Heat Treatment Technology for Stainless Steel 316(L)

F. Bahfie$^1$, K. I. Prawijaya$^2$, S. S. Lana$^2$, F. Nurjaman$^1$, W. Astuti$^1$, and D. Susanti$^3$

$^1$Research Centre of Mining Technology, National Research and Innovation Agency of Indonesia, South Lampung, 35361 Lampung, Indonesia
$^2$Department of Mechanical Engineering, Faculty of Engineering, Universitas Lampung, Bandar Lampung, 35141 Lampung, Indonesia
$^3$Department of Metallurgical and Material Engineering, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember, 60111 Surabaya, East Java, Indonesia

Received 17.04.2022; final version — 13.10.2022 Download PDF logo PDF

Abstract
Stainless steel 316 (also known in the literature as 1.4401) or 316L (also known as 1.4404) is alloyed steel with good corrosion resistance; so, it is widely used in the modern steel tools. However, its application is still limited due to some properties needed to be improved. This improvement, first of all, relates to the mechanical properties. The hardness value of stainless steel depends on its phase and constituent (alloying) elements. The increase of the hardness of stainless steel can be done by means of the engineering of microstructure and phases formed through the heat treatment. There are several variations in treatments such as annealing, normalizing, tempering, hardening, and cycling. Cyclic heat treatment is a heat treatment that is expected to increase the hardness value of stainless steel by maintaining the toughness of the steel. Cyclic heat treatment can be used as an efficient method in the future.

Keywords: mechanical properties, stainless steel 316, cyclic heat treatment, microstructure, toughness.

DOI: https://doi.org/10.15407/ufm.23.04.729

Citation: F. Bahfie, K. I. Prawijaya, S. S. Lana, F. Nurjaman, W. Astuti, and D. Susanti, Heat Treatment Technology for Stainless Steel 316(L), Progress in Physics of Metals, 23, No. 4: 729–743 (2022)


References  
  1. H. Tukur and L. Yonghao, Oxidation and deformation behaviors of the 316L stainless-steel weldments in nuclear plants, Int. J. Electrochem. Sci., 15, No. 3: 2115–2132 (2020); https://doi.org/10.20964/2020.03.69
  2. M. Abe, Research and development trends of stainless steel and its future prospects, Nippon Steel Tech. Rep., No. 126: 2–12 (2021).
  3. K.M. Ati, Covariance structure analysis of health-related indices in elderly people at home with a focus on subjective health feeling, Nurs. Heal. Inter. J., 4, No. 2: 1–6 (2020).
  4. P.M. Natishan, R.A. Bayles, R. Rayne, T. Longazel, F.J. Martin, H. Kahn, and A.H. Heuer, Interstitial hardening of type 316L stainless steel to improve corrosion resistance and mechanical properties, Corrosion, 68, No. 7: 638–644 (2012); https://doi.org/10.5006/0599
  5. J. Singh and S.K. Nath, Effects of cyclic heat treatment on microstructure and mechanical properties of 13%Cr–4%Ni martensitic stainless steel, J. Mater. Eng. Perform., 29, No. 4: 2478–2490 (2020); https://doi.org/10.1007/s11665-020-04787-w
  6. Mechanical Engineer’s Handbook, 4th ed. Vol. 1 (Ed. M. Kurtz) (USA: John Wiley: 2015).
  7. N.H. Sari, Perlakuan panas pada baja karbon: efek media pendinginan terhadap sifat mekanik dan struktur mikro [Heat treatment of carbon steel: effect of cooling media on mechanical properties and microstructure], J. Tek. Mes., 6, No. 4: 263–267, (2018) (in Indonesian); https://doi.org/10.22441/jtm.v6i4.2091
  8. Structure and Properties of Engineering Materials (Ed. Henkel) (New York: Thomas Casson: 2002).
  9. ASM Specialty Handbook: Stainless Steels (Ed. J.R. Davis) (USA: ASM International: 2014)
  10. M.F. Mat, Y.H.P. Manurung, Y.O. Busari, M.S. Adenan, M.S. Sulaiman, N. Muhammad, and M. Graf, Experimental analysis on grain growth kinetics of SS316L, J. Mech. Eng., 18, No. 3: 97–111 (2021); https://jmeche.uitm.edu.my/wp-content/uploads/2021/09/6-RI-18-3-P20-51.pdf
  11. G. Park, K. Kim, Y. Lee, S. Uhm, and C. Lee, Kinetics study on low-temperature tempering of martensitic phase in medium mn steel weldment during paint-baking heat treatment, Met. Mater. Int., 28: 1157–1168 (2021); https://doi.org/10.1007/s12540-021-00985-w
  12. P. Atanda, A. Fatudimu, and O. Oluwole, Sensitisation Study of Normalized 316L Stainless Steel, J. Miner. Mater. Charact. Eng., 9, No. 1: 13–23 (2010); https://doi.org/10.4236/jmmce.2010.91002
  13. A.S. Afolabi, J.H. Potgieter, A.S. Abdulkareem, and N. Fungura, Effect of tempering temperature and time on the corrosion behavior of 304 and 316 austenitic stainless steels in oxalic acid, World Acad. Sci. Eng. Technol., 79: 87–91 (2011); https://doi.org/10.5281/zenodo.1060589
  14. Z. Zhou, S. Wang, J. Li, Y. Li, X. Wu, and Y. Zhu, Hardening after annealing in nanostructured 316L stainless steel, Nano Mater. Sci., 2, No. 1: 80–82 (2020); https://doi.org/10.1016/j.nanoms.2019.12.003
  15. M.S. Anwar, E.J. Yulianto, S.A. Chandra, and R.N. Hakim, Pengaruh perlakuan panas terhadap struktur mikro, kekerasan dan ketahanan oksidasi suhu tinggi pada baja tahan karat martensitik 13Cr3Mo3Ni-Cor [Effect of heat treatment on microstructure, hardness and high temperature oxidation resistance of 13Cr3Mo3Ni-Cor martensitic stainless steel], Teknik, 40, No. 1: 11–17 (2019) (in Indonesian); https://doi.org/10.14710/teknik.v40i1.23058
  16. V.V. Lizunov, I.M. Zabolotnyy, Ya.V. Vasylyk, I.E. Golentus, and M.V. Ushakov, Integrated diffractometry: achieved progress and new performance capabilities, Prog. Phys. Met., 20, No. 1: 75–95 (2019); https://doi.org/10.15407/ufm.20.01.075
  17. V.B. Molodkin, H.I. Nizkova, Ye.I. Bogdanov, S.I. Olikhovskii, S.V. Dmitriev, M.G. Tolmachev, V.V. Lizunov, Ya.V. Vasylyk, A.G. Karpov, and O.G. Voytok, The physical nature and new capabilities of use of effects of asymmetry of azimuthal dependence of total integrated intensity of dynamical diffraction for diagnostics of crystals with the disturbed surface layer and defects, Usp. Fiz. Met., 18, No. 2: 177–204 (2017); https://doi.org/10.15407/ufm.18.02.177
  18. V.A. Tatarenko and T.M. Radchenko, The application of radiation diffuse scattering to the calculation of phase diagrams of f.c.c. substitutional alloys, Intermetallics, 11, Nos. 11–12: 1319–1326 (2003); https://doi.org/10.1016/s0966-9795(03)00174-2
  19. T.M. Radchenko, V.A. Tatarenko, and S.M. Bokoch, Diffusivities and kinetics of short-range and long-range orderings in Ni–Fe permalloys, Metallofiz. Noveishie Tekhnol., 28, No. 12: 1699–1720 (2006).
  20. T.M. Radchenko and V.A. Tatarenko, Atomic-ordering kinetics and diffusivities in Ni–Fe permalloy, Defect Diffus. Forum, 273–276: 525–530 (2008); https://doi.org/10.4028/www.scientific.net/ddf.273-276.525
  21. T.M. Radchenko, O.S. Gatsenko, V.V. Lizunov, and V.A. Tatarenko, Martensitic α″-Fe16N2-type phase of non-stoichiometric composition: current status of research and microscopic statistical-thermodynamic model, Prog. Phys. Met., 21, No. 4: 580–618 (2020); https://doi.org/10.15407/ufm.21.04.580
  22. T.M. Radchenko, O.S. Gatsenko, V.V. Lizunov, and V.A. Tatarenko, Research trends and statistical-thermodynamic modeling the α″-Fe16N2-based phase for permanent magnets, Fundamentals of Low Dimensional Magnets (Eds. R.K. Gupta, S.R. Mishra, and T.A. Nguyen) (Boca Raton, USA: CRC Press: 2022), Ch. 18, p. 343–365; https://doi.org/10.1201/9781003197492-18
  23. K.H. Levchuk, T.M. Radchenko, and V.A. Tatarenko, High-temperature entropy effects in tetragonality of the ordering interstitial–substitutional solution based on body-centred tetragonal metal, Metallofiz. Noveishie Tekhnol., 43, No. 1: 1–26 (2021); https://doi.org/10.15407/mfint.43.01.0001
  24. V.A. Tatarenko and T.M. Radchenko, Direct and indirect methods of the analysis of interatomic interaction and kinetics of a relaxation of the short-range order in close-packed substitutional (interstitial) solid solutions, Uspehi Fiziki Metallov, 3, No. 2: 111–236 (2002); https://doi.org/10.15407/ufm.03.02.111
  25. G. Priyotomo and I.N.G. Putrayasa, Perilaku sensitasi pada logam stainless steel seri J4 akibat perlakuan panas [Sensitization behavior of J4 series stainless steel due to heat treatment], Widyariset, 4, No. 2: 189–196 (2018) (in Indonesian); https://doi.org/10.14203/widyariset.4.2.2018.123-132
  26. F. Bahfie, B.B. Aji, F. Nurjaman, A. Junaedi, and E.H. Sururiah, The effect of aluminium on the microstructure and hardness of high austenitic manganese steel, IOP Conf. Ser.: Mater. Sci. Eng., 285, No. 1: 012020 (2018); https://doi.org/10.1088/1757-899X/285/1/012020
  27. A.V. Volokitin, I.E. Volokitina, and E.A. Panin, Thermomechanical treatment of stainless steel piston rings, Prog. Phys. Met., 23, No. 3: 411–437 (2022); https://doi.org/10.15407/ufm.23.03.411
  28. S.V. Bobyr, E.V. Parusov, G.V. Levchenko, A.Yu. Borisenko, and I.M. Chuiko, Shear transformation of austenite in steels considering stresses’ effects, Prog. Phys. Met., 23, No. 3: 379–410 (2022); https://doi.org/10.15407/ufm.23.03.379
  29. I.E. Volokitina, A.V. Volokitin, and E.A. Panin, Martensitic transformations in stainless steels, Prog. Phys. Met., 23, No. 4: 684–728 (2022); https://doi.org/10.15407/ufm.23.04.684
  30. M.A. Latypova, S.L. Kuzmin, T.D. Fedorova, and D.N. Lawrinuk, Localization of deformation in the process of large plastic deformations, Prog. Phys. Met., 23, No. 4: 658–683 (2022); https://doi.org/10.15407/ufm.23.04.658