10.1007/s40831-015-0021-9
  37. H.S. Yoon, C.J. Kim, J.Y. Lee, S.D. Kim, and J.C. Lee, Res. Rec., 12, No. 6: 57 (2003).
  38. T.W. Ellis, F.A. Schmidt, and L.L. Jones, Handbook on Metals and Materials Waste Reduction, Recovery, and Remediation (Ed. K.C. Liddell) (Publishing Ames Lab: 1994), p. 199.
  39. J.C. Lee, W.B. Kim, J. Jeong, and I.J. Yoon, J. K. Ins. of Met. and Mat. (S. Korea), 36, No. 6: 967 (1998).
  40. K. Koyama, A. Kitajima, and M. Tanaka, Kidorui (R. Eart.), 54: 36 (2009).
  41. K. Koyama, and M. Tanaka, The Latest Technology Trend and Resource Strategy of Rare-earths (Ed.: K. Machida) (CMC Press: 2011).
  42. T. Itakura, R. Sasai, and H. Itoh, Chem. Inform., 37, No. 22: 1386 (2006); https://doi.org/10.1002/chin.200622215
  43. H. Deligöz and M. Yilmaz, Solvent Extraction and Ion Exchange, 13, No. 1: 19 (1995); https://doi.org/10.1080/07366299508918258
  44. T.H. Okabe, O. Takeda, K. Fukuda, and Y. Umetsu, Mater. Trans., 44, No. 4: 798 (2003); https://doi.org/10.2320/matertrans.44.798
  45. Y. Xu, L.S. Chumbley, and F.C. Laabs, J. Mater. Res., 15, No. 11: 2296 (2000); https://doi.org/10.1557/jmr.2000.0330
  46. O. Takeda, T.H. Okabe, and Y. Umetsu, J. Alloys Compounds, 408: 387 (2006); https://doi.org/10.1016/j.jallcom.2005.04.094
  47. O. Takeda, T.H. Okabe, and Y. Umetsu, J. Alloys Compounds, 379, No. 1: 305 (2004); https://doi.org/10.1016/j.jallcom.2004.02.038
  48. M. Moore, A. Gebert, M. Stoica, M. Uhlemann, and W. Löser, J. Alloys Compounds, 647: 997 (2015); https://doi.org/10.1016/j.jallcom.2015.05.238
  49. X. Bian, S.H. Yin, F.Y. Zhang, W.Y. Wu, and G.F. Tu, Adv. Mat. Res., 233: 1406 (2011); https://doi.org/10.4028/www.scientific.net/amr.233-235.1406
  50. A. Yörükoğlu, A. Obut, and İ. Girgin, Hydrometallurgy, 68, Nos. 1–3: 195 (2003); https://doi.org/10.1016/s0304-386x(02)00199-8
  51. Q. Zhang and F. Saito, Hydrometallurgy, 47, No. 2: 231 (1998); https://doi.org/10.1016/s0304-386x(97)00048-0
  52. K. Nowaczyk, A. Juszczak, F. Domka, and J. Siepak, Polish J. Environmental Studies, 7: 307 (1998); https://doi.org/10.15244/pjoes/30931
  53. H.A. Ibrahim and E.M. El-Sheikh, Res. J. Chem. Sci., 1, No. 4: 55 (2011).
  54. O.A. Desouky, A.A.E. Mougith, W.A. Hassanien, G.S. Awadalla, and S.S. Hussien, Arab. J. Chem., 9, Suppl. 1: 579 (2016); https://doi.org/10.1016/j.arabjc.2011.08.010
  55. K.E. Haque, Inter. J. Mineral Proc., 57, No. 1: 1 (1999); https://doi.org/10.1016/s0301-7516(99)00009-5
  56. M. Al-Harahsheh and S.W. Kingman, Hydrometallurgy, 73, No. 3: 189 (2004); https://doi.org/10.1016/j.hydromet.2003.10.006
  57. J.-P. Wang, J. Magn. Magn. Mater., 497: 165962 (2020); https://doi.org/10.1016/j.jmmm.2019.165962
  58. J. Cui, M. Kramer, L. Zhou, F. Liu, A. Gabay, G. Hadjipanayis, B. Balasubramanian, and D. Sellmyer, Acta Mat., 158: 118 (2018); https://doi.org/10.1016/j.actamat.2018.07.049
  59. V.A. Tatarenko, S.M. Bokoch, V.M. Nadutov, T.M. Radchenko, and Y.B. Park, Defect Diffus. Forum, 280–281: 29 (2008); https://doi.org/10.4028/www.scientific.net/ddf.280-281.29
  60. T.M. Radchenko and V.A. Tatarenko, Defect Diffus. Forum, 273–276: 525 (2008); https://doi.org/10.4028/www.scientific.net/ddf.273-276.525
  61. T.M. Radchenko, V.A. Tatarenko, and S.M. Bokoch, Metallofiz. Noveishie Tekhnol., 28, No. 12: 1699 (2006).
  62. V.A. Tatarenko and T.M. Radchenko, Intermetallics, 11, Nos. 11–12: 1319 (2003); https://doi.org/10.1016/s0966-9795(03)00174-2
  63. V.A. Tatarenko, T.M. Radchenko, and V.M. Nadutov, Metallofiz. Noveishie Tekhnol., 25, No. 10: 1303 (2003).
  64. Т.М. Radchenko and V.А. Tatarenko, Usp. Fiz. Met., 9, No. 1: 1 (2008); https://doi.org/10.15407/ufm.09.01.001
  65. V.A. Tatarenko and T.M. Radchenko, Usp. Fiz. Met., 3, No. 2: 111 (2002); https://doi.org/10.15407/ufm.03.02.111
  66. I.M. Melnyk, T.M. Radchenko, and V.A. Tatarenko, Metallofiz. Noveishie Tekhnol., 32, No. 9: 1191 (2010).
  67. R.C. O’Handley, Modern Magnetic Materials: Principles and Applications (New York, USA, Wiley: 2000).
  68. T.M. Radchenko, O.S. Gatsenko, V.V. Lizunov, and V.A. Tatarenko, Fundamentals of Low-Dimensional Magnets (1st Edition) (Eds. R.K. Gupta, S.R. Mishra, and T.A. Nguyen) (Boca Raton: Taylor & Francis, CRC Press: 2022), Ch. 18, p. 343; https://doi.org/10.1201/9781003197492-18
  69. T.M. Radchenko, O.S. Gatsenko, V.V. Lizunov, and V.A. Tatarenko, Prog. Phys. Met., 21, No. 4: 580 (2020); https://doi.org/10.15407/ufm.21.04.580
  70. K.H. Levchuk, T.M. Radchenko, and V.A. Tatarenko, Metallofiz. Noveishie Tekhnol., 43, No. 1: 1 (2021); https://doi.org/10.15407/mfint.43.01.0001