Crystal Structure, Phase State, and Magnetoresistive Properties of Nanostructured Thin-Film Systems Based on Permalloy and Noble Metals

I. M. Pazukha, and Yu. O. Shkurdoda

Sumy State University, 2 Rimsky-Korsakov Str., UA-40007 Sumy, Ukraine

Received 15.07.2022; final version — 13.10.2022 Download PDF logo PDF

Abstract
We review and analyse the literature data on the experimental results dealing with the crystal structure, phase state, and magnetoresistive properties of nanostructured thin-film systems based on NixFe1–x permalloy and noble metals prepared by the methods of co-evaporation and layer-by-layer condensation. As shown, regardless of preparation methods, the phase state of systems stays as two-phase one. Upon high-temperature annealing, the formation of solid solutions is possible. As shown, in the case of applying of layer-by-layer condensation method, the value of the magnetoresistive effect depends on the thickness of the magnetic and nonmagnetic layers. In the case of applying the co-evaporation method, the determining parameters are the concentrations of the components and the total thickness of the system. The annealing-temperature effect on magnetoresistive properties of nanostructured thin-film systems based on permalloy and noble metals is analysed.

Keywords: permalloy, noble metal, crystal structure, phase state, magnetoresistance, concentration effect, temperature effect.

DOI: https://doi.org/10.15407/ufm.23.04.613

Citation: I. M. Pazukha, and Yu. O. Shkurdoda, Crystal Structure, Phase State, and Magnetoresistive Properties of Nanostructured Thin-Film Systems Based on Permalloy and Noble Metals, Progress in Physics of Metals, 23, No. 4: 613–628 (2022)


References  
  1. M. Volmer and J. Neamtu, J. Magn. Magn. Mater., 322: 1631 (2010); https://doi.org/10.1016/j.jmmm.2009.06.085
  2. Q.H. Tran, O. Sunjong, J. Jong-Ryul, and K. CheolGi, Sens. Actuat. A, 157: 42 (2010); https://doi.org/10.1016/j.sna.2009.11.033
  3. B.V. Neamtu, I. Chicinas, O. Isnrd, F. Popa and V. Pop, Intemetallics, 19: 19 (2011); https://doi.org/10.1016/j.intermet.2010.09.004
  4. S.A. Nepijko, O.V. Pylypenko, L.V. Odnodvorets, E. Kisker, H.J. Elmers, and G. Schönhense, Appl. Phys A, 111: 557 (2013); https://doi.org/10.1007/s00339-012-7257-z
  5. S. Wang, T. Gao, C. Wang, and J. He, J. Alloy Compd., 554: 405 (1013); https://doi.org/10.1016/j.jallcom.2012.12.004
  6. Y.-T. Chen, J.-Y. Tsen, T.-S. Shey, Y.C. Lin, and S.H. Lin, Thin Solid Films, 544: 602 (2013); https://doi.org/10.1016/j.tsf.2012.12.058
  7. Ia. M. Lytvynenko, I. M. Pazukha, O. V. Pylypenko, and V. V. Bibyk, Metallofiz. Noveishie Tekhnol., 37, No. 10: 1377 (2015); https://doi.org/10.15407/mfint.37.10.1377
  8. A.L.R. Souza, M.R. Araujo, W. Acchar, R.D. Della Pace, A.S. Melo, F. Bohn, and M.A. Correa, Appl. Phys. A, 125: 236 (2019); https://doi.org/10.1007/s00339-019-2534-8
  9. L. Chen, Y. Zhou, C. Lei, and Z.-M. Zhou, Mater. Sci. Eng. B, 172: 101 (2010); https://doi.org/10.1016/j.mseb.2010.04.026
  10. H. Kuru, H. Kockar, and M. Alper, J. Supercond. Nov. Magn., 26: 779 (2013); https://doi.org/10.1007/s10948-012-1979-1
  11. H. Kuru, H. Kockar, and M. Alper, J. Magn. Magn. Mater., 444: 132 (2017); https://doi.org/10.1016/j.jmmm.2017.08.019
  12. M. Kateb, J.T. Gudmundsson, and S. Ingvarsson, J. Magn. Magn. Mater., 538: 16288 (2021); https://doi.org/10.1016/j.jmmm.2021.168288
  13. H. Vigo-Cotrina and A.P. Guimarães, J. Magn. Magn. Mater., 497: 166009 (2020); https://doi.org/10.1016/j.jmmm.2019.166009
  14. B. Dieny, Spin Valves: Magnetoelectronic (Ed. M. Johnson) (Academic Press: 2004), p. 67.
  15. I.V. Cheshko, M.V. Kostenko, V.I. Hrebynakha, A.M. Lohvynov, S.I. Protsenko, J. Nano- Electron Phys., 8: 03041 (2016); https://doi.org/10.21272/jnep.8(3).03041
  16. Ku Hoon Chung, Si Nyeon Kim, Sang Ho Lim, Thin Solid Films, 650: 44 (2018); https://doi.org/10.1016/j.tsf.2018.01.062
  17. U.D. Chacón Hernandez, M.A. Sousa, F.J. Litterst, V.P. Nascimento, and E. Baggio-Saitovitch, J. Magn. Magn. Mater., 390: 114 (2015); https://doi.org/10.1016/j.jmmm.2015.04.094
  18. K. Zhao, Y. Xing, J. Han, J. Feng, W. Shi, B. Zhang, and Z. Zeng, J. Magn. Magn. Mater., 432: 10 (2017); https://doi.org/10.1016/j.jmmm.2017.01.066
  19. W. Tang, Z.-W. Zhou, X.-G. Wang, Y.-Z. Nie, Q.-L. Xia, Z.-M. Zeng, R. Xiong, and G.-H. Guo, J. Magn. Magn. Mater., 482: 274 (2019); https://doi.org/10.1016/j.jmmm.2019.03.071
  20. K. Anand, C. Paul, and S. Kumar, Solid State Commun., 307: 113811 (2020); https://doi.org/10.1016/j.ssc.2019.113811
  21. Z. Wang, B. Dai, Y. Ren, S. Tan, J. Ni, and Jun Li, J. Mater. Sci. Mater., 30: 18328 (2019); https://doi.org/10.1016/j.jmmm.2017.01.066
  22. O.E. da Silva, J.V. de Siqueira, P.R. Kern, W.J.S. Garcia, F. Beck, J.N. Rigue, and M. Carara, J. Magn. Magn. Mater., 451: 507 (2018); https://doi.org/10.1016/j.jmmm.2017.10.043
  23. K.A. O’Grady, L.E. Fernandez-Outon, and G. Vallejo-Fernandez, J. Magn. Magn. Mater., 322: 883 (2010); https://doi.org/10.1016/j.jmmm.2009.12.011
  24. W. Khan, Q. Wang and X. Jin, Materials, 11: 439 (2018); https://doi.org/10.3390/ma11030439
  25. C. Liang, C.P. Gooneratne, Q.X. Wang, Y. Liu, Y. Gianchandani, and J. Kosel, Biosensors, 4: 189 (2014); https://doi.org/10.3390/bios4030189
  26. M. Guruprasad, V. Srinivas, and V.V. Rao, J. Alloys Compd., 484: 851 (2009); https://doi.org/10.1016/j.jallcom.2009.05.058
  27. I.Y. Protsenko, P.K. Mehta, L.V. Odnodvorets, C.J. Panchal, K.V. Tyshchenko, Y.M. Shabelnyk, and N.I. Shumakova, J. Nano- Electron. Phys., 6: 01031 (2014); https://jnep.sumdu.edu.ua/en/component/content/full_article/1168
  28. I.M. Pazukha, Y.O. Shkurdoda, A.M. Chornous, and L.V. Dekhtyaruk, Int. J. Modern. Phys. B, 33, No. 12, 1950113 (2019); https://doi.org/10.1142/S0217979219501133
  29. V.M. Grant, J. Kennedy, P. Murmu, S. Rubanov, and S.V. Chong, J. Magn. Magn. Mater., 473: 125 (2019); https://doi.org/10.1016/j.jmmm.2018.10.072
  30. A.A. Timofeev, S.M. Ryabchenko, A.F. Lozenko, P.A. Trotsenko, O.V. Stogneĭ, A.V. Sitnikov, and S.F. Avdeev, Low Temp. Phys., 33: 974 (2007); https://doi.org/10.1063/1.2747075
  31. I.M. Pazukha, V.V. Shchotkin, and Yu.O. Shkurdoda, Prog. Phys. Met., 20, No. 4: 672 (2019); https://doi.org/10.15407/ufm.20.04.672
  32. C. Wang, Y. Zhang, P. Zhang, Y. Rong, and T.Y. Hsu, J. Magn. Magn. Mater., 320: 683 (2008); https://doi.org/10.1016/j.jmmm.2007.08.007
  33. Yu.O. Tykhonenko-Polishchuk and A.I. Tovstolytkin, J. Nano- Electron. Phys., 9: 02028 (2017); https://doi.org/10.21272/jnep.9(2).02028
  34. Y.O. Shkurdoda, J. Nano- Electron. Phys., 9: 04008 (2017); https://doi.org/10.21272/jnep.9(4).04008
  35. C. Wang, X. Xiao, H. Hu, Y. Rong, and T.Y. Hsy, Phys. B, 392: 72 (2007); https://doi.org/10.1016/j.physb.2006.11.001
  36. Y.K. Yang, L.H. Chen, and Y.H. Chang, J. Magn. Magn. Mater., 189: 195 (1998); https://doi.org/10.1016/S0304-8853(98)00211-X
  37. S. Stavroyiannis, Mater. Sci. Eng., 90: 180 (2002); https://doi.org/10.1016/S0921-5107(01)00943-6
  38. C. Christides, S. Stavroyiannis, and D. Niarchos, J. Appl. Phys., 80: 4512 (1996); https://doi.org/10.1063/1.363823
  39. I.M. Pazukha, D.O. Shuliarenko, O.V. Pylypenko, L.V. Odnodvorets, J. Magn. Magn. Mater., 485: 89 (2019); https://doi.org/10.1016/j.jmmm.2019.04.079
  40. H. Kuru, H. Kockar, M. Alper, J. Mater. Sci.: Mater. Electron., 26: 5009 (2015); https://doi.org/10.1007/s10854-015-3014-3
  41. S. Young, B. Dieny, B, Rodmacq, J. Mouchot, and M.H. Vaudaine, J. Magn. Magn. Mater., 162: 38 (1996); https://doi.org/10.1016/0304-8853(96)00071-6
  42. S. Bouat, S. Auffret, and B. Rodmacq, J. Magn. Magn. Mater., 165: 338 (1997); https://doi.org/10.1016/S0304-8853(96)00547-1
  43. Y.O. Shkurdoda, I.M. Pazukha, and A.M. Chornous, Intermetallics, 93: 1 (2018); https://doi.org/10.1016/j.intermet.2017.10.007
  44. B. Dieny, S.R. Teixiera, B. Rodmacq, C. Cowache, S. Auffret, O. Redon, and J. Pierre, J. Magn. Magn. Mater., 130: 197 (1994); https://doi.org/10.1016/0304-8853(94)90675-0
  45. A. Pohorilyi, A. Kravets, and E. Shypil, Thin Solid Films, 423: 218 (2003); https://doi.org/10.1016/S0040-6090(02)01056-8
  46. E. Rozenberg, A.I. Shames, G. Gorodetsky, J. Pelleg, and I. Felner, J. Magn. Magn. Mater., 203: 102 (1999); https://doi.org/10.1016/S0304-8853(99)00202-4
  47. C. Wang, Z. Guo, Y. Rong, and T.Y. Hsu (Xu Zuyao), J. Magn. Magn. Mater., 277: 273 (2004); https://doi.org/10.1016/j.jmmm.2003.10.033
  48. C. Wang, Y. Rong, and T.Y. Hsu (Xu Zuyao), Mater. Lett., 60: 379 (2006); https://doi.org/10.1016/j.matlet.2005.08.055
  49. I.M. Pazukha, D.O. Shuliarenko, O.V. Pylypenko, S.I. Vorobiov, V. Tkáč, and E. Čižmár, Appl. Phys. A, 127: 306 (2021); https://doi.org/10.1007/s00339-021-04465-1