Wire-Feeding Based Additive Manufacturing of the Ti–6Al–4V Alloy. Part I. Microstructure

M. O. Vasylyev$^1$, B. M. Mordyuk$^{1,2}$, and S. M. Voloshko$^2$

$^1$G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine

Received 19.08.2022; final version — 23.01.2023 Download PDF logo PDF

In recent years, metal additive manufacturing (AM), also known as 3D printing, is grown massively in the industry. The ability of AM to build parts directly from the digital representation makes it an excellent alternative compared to traditional manufacturing technologies, such as milling, welding, casting, rolling, stamping, forging and turning for rapidly making highly customized parts. Currently, a number of different powder- and wire-based AM technologies are developed for 3D printing of metals. A number of potential benefits of AM are noted, including the allowance of design freedom, complex parts’ production, the material waste and part weight reductions, material use minimization; it also saves the time and money of the production cycle times. Due to the feasibility of the economically producing large-scale metal components with relatively high deposition rate, low machinery cost, high material efficiency, and shortened lead time as compared to the powder-based AM, the wire-based AM significantly attracted in the industry and academia due to its ability to produce the large components of the medium geometric complexity. During this AM process, the wire is fed by the controlled rate into the melt pool produced by the electric arc, laser or electron beam as the heat source. In the past few decades, the basic research and development efforts are devoted to the wire-based 3D printing parts made of Ti–6Al–4V alloy, which has been widely investigated and used in different fields such as aerospace, automotive, energy, marine industries and in addition to the prosthetics and the orthopaedic implants. Numerous studies in recent years on the influence of the 3D printing parameters have shown a significant difference in the mechanism and kinetics of the microstructure formation in the Ti–6Al–4V alloy samples compared to traditional technologies. It is well investigated that the mechanical properties of such alloy are dependent on the solidification macro- and microstructure, which is controlled by the thermal conditions during 3D printing. In the present review, the main microstructural characteristics, which determine the mechanical properties of the two-phase Ti–6Al–4V alloy, are analysed for the samples obtained by wire-feed 3D printing with various sources used for the wire melting, namely, the electric arc, the laser, and the electron beam. At first, the review introduces the links between the process parameters, resultant microstructures, especially, the morphology, the size and the quantitative ratio of the α and β grains in the as-printed Ti–6Al–4V alloy samples. However, the metallic products manufactured by a vast majority of the AM processes need to be post-processed by heat treatment and/or hot isostatic pressing, which are also discussed in this review.

Keywords: additive manufacturing, 3D printing, Ti–6Al–4V alloy, microstructure, electric arc, laser, electron beam, crystallization, heat treatment, mechanical properties, industry.

DOI: https://doi.org/10.15407/ufm.24.01.005

Citation: M. O. Vasylyev, B. M. Mordyuk, and S. M. Voloshko, Wire-Feeding Based Additive Manufacturing of the Ti–6Al–4V Alloy. Part I. Microstructure, Progress in Physics of Metals, 24, No. 1: 5–37 (2023)

  1. B. Berman, Business Horizons, 55: 155 (2012); https://doi.org/10.1016/j.bushor.2011.11.003
  2. D.L. Rakov and R.Y. Sukhorukov, J. Mach. Manuf. Reliab., 50: 616 (2021); https://doi.org/10.3103/S1052618821070116
  3. T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, and D. Hui, Composites Part B: Eng., 143: 172 (2018); https://doi.org/10.1016/j.compositesb.2018.02.012
  4. C.W. Hull, Method and Apparatus for Production of Three-Dimensional Objects by Stereolithography, Patent US4575330A, Publ. Mar 11, 1986.
  5. J.W. Stansbury, and M.J. Idacavage, Dent. Mater., 32: 54 (2016); https://doi.org/10.1016/j.dental.2015.09.018
  6. P. Wu, J. Wang, and X. Wang, Automation in Construction, 68: 21 (2016); https://doi.org/10.1016/j.autcon.2016.04.005
  7. O. Ivanova, C. Williams, and T. Campbell, Rapid. Prototyp. J., 19: 353 (2013); https://doi.org/10.1108/RPJ-12-2011-0127
  8. M. Vaezi, H. Seitz, and S. Yang, Int. J. Adv. Manuf. Technol., 67: 1721 (2013); https://doi.org/10.1007/s00170-012-4605-2
  9. B. Bhushan, and M. Caspers, Microsyst. Technol., 23: 1117 (2017); https://doi.org/10.1007/s00542-017-3342-8
  10. H.D. Nguyen, A. Pramanik, A.K. Basak, Y. Dong, C. Prakash, S. Debnath, S. Shankar, I.S. Jawahir, S. Dixit, D. Buddhi, J. Mater. Res. Technol., 18: 4641 (2022); https://doi.org/10.1016/10.1016/j.jmrt.2022.04.055
  11. Y.W.D. Tay, B. Panda, S.C. Paul, N.A. Noor Mohamed, M.J. Tan, and K.F. Leong, Virtual Phys. Prototyping, 12: 261 (2017); https://doi.org/10.1080/17452759.2017.1326724
  12. L. Mashigo, H. Möller, and C. Gassmann, J. Southern African Inst. Mining and Metallurgy, 121: 325 (2021); https://doi.org/10.17159/24119717/1498/2021
  13. S.W. Williams, F. Martina, A.C. Addison, J. Ding, G. Pardal, and P. Colegrove, Mater. Sci. Technol., 32: 641 (2016); https://doi.org/10.1179/1743284715Y.0000000073
  14. D. Ding, Z. Pan, D. Cuiuri, and H. Li, Robotics and Computer Integrated Manuf., 34: 8 (2015); https://doi.org/10.1016/j.rcim.2015.01.003
  15. Z.D. Lin, K.J. Song, and X.H. Yu, J. Manuf. Proc., 70: 24 (2021); https://doi.org/10.1016/j.jmapro.2021.08.018
  16. J.L. Gu, J. Ding, S. W. Williams, H.M. Gu, J. Bai, Y.C. Zhai, and P.H. Ma, Mater. Sci. Eng. A, 651: 18 (2016); https://doi.org/10.1016/j.msea.2015.10.101
  17. P.F. Jiang, X.R. Li, X.M. Zong, X.B. Wang, Z.K. Chen, H.X.Yang, C.Z. Liu, N.K. Gao, and Z.H. Zhang, J. Alloys Compounds, 920: 166056 (2022), https://doi.org/10.1016/j.jallcom.2022.166056
  18. L.E. Murr, S.M. Gaytan, A. Ceylan, E. Martinez, J.L. Martinez, D.H. Hernandez, B.I. Machado, D.A. Ramirez, F. Medina, S. Collins, and R.B. Wicker, Acta Mater., 58: 1887 (2010); https://doi.org/10.1016/j.actamat.2009.11.032
  19. S.W. Williams, F. Martina, A.C. Addison, J. Ding, G. Pardal, and P. Colegrove, Mater. Sci. Technol., 32: 641 (2016); https://doi.org/10.1179/1743284715Y.0000000073
  20. D.H. Ding, Z.X. Pan, D. Cuiuri, and H.J. Li, J. Adv. Manuf. Technol., 81: 465 (2015); https://doi. org/10.1007/s00170-015-7077-3
  21. S.Yu. Tarasov, A.V. Filippov, N.L. Savchenko, S.V. Fortuna, V.E. Rubtsov, E.A. Kolubaev, and S.G. Psakhie, Int. J. Adv. Manuf. Technol., 99: 2353 (2018); https://doi.org/10.1007/s00170-018-2643-0
  22. C.R. Cunningham, J.M. Flynn, A. Shokrani, V. Dhokia, and S.T. Newman, Additive Manuf., 22: 672 (2018); https://doi.org/10.1016/j.addma.2018.06.020
  23. D.H. Ding, Z.X. Pan, D. Cuiuri, and H.J. Li, Int. J. Adv. Manuf. Technol., 81: 465 (2015); https://doi.org/10.1007/s00170-015-7077-3
  24. F. Wang, S. Williams, P. Colegrove, and A.A. Antonysamy, Metall. Mater. Trans. A, 44: 968 (2013); https://doi.org/10.1007/s11661-012-1444-6
  25. F. Martina, J. Mehnen, S.W. Williams, P. Colegrove, and F. Wang, J. Mater. Process. Technol., 212: 137 (2012); https://doi.org/10.1016/j.jmatprotec.2012.02.002
  26. B. Baufeld, O. van der Biest, and R. Gault, Int. J. Mat. Res., 100: 11 (2009); https://doi.org/10.3139/146.110217
  27. B. Baufeld, O. van der Biest, R. Gault, and K. Ridgway, IOP Conf. Ser.: Mater. Sci. Eng., 26: 012001 (2011); http://dx.doi.org/10.1088/1757-899X/26/1/012001
  28. J. Zhang, X.Y. Wang, S. Paddea, and X. Zhang, Mater. Des., 90: 551 (2016); http://dx.doi.org/10.1016/j.matdes
  29. F. Wang, S. Williams, P. Colegrove, and A.A. Antonysamy, Metall Mater. Trans. A, 44: 968 (2013); https://doi.org/10.1007/s11661-012-1444-6
  30. Q. Wu, J.P. Lu, C.M. Liu, H.G. Fan, X.Z. Shi, J. Fu, and S. Ma, Materials, 10: 749 (2017); https://doi.org/10.3390/ma10070749
  31. J. Wang, X. Lin, M. Wang, J.Q. Li, C. Wang, and W.D. Huang, Mater. Sci. Eng. A, 776: 139020 (2020); https://doi.org/10.1016/j.msea.2020.139020
  32. Z.D. Lin, K.J. Song, and X.H. Yu, J. Manuf. Proc., 70: 24 (2021); https://doi.org/10.1016/j.jmapro.2021.08.018
  33. C.M. Liu, H.M. Wang, X.J. Tian, H.B. Tang, and D. Liu, Mater. Sci. Eng. A, 586: 323 (2013); https://doi.org/10.1016/j.msea.2013.08.032
  34. C.M. Liu, H.M. Wang, X.J. Tian, and D. Liu, Mater. Sci. Eng. A, 604: 176 (2014); https://doi.org/10.1016/j.msea.2014.03.028
  35. B. Baufeld, O. Van der Biest, and S. Dillien, Metall. Mater. Trans. A, 41:1917 (2010); https://doi.org/10.1007/s11661-010-0255-x
  36. M.J. Bermingham, L. Nicastro, D. Kent, Y. Chen, and M.S. Dargusch, J. Alloys Compounds, 753: 247 (2018); https://doi.org/10.1016/j.jallcom.2018.04.158
  37. A. du Plessis and E. Macdonald, Additive Manuf., 34: 101191 (2020); https://doi.org/10.1016/j.addma.2020.101191
  38. M.B. Berger, T.W. Jacobs, B.D. Boyan, and Z. Schwartz, J. Biomed. Mater. Res. B Appl. Biomater., 108: 1262 (2020); https://doi.org/10.1002/jbm.b.34474
  39. V. Popov, A. Katz-Demyanetz, A. Garkun, G. Muller, E. Strokin, and H. Rosenson, Proc. Manuf., 21: 125 (2018); https://doi.org/10.1016/j.promfg.2018.02.102
  40. N. Eshawish, S. Malinov, W. Sha, and P. Walls, J. Mater. Eng. Perform., 30: 5290 (2021); https://doi.org/10.1007/s11665-021-05753-w
  41. S.N. Liu, and Y.C. Shin, Mater. Des., 164: 107552 (2019); https://doi.org/10.1016/j.matdes.2018.107552
  42. Z. Zhao, J. Chen, X.F. Lu, H. Tan, X. Lin, and W.D. Huang, Mater. Sci. Eng. A, 691: 16 (2017); http://dx.doi.org/10.1016/j.msea.2017.03.035
  43. M. Thoms, G.J. Baxter, I. Todd. Acta Mater., 108: 26 (2016); https://doi.org/10.1016/j.actamat.2016.02.025
  44. T. Wang, Y.Y. Zhu, S.Q. Zhang. J. Alloys Compounds, 632: 513 (2015); https://doi.org/10.1016/j.jallcom.2015.01.256
  45. B.E. Carroll, T.A. Palmer, A.M. Beese., Acta Mater., 87: 309 (2015); https://doi.org/10.1016/j.actamat.2014.12.054
  46. A. Kratky, Production of Hard Metal Alloys, Patent US2076952, Publ. Apr. 13, 1937.
  47. I. Harter, Method of Forming Structures Wholly of Fusion Deposited Weld Metal, Patent US2299747A, Publ. Oct. 27, 1942.
  48. C.O. Brown, E.M. Breinan, and B.H. Kear, Method for Fabricating Articles by Sequential Layer Deposition, Patent US4323756A, Publ. Apr. 06, 1982.
  49. A. Heralić, A.-K. Christiansson, M. Ottosson, and B. Lennartson, Opt. Laser. Eng., 48: 478 (2010); https://doi.org/10.1016/j.optlaseng.2009.08.012
  50. E. Brandl, F. Palm, V. Michailov, B. Viehweger, and C. Leyens, Mater. Des., 32: 4665 (2011); https://doi.org/10.1016/j.phpro.2010.08.087
  51. E. Brandl, A. Schoberth, and C. Leyens, Mater. Sci. Eng. A, 532: 295 (2012); https://doi.org/10.1016/j.msea.2011.10.095
  52. D.S. Henn, Solid Freeform Fabrication System and Method, US Patent 7073561, Publ. Jul. 11, 2006.
  53. K.M. Taminger, J.K. Watson, R.A. Hafley, and D.D. Petersen, Solid Freeform Fabrication Apparatus and Methods, Patent US7168935 B1, Publ. Jan 30, 2007.
  54. S.V. Fortuna, A.V. Filippov, E.A. Kolubaev, A.S. Fortuna, and D.A. Gurianov, AIP Conf. Proc., 2051: 020092 (2018); https://doi.org/10.1063/1.5083335
  55. P. Wanjara, K. Watanabe, C. de Formanoir, Q. Yang, C. Bescond, S. Godet, M. Brochu, K. Nezaki, J. Gholipour, and P. Patnaik, Adv. Mater. Sci. Eng., 2019: 3979471 (2019); https://doi.org/10.1155/2019/3979471
  56. P. Wanjara, J. Gholipour, E. Watanabe, K. Watanabe, T. Sugino, P. Patnaik, F. Sikan, and M. Brochu, Adv. Mater. Sci. Eng., 2020: 1902567 (2020); https://doi.org/10.1155/2020/1902567
  57. F. Pixner, F. Warchomicka, P. Peter, A. Steuwer, M.H. Colliander, R. Pederson, and N. Enzinger, Materials, 13: 3310 (2020); https://doi.org/10.3390/ma13153310
  58. S. Lopez-Castaño, P. Emile,C. Archambeau, F. Pettinari-Sturmel, and J. Douin. TMS 2021 150th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-65261-6_16
  59. D.V. Kovalchuk, V.I. Melnik, I.V. Melnik and B.A. Tugaj, Method for Manufacturing Three-Dimensional Objects and Devices for Its Implementation, UA Patent 112682 C2, Ukraine, Publ. Oct. 10, 2016, Bulletin No. 19 (in Ukrainian).
  60. D.V. Kovalchuk, G.M. Grigorenko, A.Yu. Tunik, L.I. Adeeva, S.G. Grigorenko, and S.N. Stepanyuk, Electrometallurgy Today, No. 4: 62 (2018) (in Russian); https://doi.org/10.15407/sem2018.04.05
  61. D.V. Kovalchuk, V.I. Melnik, I.V. Melnik and B.A. Tugaj, Automatic Welding, No. 12: 26 (2017) (in Russian); https://doi.org/10.15407/as2017.12
  62. D. Kovalchuk, O. Ivasishin, and D. Savvakin, MATEC Web of Conferences, 321: 03014 (2020); https://doi.org/10.1051/matecconf/202032103014
  63. D. Kovalchuk, V. Melnyk, I. Melnyk, D. Savvakin, O. Dekhtyar, O. Stasiuk, and P. Markovsky, J. Mater. Eng. Perform., 30: 5307 (2021); https://doi.org/10.1007/s11665-021-05770-9
  64. D. Kovalchuk, V. Melnyk, I. Melnyk, and B. Tugaj, J. Elektrotechnica & Elektronica, 51, Nos. 5–6: 37 (2016); https://epluse.ceec.bg/wp-content/uploads/2018/08/20160506-full.pdf
  65. O.M. Ivasishin D.V. Kovalchuk, P.E. Markovsky, D.G. Savvakin, O.O. Stasiuk, V.I. Bondarchuk, D.V. Oryshych, S.G. Sedov, and V.A. Golub, Prog. Phys. Met., 24, No. 1: 75 (2023); https://doi.org/10.15407/ufm.24.01.075
  66. M.O. Vasylyev, B.M. Mordyuk, and S.M. Voloshko, Prog. Phys. Met., 24, No. 1: 38 (2023); https://doi.org/10.15407/ufm.24.01.038