Porous Magnesium and Its Application

U. Herlina$^{1,2}$, F. Nurjaman$^1$, F. Bahfie$^1$, A. S. Handoko$^1$, S. Sumardi$^1$, I. Sukmana$^2$, E. Prasetyo$^{1,3}$, and D. Susanti$^4$

$^1$Research Centre of Mining Technology, National Research and Innovation Agency of Indonesia, South Lampung, 35361 Lampung, Indonesia
$^2$Department of Mechanical Engineering, Faculty of Engineering, Universitas Lampung, Bandar Lampung, 35145 Lampung, Indonesia
$^3$Department of Chemical Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
$^4$Department of Metallurgical and Material Engineering, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember, 60111 Surabaya, East Java, Indonesia

Received 28.05.2022; final version — 13.10.2022 Download PDF logo PDF

Abstract
The metallic biomaterials are being revolutionized with the development of biodegradable materials including several metals, alloys, and metallic glasses. As such, the nature of metallic biomaterials is transformed from the bioinert to bioactive and multibiofunctional ones. Magnesium-based biomaterials are candidates to be used as new-generation biodegradable metals. Magnesium can dissolve in body fluid; this means that the implanted magnesium can degrade during the healing process, and, if the degradation is controlled, it would leave no debris after the completion of healing. Researchers have been working on synthesis and characterization of Mg-based biomaterials with a variety of composition to control the degradation rate of magnesium since uncontrolled degradation could result in loss of mechanical integrity, metal contamination in the body, and intolerable hydrogen evolution by tissue. As observed, the applied methods of synthesis and the choice of components affect the characteristics and performance of the Mg-based biomaterials.

Keywords: biodegradable materials, Mg-based biomaterials, synthesis, characterization.

DOI: https://doi.org/10.15407/ufm.23.04.756

Citation: U. Herlina, F. Nurjaman, F. Bahfie, A. S. Handoko, S. Sumardi, I. Sukmana, E. Prasetyo, and D. Susanti, Porous Magnesium and Its Application, Progress in Physics of Metals, 23, No. 4: 756–778 (2022)


References  
  1. A. Tahmasebifar, S. M. Kayhan, Z. Evis, A. Tezcaner, H. Çinici, and M. Koç, Mechanical, electrochemical and biocompatibility evaluation of AZ91D magnesium alloy as a biomaterial, Journal of Alloys and Compounds, 687: 906–919 (2016); https://doi.org/10.1016/j.jallcom.2016.05.256
  2. Biomaterials Science: An Introduction to Materials in Medicine (Eds. B.D. Ratner, A.S. Hoffman, F.J. Schoen, and J.E. Lemons) (Academic Press: 2012).
  3. S. Wu, X. Liu, K.W.K. Yeung, H. Guo, P. Li, T. Hu, C.Y. Chung, and P.K. Chu, Surface nano-architectures and their effects on the mechanical properties and corrosion behaviour of Ti-based orthopedic implants, Surface and Coatings Technology, 233: 13–26 (2013); https://doi.org/10.1016/j.surfcoat.2012.10.023
  4. A. Biesiekierski, J. Wang, M. Abdel-Hady Gepreel, and C. Wen, A new look at biomedical Ti-based shape memory alloys, Acta Biomaterialia, 8, No. 5: 1661–1669 (2012); https://doi.org/10.1016/j.actbio.2012.01.018
  5. S.V. Dorozhkin, Calcium orthophosphate coatings on magnesium and its biodegradable alloys, Acta Biomaterialia, 10, Iss. 7: 2919–2934 (2014); https://doi.org/10.1016/j.actbio.2014.02.026
  6. Y. Chen, Z. Xu, C. Smith, and J. Sankar, Recent advances on the development of magnesium alloys for biodegradable implants, Acta Biomaterialia, 10, No. 11: 4561–457310 (2014); https://doi.org/1016/j.actbio.2014.07.005
  7. N.E.L. Saris, E. Mervaala, H. Karppanen, J.A. Khawaja, and A. Lewenstam, Magnesium: An update on physiological, clinical, and analytical aspects, Clinica Chimica Acta, 294: 1–26 (2000); https://doi.org/10.1016/S0009-8981(99)00258-2
  8. J. Li, L. Tan, P. Wan, X. Yu, and K. Yang, Study on microstructure and properties of extruded Mg–2Nd–0.2Zn alloy as potential biodegradable implant material, Materials Science and Engineering: C, 49: 422–429 (2015); https://doi.org/10.1016/j.msec.2015.01.029
  9. Y.F. Zheng, X.N. Gu, and F. Witte, Biodegradable metals, Materials Science and Engineering: R: Reports, 77: 1–34 (2014); https://doi.org/10.1016/j.mser.2014.01.001
  10. J. Cheng, B. Liu, Y.H. Wu, and Y.F. Zheng, Comparative in vitro study on pure metals (Fe, Mn, Mg, Zn and W) as biodegradable metals, Journal of Materials Science & Technology, 29, No. 7: 619–627 (2013); https://doi.org/10.1016/j.jmst.2013.03.019
  11. J. Lévesque, H. Hermawan, D. Dubé, and D. Mantovani, Design of a pseudo-physiological test bench specific to the development of biodegradable metallic biomaterials, Acta Biomaterialia, 4, No. 2: 284–295 (2008); https://doi.org/10.1016/j.actbio.2007.09.012
  12. M. Peuster, C. Hesse, T. Schloo, C. Fink, P. Beerbaum, and C. von Schnakenburg, Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta, Biomaterials, 27, No. 28: 4955–4962 (2006); https://doi.org/10.1016/j.biomaterials.2006.05.029
  13. J. Walker, S. Shadanbaz, T.B.F. Woodfield, M.P. Staiger, and G.J. Dias, Magnesium biomaterials for orthopedic application: A review from a biological perspective, Journal of Biomedical Materials Research. Part B: Applied Biomaterials, 102, No. 6: 1316–1331 (2014); https://doi.org/10.1002/jbm.b.33113
  14. Z. Li, X. Gu, S. Lou, and Y. Zheng, The development of binary Mg–Ca alloys for use as biodegradable materials within bone, Biomaterials, 29, No. 10: 1329–1344 (2008); https://doi.org/10.1016/j.biomaterials.2007.12.021
  15. B.P. Zhang, Y. Wang, and L. Geng, Research on Mg–Zn–Ca alloy as degradable biomaterial, Biomaterials—Physics and Chemistry (IntechOpen: 2011), Ch. 9, pp. 183–204; https://doi.org/10.5772/23929
  16. R. Erbel, C.D. Mario, J. Bartunek, J. Bonnier, B. de Bruyne, F.R. Eberli, P. Erne, M. Haude, B. Heublein, M. Horrigan, C. Ilsley, D. Böse, J. Koolen, T. F. Lüscher, N. Weissman, and R. Waksman, Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial, Lancet, 369: 1869–1875 (2007); https://doi.org/10.1016/S0140-6736(07)60853-8
  17. Y. Ding, C. Wen, P. Hodgson, and Y. Li, Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: A review, Journal of Materials Chemistry B, 2, No. 14: 1–36 (2014); https://doi.org/10.1039/c3tb21746a
  18. H.R. B. Rad, M.H. Idris, M.R.A. Kadir, and S. Farahany, Microstructure analysis and corrosion behavior of biodegradable Mg–Ca implant alloys, Materials and Design, 33, No. 1: 88–97 (2012); https://doi.org/10.1016/j.matdes.2011.06.057
  19. M.B. Kannan and R.K.S. Raman, In vitro degradation, and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid, Biomaterials, 29, No. 15: 2306–2314 (2008); https://doi.org/10.1016/j.biomaterials.2008.02.003
  20. J. Huang, Y. Ren, Y. Jiang, B. Zhang, and K. Yang, In vivo study of degradable magnesium and magnesium alloy as bone implant, Frontiers of Materials Science in China, 1, No. 4: 405–409 (2007); https://doi.org/10.1007/s11706-007-0074-1
  21. S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang, Y. Bian, Research on an Mg–Zn alloy as a degradable biomaterial, Acta Biomaterialia, 6, No. 2: 626–640 (2010); https://doi.org/10.1016/j.actbio.2009.06.028
  22. C. Hampp, B. Ullmann, J. Reifenrath, N. Angrisani, D. Dziuba, D. Bormann, J.M. Seitz, and A.M. Lindenberg., Research on the biocompatibility of the new magnesium alloy LANd442-An in vivo study in the rabbit tibia over 26 weeks, in Advanced Engineering Materials, 14, No. 3: 28–37 (2012); https://doi.org/10.1002/adem.201180066
  23. C. Hampp, N. Angrisani, J. Reifenrath, D. Bormann, J.M. Seitz, and A. Meyer-Lindenberg, Evaluation of the biocompatibility of two magnesium alloys as degradable implant materials in comparison to titanium as non-resorbable material in the rabbit, Materials Science and Engineering: C, 33, No. 1: 317–326 (2013); https://doi.org/10.1016/j.msec.2012.08.046
  24. K.F. Farraro, K.E. Kim, S.L.Y. Woo, J.R. Flowers, and M.B. McCullough, Revolutionizing orthopaedic biomaterials: The potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering, Journal of Biomechanics, 47, No. 9: 1–8 (2014); https://doi.org/10.1016/j.jbiomech.2013.12.003
  25. W.L. Cheng, S.C. Ma, Y. Bai, Z.Q. Cui, and H.X. Wang, Corrosion behavior of Mg–6Bi–2Sn alloy in the simulated body fluid solution: The influence of microstructural characteristics, Journal of Alloys and Compounds, 731: 1–16 (2018); https://doi.org/10.1016/j.jallcom.2017.10.073
  26. X. Zhang, G. Yuan, L. Mao, J. Niu, P. Fu, and W. Ding, Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviours of a Mg–Nd–Zn–Zr alloy, Journal of the Mechanical Behaviour of Biomedical Materials, 7: 77–86 (2012); https://doi.org/10.1016/j.jmbbm.2011.05.026
  27. Y. Lu, A.R. Bradshaw, Y.L. Chiu, and I.P. Jones, Effects of secondary phase and grain size on the corrosion of biodegradable Mg–Zn–Ca alloys, Materials Science and Engineering: C, 48: 480–486 (2015); https://doi.org/10.1016/j.msec.2014.12.049
  28. J.J. Ramsden, D.M. Allen, D.J. Stephenson, J.R. Alcock, G.N. Peggs, G. Fuller, and G. Goch, The design and manufacture of biomedical surfaces, CIRP Annals – Manufacturing Technology, 56, No. 2: 687–711 (2007); https://doi.org/10.1016/j.cirp.2007.10.001
  29. Y. Shibata and Y. Tanimoto, A review of improved fixation methods for dental implants. Part I: Surface optimization for rapid osseointegration, Journal of Prosthodontic Research, 59, No. 1: 1–14 (2015); https://doi.org/10.1016/j.jpor.2014.11.007
  30. K. von der Mark and J. Park, Engineering biocompatible implant surfaces: Part II: Cellular recognition of biomaterial surfaces: Lessons from cell–matrix interactions, Progress in Materials Science, 58, No. 3: 327–381 (2013); https://doi.org/10.1016/j.pmatsci.2012.09.002
  31. D.D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, and Y. F. Missirlis, Effect of surface roughness of the titanium alloy Ti–6Al–4V on human bone marrow cell response and on protein adsorption, Biomaterials, 22, No. 11: 1241–1251 (2001); https://doi.org/10.1016/s0142-9612(00)00274-x
  32. T. Scheerlinck and P.-P. Casteleyn, The design features of cemented femoral hip implants, The Journal of Bone and Joint Surgery, 88-B, No. 11: 1409–1418 (2006); https://doi.org/10.1302/0301-620x.88b11.17836
  33. H.J. Rønold, S.P. Lyngstadaas, and J.E. Ellingsen, Analysing the optimal value for titanium implant roughness in bone attachment using a tensile test, Biomaterials, 24, No. 25: 4559–4564 (2003); https://doi.org/10.1016/S0142-9612(03)00256-4
  34. R.A. Gittens, T. McLachlan, R.O. Navarrete, Y. Cai, S. Berner, R. Tannenbaum, Z. Schwartz, K.H. Sandhage, and B.D. Boyan, The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation, Biomaterials, 32, No. 13: 3395–3403 (2011); https://doi.org/10.1016/j.biomaterials.2011.01.029
  35. S.P. Lake, S. Ray, A.M. Zihni, D.M. Thompson, J. Gluckstein, and C.R. Deeken, Pore size and pore shape – but not mesh density – alter the mechanical strength of tissue ingrowth and host tissue response to synthetic mesh materials in a porcine model of ventral hernia repair, Journal of the Mechanical Behavior of Biomedical Materials, 42: 186–197 (2015); https://doi.org/10.1016/j.jmbbm.2014.11.011
  36. L. Prodanov, E. Lamers, M. Domanski, R. Luttge, J.A. Jansen, and X.F. Walboomers, The effect of nanometric surface texture on bone contact to titanium implants in rabbit tibia, Biomaterials, 34, No. 12: 2920–2927 (2013); https://doi.org/10.1016/j.biomaterials.2013.01.027
  37. N. Sato, K. Kubo, M. Yamada, N. Hori, T. Suzuki, H. Maeda, and T. Ogawa, Osteoblast mechanoresponses on Ti with different surface topographies, Journal of Dental Research, 88, No. 9: 812–816 (2009); https://doi.org/10.1177/0022034509343101
  38. R. Brånemark, L. Emanuelsson, A. Palmquist, and P. Thomsen, Bone response to laser-induced micro- and nano-size titanium surface features, Nanomedicine: Nanotechnology, Biology and Medicine, 7, No. 2: 220–227 (2011); https://doi.org/10.1016/j.nano.2010.10.006
  39. N. Mirhosseini, P.L. Crouse, M.J.J. Schmidth, L. Li, and D. Garrod, Laser surface micro-texturing of Ti–6Al–4V substrates for improved cell integration, Applied Surface Science, 253, No. 19: 7738–7743 (2007); https://doi.org/10.1016/j.apsusc.2007.02.168
  40. M. Bornapour, M. Celikin, M. Cerruti, and M. Pekguleryuz, Magnesium implant alloy with low levels of strontium and calcium: The third element effect and phase selection improve bio-corrosion resistance and mechanical performance, Materials Science and Engineering: C, 35, No. 1: 267–282 (2014); https://doi.org/10.1016/j.msec.2013.11.011
  41. A. Chaya, S. Yoshizawa, K. Verdelis, N. Myers., B. Costello, D.T. Chou, S. Pal, S. Maiti, P.N. Kumta, and C. Sfeir, In vivo study of magnesium plate and screw degradation and bone fracture healing, Acta Biomaterialia, 18: 262–269 (2015); https://doi.org/10.1016/j.actbio.2015.02.010
  42. Y. Sun, B. Zhang, Y. Wang, L. Geng, and X. Jiao, Preparation and characterization of a new biomedical Mg–Zn–Ca alloy, Materials and Design, 34: 58–64 (2012); https://doi.org/10.1016/j.matdes.2011.07.058
  43. F. Wu, C. Liu, B. O’Neill, J. Wei, and N. Yung, Fabrication and properties of porous scaffold of magnesium phosphate/polycaprolactone biocomposite for bone tissue engineering, Applied Surface Science, 258, No. 19: 7589–7595 (2012); https://doi.org/10.1016/j.apsusc.2012.04.094
  44. J. Fan, X. Qiu, X. Niu, Z. Tian, W. Sun, X. Liu, Y. Li, W. Li, and J. Meng, Microstructure, mechanical properties, in vitro degradation and cytotoxicity evaluations of Mg–1.5Y–1.2Zn–0.44Zr alloys for biodegradable metallic implants, Materials Science and Engineering: C, 33, No. 4: 2345–2352 (2013); https://doi.org/10.1016/j.msec.2013.01.063
  45. Z. Zhen, T. Xi, Y. Zheng, L. Li, and L. Li, In vitro study on Mg–Sn–Mn Alloy as biodegradable metals, Journal of Materials Science and Technology, 30, No. 7: 675–685 (2014); https://doi.org/10.1016/j.jmst.2014.04.005
  46. B. Homayun and A. Afshar, Microstructure, mechanical properties, corrosion behavior and cytotoxicity of Mg–Zn–Al–Ca alloys as biodegradable materials, Journal of Alloys and Compounds, 607: 1–10 (2014); https://doi.org/10.1016/j.jallcom.2014.04.059
  47. Y. Yandong, K. Shuzhen, P. Teng, L. Jie, and L. Caixia, Effects of Mn addition on the microstructure and mechanical properties of as-cast and heat-treated Mg–Zn–Ca bio-magnesium alloy, Metallography, Microstructure, and Analysis, 4, No. 5: 381–391 (2015); https://doi.org/10.1007/s13632-015-0224-2
  48. L.B. Tong, Q.X. Zhang, Z.H. Jiang, J.B. Zhang, J. Meng, L.R. Cheng, H.J. Zhang, Microstructures, mechanical properties and corrosion resistances of extruded Mg–Zn–Ca–xCe/La alloys, Journal of the Mechanical Behavior of Biomedical Materials, 62: 57–70, (2016); https://doi.org/10.1016/j.jmbbm.2016.04.038
  49. Y.L. Zhou, Y.Li, D.M. Luo, Y. Ding, and P. Hodgson, Microstructures, mechanical and corrosion properties and biocompatibility of as extruded Mg–Mn–Zn–Nd alloys for biomedical applications, Materials Science and Engineering: C, 49: 93–100 (2015); https://doi.org/10.1016/j.msec.2014.12.057
  50. Z. Gui, Z. Kang, and Y. Li, Mechanical and corrosion properties of Mg–Gd–Zn–Zr–Mn biodegradable alloy by hot extrusion, Journal of Alloys and Compounds, 685: 222–230 (2016); https://doi.org/10.1016/j.jallcom.2016.05.241
  51. S. Zhang, Y. Zheng, L. Zhang, Y. Bi, J. Li, J. Liu, Y. Yu, H. Guo,and Y. Li, In vitro and in vivo corrosion and histocompatibility of pure Mg and a Mg–6Zn alloy as urinary implants in rat model, Materials Science and Engineering: C, 68: 414–422 (2016); https://doi.org/10.1016/j.msec.2016.06.017
  52. S.J. Zhu, Q. Liu, Y.F. Qian, B. Sun, L.G. Wang, J.M. Wu, and S.K. Guan, Effect of different processings on mechanical property and corrosion behavior in simulated body fluid of Mg–Zn–Y–Nd alloy for cardiovascular stent application, Frontiers of Materials Science, 8, No. 3: 256–263 (2014); https://doi.org/10.1007/s11706-014-0259-3
  53. J. Zhang, N. Kong, Y. Shi, J. Niu, L. Mao, H. Li, M. Xiong, and G. Yuan, Influence of proteins and cells on in vitro corrosion of Mg–Nd–Zn–Zr alloy, Corrosion Science, 85: 1–8 (2014); https://doi.org/10.1016/j.corsci.2014.04.020
  54. M. Bornapour, M. Celikin, and M. Pekguleryuz, Thermal exposure effects on the in vitro degradation and mechanical properties of Mg–Sr and Mg–Ca–Sr biodegradable implant alloys and the role of the microstructure, Materials Science and Engineering: C, 46: 16–24 (2015); https://doi.org/10.1016/j.msec.2014.10.008
  55. A. Tahmasebifar, Surface Morphology Investigation of a Biodegradable Magnesium Alloy (Thesis for the Degree of Doctor of Philosophy in Engineering Sciences) (Graduate School of Natural and Applied Sciences of Middle East Technical University: 2015); https://hdl.handle.net/11511/25185
  56. Y. Zheng, Y. Li, J. Chen, and Z. Zou, Effects of tensile and compressive deformation on corrosion behaviour of a Mg–Zn alloy, Corrosion Science, 90: 1–10 (2015); https://doi.org/10.1016/j.corsci.2014.10.043
  57. X. Li, X. Liu, S. Wu, K.W.K. Yeung, Y. Zheng, and P.K. Chu, Design of magnesium alloys with controllable degradation for biomedical implants: from bulk to surface, Acta Biomaterialia, 45: 1–29 (2016); https://doi.org/10.1016/j.actbio.2016.09.005
  58. A.H.M. Sanchez, B.J.C. Luthringer, F. Feyerabend, and R. Willumeit, Mg and Mg alloys: How comparable are in vitro and in vivo corrosion rates? A review, Acta Biomaterialia, 13: 1–20 (2015); https://doi.org/10.1016/j.actbio.2014.11.048
  59. C. Zhao, H. Wu, P. Hou, J. Ni, P. Han, and X. Zhang, Enhanced corrosion resistance and antibacterial property of Zn doped DCPD coating on biodegradable Mg, Materials Letters, 180: 1–9 (2016); https://doi.org/10.1016/j.matlet.2016.04.035
  60. R. Willumeit, J. Fischer, F. Feyerabend, N. Hort, U. Bismayer, S. Heidrich, and B. Mihailova, Chemical surface alteration of biodegradable magnesium exposed to corrosion media, Acta Biomaterialia, 7, No. 6: 2704–2715 (2011); https://doi.org/10.1016/j.actbio.2011.03.004
  61. D. Zhao, T. Wang, W. Hoagland, D. Benson, Z. Dong, S. Chen, D.T. Chou, D. Hong, J. Wu, P.N. Kumta,and W.R. Heineman, Visual H2 sensor for monitoring biodegradation of magnesium implants in vivo, Acta Biomaterialia, 45: 1–11 (2016); https://doi.org/10.1016/j.actbio.2016.08.049
  62. H.R. Bakhsheshi-Rad, M. Abdellahi, E. Hamzah, A.F. Ismail, and M. Bahmanpour, Modelling corrosion rate of biodegradable magnesium-based alloys: The case study of Mg–Zn–RE–xCa (x = 0, 0.5, 1.5, 3 and 6 wt.%) alloys, Journal of Alloys and Compounds, 687: 630–642 (2016); https://doi.org/10.1016/j.jallcom.2016.06.149
  63. C. Zhao, F. Pan, L. Zhang, H. Pan, K. Song, and A. Tang, Microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg–Sr alloys, Materials Science and Engineering: C, 70, Pt. 2: 1081–1088 (2017); https://doi.org/10.1016/j.msec.2016.04.012
  64. L. Gao, R.S. Chen, and E.H. Han, Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys, Journal of Alloys and Compounds, 481: 379–384 (2009); https://doi.org/10.1016/j.jallcom.2009.02.131
  65. F. Li, J. Li, G. Xu, G. Liu, H. Kou, and L. Zhou, Fabrication, pore structure and compressive behavior of anisotropic porous titanium for human trabecular bone implant applications, Journal of the Mechanical Behavior of Biomedical Materials, 46: 104–114 (2015); https://doi.org/10.1016/j.jmbbm.2015.02.023
  66. C. Zhao, F. Pan, S. Zhao, H. Pan, K. Song, and A. Tang, Microstructure, corrosion behavior and cytotoxicity of biodegradable Mg–Sn implant alloys prepared by sub-rapid solidification, Materials Science and Engineering: C, 54: 245–251 (2015); https://doi.org/10.1016/j.msec.2015.05.042
  67. K. Kuśnierczyk and M. Basista, Recent advances in research on magnesium alloys and magnesium-calcium phosphate composites as biodegradable implant materials, Journal of Biomaterials Applications, 31, No. 6: 1–23 (2017); https://doi.org/10.1177/0885328216657271
  68. B. Chen, K.Y. Yin, T.F. Lu, B.Y. Sun, Q. Dong, J.X. Zheng, C. Lu, Z.C. Li, AZ91 magnesium alloy/porous hydroxyapatite composite for potential application in bone repair, Journal of Materials Science & Technology, 32, No. 9: 858–864 (2016); https://doi.org/10.1016/j.jmst.2016.06.010
  69. X. Gu, W. Zhou, Y. Zheng, L. Dong, Y. Xi, and D. Chai, Microstructure, mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/HA composites, Materials Science and Engineering: C, 30, No. 6: 827–832 (2010); https://doi.org/10.1016/j.msec.2010.03.016
  70. X.N. Gu, X. Wang, N. Li, L. Li, Y.F. Zheng, and X. Miao, Microstructure and characteristics of the metal-ceramic composite (MgCa–HA/TCP) fabricated by liquid metal infiltration, Journal of Biomedical Materials Research. Part B: Applied Biomaterials, 99B, No. 1: 127–134 (2011); https://doi.org/10.1002/jbm.b.31879
  71. M. Ashuri, F. Moztarzadeh, N. Nezafati, A. Ansari Hamedani, and M. Tahriri, Development of a composite based on hydroxyapatite and magnesium and zinc-containing sol-gel-derived bioactive glass for bone substitute applications, Materials Science and Engineering: C, 32, No. 8: 2330–2339 (2012); https://doi.org/10.1016/j.msec.2012.07.004
  72. Z. Huan, C. Xu, B. Ma, J. Zhou, and J. Chang, Substantial enhancement of corrosion resistance and bioactivity of magnesium by incorporating calcium silicate particles, RSC Advances, 6, No. 53: 47897–47906 (2016); https://doi.org/10.1039/c5ra27302a
  73. S.N. Dezfuli, S. Leeflang, Z. Huan, J. Chang, and J. Zhou, Fabrication of novel magnesium-matrix composites and their mechanical properties prior to and during in vitro degradation, Journal of the Mechanical Behavior of Biomedical Materials, 67: 1–39 (2017); https://doi.org/10.1016/j.jmbbm.2016.10.010
  74. W. Yu, X. Wang, H. Zhao, C. Ding, Z. Huang, H. Zhai, Z. Guo, and S. Xiong, Microstructure, mechanical properties and fracture mechanism of Ti2AlC reinforced AZ91D composites fabricated by stir casting, Journal of Alloys and Compounds, 702: 199–208 (2017); https://doi.org/10.1016/j.jallcom.2017.01.231