Localization of Deformation in the Process of Large Plastic Deformations

M. A. Latypova$^1$, S. L. Kuzmin$^2$, T. D. Fedorova$^2$, and D. N. Lawrinuk$^2$

$^1$Karaganda Industrial University, Republic Ave., 30; 101400 Temirtau, Kazakhstan
$^2$Rudny Industrial Institute, 50 Let Oktyabrya Str., 38; 111500 Rudny, Kazakhstan

Received 12.08.2022; final version — 13.10.2022 Download PDF logo PDF

Abstract
Experimental studies show that localization of plastic flow occurs both in quasi-static and dynamic deformations of metals. It leads to the formation of selected areas (lines, shear bands), in which the magnitude of plastic deformation and the density of crystal-lattice defects (dislocations) are several times higher than the values of these elements in the surrounding metal. Localization is a manifestation of the instability of plastic deformation, a consequence of fact that in such areas of localized flow, for one reason or another one, plastic deformation proceeds more easily than in the surrounding material. The formation of localization areas reduces the shear strength of metals; so, this effect should be taken into account when modelling elastoplastic deformation of metals. In addition, the formation of areas with a high density of defects can initiate a change in the internal structure of the metal, e.g., the formation of new grain boundaries during intense plastic deformation. Therefore, the study of the mechanisms and conditions of localization of plastic flow is an urgent task of deformable-solid mechanics and is important both for numerical modelling of elastoplastic flows in metals and from the point of view of forecasting the structure and mechanical properties of deformed metal. Localization of plastic flow at the low and moderate strain rates has been studied in detail in a number of works. At the same time, there is no common understanding of the mechanisms and specific features of the localization of plastic flow.

Keywords: plastic deformation, plastic flow, microstructure, mechanical properties, martensite.

DOI: https://doi.org/10.15407/ufm.23.04.658

Citation: M. A. Latypova, S. L. Kuzmin, T. D. Fedorova, and D. N. Lawrinuk, Localization of Deformation in the Process of Large Plastic Deformations, Progress in Physics of Metals, 23, No. 4: 658–683 (2022)


References  
  1. L.B. Zuev, Annalen der Physik, 513, Nos. 11–12: 965 (2001); https://doi.org/10.1002/andp.200151311-1205
  2. G.G. Kurapov, E.P. Orlova, I.E. Volokitina, and A. Turdaliev, J. Chem. Technol. Metall., 51: 451 (2016).
  3. A. Naizabekov and I. Volokitina, Metallurgist, 64: 1029 (2021); https://doi.org/10.1007/s11015-021-01083-3
  4. R.Z. Valiev, Nature, 419: 887 (2003); https://doi.org/10.1038/419887a
  5. P.J. Wray, J. Appl. Phys., 41: 3347 (1970); https://doi.org/10.1063/1.1659423
  6. A.A. Presnyakov, Lokalizaciya Plasticheskoy Deformatsii [Localization of Plastic Deformation] (Moscow: Mechanical Engineering: 1983) (in Russian).
  7. A.A. Presnyakov, Ischeznovenie Defektov Upakovki pri Plasticheskoy Deformatsii Polikristallov [Disappearance of Packaging Defects at a Plastic Deformation of Polycrystals] (Solid State Physics: 1975) (in Russian).
  8. Z. Horita, D.J. Smith, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon, J. Mater. Res., 11: 1880 (1996). https://doi.org/10.1557/jmr.1996.0239
  9. S.M. Walley, Metall. Mater. Trans. A, 38: 2629 (2007); https://doi.org/10.1007/s11661-007-9271-x
  10. Adiabatic Shearing in Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena (Eds. L.E. Murr, K.P. Staudhammer, and M.A. Meyers) (New York and Basel: Marcel Dekker Inc.: 1986).
  11. T.W. Wright, The Physics and Mathematics of Adiabatic Shear Bands (Cambridge: Cambridge University Press: 2002).
  12. Y. Xu, J. Zhang, Y. Bai, and M.A. Meyers, Metall. Mater. Trans. A, 39: 811 (2008); https://doi.org/10.1007/s11661-007-9431-z
  13. H. Tresca, Proc. Inst. Mechanical Engineers, 30: 301 (1878).
  14. W. Johnson, G.L. Baraya, and R.A.C. Slater, Int. J. Mech. Sci., 6: 409 (1964); https://doi.org/10.1016/S0020-7403(64)80001-1
  15. C. Zener and J.H. Hollomon, J. Appl. Phys., 15: 22 (1944) https://doi.org/10.1063/1.1707363
  16. A. Volokitin, A. Naizabekov, and S. Lezhnev, Research of a new method of deformation — pressing–drawing on mechanical properties of steel wire, Proc. of the Metal 2013 — 22nd Int. Conf. on Metallurgy and Materials (15–17 May 2013) (Brno: 2013); p. 376.
  17. A.L. Wingrove and G.L. Wulf, J. Australia Inst. Metals, 18: 167 (1973).
  18. L.S. Magness, Mech. Mater., 17: 147 (1994); https://doi.org/10.1016/0167-6636(94)90055-8
  19. M.L. Wilkins, Int. J. Eng. Sci., 16: 793 (1978); https://doi.org/10.1016/0020-7225(78)90066-6
  20. A.V. Volokitin, K.A. Kambarov, and M.A. Latypova, Metal Sci. Heat Treatment, 63: 341 (2021); https://doi.org/10.1007/s11041-021-00692-8
  21. D. Rittel and Z.G. Wang, Mech. Mater., 40: 629 (2008); https://doi.org/10.1016/j.mechmat.2008.03.002
  22. T. Morikawa, K. Higashida, and T. Sato, ISIJ International, 42: 1527 (2002); https://doi.org/10.2355/isijinternational.42.1527
  23. H. Miyamoto, A. Vinogradov, and R. Yoda, Mater. Trans., 50: 1924 (2009); https://doi.org/10.2320/matertrans.m2009054
  24. L. Bracke, K. Verbeken, and J. Penning, Acta Mater., 57: 1513 (2009); https://doi.org/10.1016/j.actamat.2008.11.036
  25. Q. Xue, X. Liao, G. Gray, Mater. Sci. Eng. A, 410–411: 252 (2005); https://doi.org/10.1016/j.msea.2005.08.022
  26. G. Xiao, N. Tao, and K. Lu, Mater. Sci. Eng. A, 503: 13 (2009); https://doi.org/10.1016/j.msea.2009.01.022
  27. C. Hong, N. Tao, and K. Lu, Acta Mater., 58: 3103 (2010); https://doi.org/10.1016/j.actamat.2010.01.049
  28. D.A. Hughes and N. Hansen, Acta Mater., 48: 2985 (2000); https://doi.org/10.1016/s1359-6454(00)00082-3
  29. Y. Wang, X. Liao, Y. Zhao, E. Lavernia, S. Ringer, Z. Horita, T. Langdon, T. Langdon, and Y. Zhu, Mater. Sci. Eng. A, 527: 4959 (2010); https://doi.org/10.1016/j.msea.2010.04.036
  30. I.E. Volokitina, A.V. Volokitin, E.A. Panin, M.A Latypova, and S.S. Kassymov, Eurasian Phys. Tech. J., 19: 73 (2022).
  31. K. Morii, H. Mecking, and Y. Nakayama, Acta Mater., 33: 379 (1985); https://doi.org/10.1016/0001-6160(85)90080-x
  32. F. Basson and J.H. Driver, Acta Mater., 48: 2101 (2000); https://doi.org/10.1016/s1359-6454(00)00042-2
  33. M.C. Mataya, M.J. Carr, and G. Krauss, Metall. Trans. A, 15: 347 (1984); https://doi.org/10.1007/bf02645121
  34. B. Hwang, S. Lee, Y.C. Kim, N.J. Kim, and D.H. Shin, Mater. Sci. Eng. A, 441: 308 (2006); https://doi.org/10.1016/j.msea.2006.08.045
  35. S. Lezhnev, I. Volokitina, and Т. Koinov, J. Chem. Technol. Metall., 49: 621 (2014).
  36. Q. Xue, M.A. Meyers, and V.F. Nesterenko, Mater. Sci. Eng. A, 384: 35 (2004); https://doi.org/10.1016/j.msea.2004.05.069
  37. H. J. Yang, J. Zhang, Y.B. Xu, and M. Meyers, J. Mater. Sci. Technol., 24: 819 (2008).
  38. I.E. Volokitina, Met. Sci. Heat Treat., 61: 234 (2019); https://doi.org/10.1007/s11041-019-00406-1
  39. I.E. Volokitina, S.N. Lezhnev, E.P. Orlova, and G.G. Kurapov, Key Eng. Mater., 684: 346 (2016); https://doi.org/10.4028/www.scientific.net/kem.684.346
  40. I.E. Volokitina, J. Chem. Technol. Metall., 55, No. 2: 479 (2020).
  41. C. Donadille, R. Valle, P. Dervin, and R. Penelle, Acta Metal., 37: 1547 (1989); https://doi.org/10.1016/0001-6160(89)90123-5
  42. T. Morikawa, K. Higashida, and T. Sato, ISIJ International, 42: 1527 (2002); https://doi.org/10.2355/isijinternational.42.1527
  43. M. Meyers, M. Pérez-Prado, Q. Xue, Y. Xu, and T. Mcnelley, Acta Mater., 51: 1307 (2003); https://doi.org/10.1016/S1359-6454(02)00526-8
  44. I.E. Volokitina, Metal Sci. Heat Treat., 62, Nos. 3–4: 253 (2020); https://doi.org/10.1007/s11041-020-00544-x
  45. H.J. Yang, J. Zhang, Y.B. Xu, and M. Meyers, J. Mater. Sci. Technol., 24: 819 (2008).
  46. K. Higashida and T. Morikawa, SPD structures associated with shear bands in cold-rolled low SFE metals, Nanomaterials by Severe Plastic Deformation (Eds. M. Zehetbauer and R.Z. Valiev) (Wiley: 2004); https://doi.org/10.1002/3527602461.ch9f
  47. J.B. Hirth and J. Lothe, Theory of Dislocations (New York: Wiley: 1982).
  48. N.R. Tao and K. Lu, Scr. Mater., 60: 1039 (2009); https://doi.org/10.1016/j.scriptamat.2009.02.008
  49. G.H. Xiao, N.R. Tao, and K. Lu, Mater. Sci. Eng. A, 513: 13 (2009); https://doi.org/10.1016/j.msea.2009.01.022
  50. C. Hong, N. Tao, X. Huang, and K. Lu, Acta Mater., 58: 3103 (2010); https://doi.org/10.1016/j.actamat.2010.01.049
  51. A.B. Naizabekov, S.N. Lezhnev, and I.E. Volokitina, Metal Sci. Heat Treat., 57: 254 (2015); https://doi.org/10.1007/s11041-015-9870-x
  52. S. Lezhnev, A. Naizabekov, A. Volokitin, I. Volokitina, E. Panin, and M. Knapinski, J. Chem. Technol. Metall., 52: 172 (2017).
  53. I.E. Volokitina and A.V. Volokitin, Phys. Metals Metallogr., 119: 917 (2018); https://doi.org/10.1134/S0031918X18090132
  54. Y.S. Li, N.R. Tao, and K. Lu, Acta Mater., 56: 230 (2008); https://doi.org/10.1016/j.actamat.2007.09.020
  55. I.E. Volokitina, Metal Sci. Heat Treat., 63: 163 (2021); https://doi.org/10.1007/s11041-021-00664-y
  56. A.E. Romanov, Solid State Phenom., 87: 47 (2002); https://doi.org/10.4028/www.scientific.net/ssp.87.47
  57. M.Yu. Gutkin, A.E. Romanov, and P. Klimanek, Solid State Phenom., 87: 113 (2002); https://doi.org/10.4028/www.scientific.net/SSP.87.113
  58. A.N. Tyumentsev, I.Y. Litovchenko, Y.P. Pinzhin, A.D. Korotaev, S.L. Firsova, and V.A. Nesterenkov, Novyy Mekhanizm Lokalizatsii Deformatsii v Austenitnykh Stalyakh. Vliyanie Dvoinikovaniya na Zakonomernosti Pereorientatsii Kristallicheskoi Reshetki v Polosakh Lokalizatsii Deformatsii [A New Mechanism for Localization of Deformation in Austenite Steels. The Effect of Twinning on the Patterns of Reorientation of the Crystal Lattice in the Bands of Deformation Localization], The Physics of Metals and Metallography (2003) (in Russian).
  59. V. Shrinivas, S.K. Varma, and L.E. Murr, Metall. Mater. Trans. A, 26: 661 (1995); https://doi.org/10.1007/bf02663916
  60. H.S. Wang, R.C. Wei, C.Y. Huang, and J.R. Yang, Phil. Mag., 86: 237 (2006); https://doi.org/10.1080/14786430500254271
  61. T. Inamura, K. Takashima, and Y. Higo, Phil. Mag., 83: 935 (2003); https://doi.org/10.1080/0141861031000065338
  62. I.Yu. Litovchenko, A.N. Tyumentsev, N.V. Shevchenko, and A.V. Korznikov, Phys. Metals Metallogr., 112: 412 (2011); https://doi.org/10.1134/s0031918x11040260
  63. A.I. Deryagin, A.I. Uvarov, and V.A. Zavalishin, Obrazovanie α-Martensita pri Plasticheskoy Deformatsii Austenitnoy Stali 10H18AG21 Povyshennoy Stabil’nosti [Formation of α-Martensite during Plastic Deformation of Austenitic Steel 10X18AG21 of Increased Stability], Physics of Metals and Metallography (1997) (in Russian).
  64. V.A. Zavalishin, A.I. Deryagin, and V.V. Sagaradze, Indutsiruyemoye Kholodnoy Deformatsiey Pereraspredelenie Legiruyushchikh Ehlementov i Izmenenie Magnitnykh Svoistv Stabil’nykh Austenitnykh. Nizkotemperaturnoe Mekhanoindutsirovannoye Atomnoye Rassloenie v Khromonikelevykh Stalyakh [The Redistribution of Alloying Elements Induced by Cold Deformation and the Change in the Magnetic Properties of Stable Austenitic. Low-Temperature Mechanoinduced Atomic Stratification in Chromium–Nickel Steels], Physics of Metals and Metallography (2000) (in Russian).
  65. V.M. Bykov, V.A. Likhachev, Yu.A. Nikonov, L.L. Serbina, and L.I. Shibalova, Fragmentirovanie i Dinamicheskaya Rekristallizatsiya Medi pri Bol’shikh i Ochen’ Bol’shikh Plasticheskikh Deformatsiyakh [Fragmentation and Dynamic Recrystallization of Copper under Large and Very Large Plastic Deformations], Physics of Metals and Metallography (1978) (in Russian).
  66. V.V. Lizunov, I.M. Zabolotnyy, Ya.V. Vasylyk, I.E. Golentus, and M.V. Ushakov, Integrated diffractometry: achieved progress and new performance capabilities, Prog. Phys. Met., 20, No. 1: 75 (2019); https://doi.org/10.15407/ufm.20.01.075
  67. V.B. Molodkin, H.I. Nizkova, Ye.I. Bogdanov, S.I. Olikhovskii, S.V. Dmitriev, M.G. Tolmachev, V.V. Lizunov, Ya.V. Vasylyk, A.G. Karpov, and O.G. Voytok, The physical nature and new capabilities of use of effects of asymmetry of azimuthal dependence of total integrated intensity of dynamical diffraction for diagnostics of crystals with the disturbed surface layer and defects, Usp. Fiz. Met., 18, No. 2: 177 (2017); https://doi.org/10.15407/ufm.18.02.177
  68. T.M. Radchenko, O.S. Gatsenko, V.V. Lizunov, and V.A. Tatarenko, Research trends and statistical-thermodynamic modeling the α″-Fe16N2-based phase for permanent magnets, Fundamentals of Low-Dimensional Magnets, (CRC Press: 2022), Ch. 18, p. 343; https://doi.org/10.1201/9781003197492-18
  69. K.H. Levchuk, T.M. Radchenko, and V.A. Tatarenko, High-temperature entropy effects in tetragonality of the ordering interstitial–substitutional solution based on body-centred tetragonal metal, Metallofiz. Noveishie Tekhnol., 43, No. 1: 1 (2021); https://doi.org/10.15407/mfint.43.01.0001
  70. T.M. Radchenko, O.S. Gatsenko, V.V. Lizunov, and V.A. Tatarenko, Martensitic αʺ-Fe16N2-type phase of non-stoichiometric composition: current status of research and microscopic statistical-thermodynamic model, Prog. Phys. Met., 21, No. 4: 580 (2020); https://doi.org/10.15407/ufm.21.04.580
  71. V.Yu. Danilchenko, V.F. Mazanko, O.V. Filatov, and V.E. Iakovlev, Effect of cyclic martensitic γ–ε transformations on diffusion characteristics of cobalt in an iron–manganese alloy, Prog. Phys. Met., 20, No. 3: 426 (2019); https://doi.org/10.15407/ufm.20.03.426
  72. V.Y. Bondar, V.E. Danilchenko, V.F. Mazanko, O.V. Filatov, and V.E. Iakovlev, Effect of cyclic martensitic γ–ε–γ transformations on diffusion characteristics of carbon in an iron–manganese alloy, Prog. Phys. Met., 19, No. 1: 70 (2018); https://doi.org/10.15407/ufm.19.01.070
  73. A. Volokitin, A. Naizabekov I. Volokitina, S. Lezhnev, and E. Panin, Thermomechanical treatment of steel using severe plastic deformation and cryogenic cooling, Mater. Lett., 304: 130598 (2021); https://doi.org/10.1016/j.matlet.2021.130598
  74. A. Volokitin, A. Naizabekov, I. Volokitina, and A. Kolesnikov, J. Chemical Technology and Metallurgy, 57: 809 (2022).
  75. A.B. Nayzabekov and I.E. Volokitina, Effect of the initial structural state of Cr–Mo high-temperature steel on mechanical properties after equal-channel angular pressing, Phys. Metals Metallogr., 120: 177 (2019); https://doi.org/10.1134/s0031918x19020133