Current Functional Materials for Wear-Resistant Casting: from Multicomponent Cast Irons to Hybrid High-Boron Alloys

Yu. G. Chabak$^{1,2}$, V. I. Zurnadzhy$^{1}$, M. A. Golinskyi$^{1}$, V. G. Efremenko$^{1,2}$, N. P. Zaichuk$^{3}$, I. Petryshynets$^{2}$, and S. P. Shymchuk$^{3}$

$^1$Pryazovskyi State Technical University, 7 Universytets’ka Str., UA-87555 Mariupol, Ukraine
$^2$Institute of Materials Research of Slovak Academy of Sciences, 47 Watsonova Str., SL-04001 Kosice, Slovakia
$^3$Lutsk National Technical University, 75 Lvivs’ka Str., UA-43018 Lutsk, Ukraine

Received 10.08.2022; final version — 13.10.2022 Download PDF logo PDF

Abstract
The results obtained in the last two decades in the development of functional tribological alloys for the castings working under severe abrasion, erosion, and erosion–corrosion conditions are reviewed. The chemical composition, microstructural features, mechanical and tribological properties of (a) multicomponent cast irons, (b) Fe–C–B alloys with an increased (1–3.5 wt.%) boron content, and (c) hybrid abrasive-resistant alloys designed by combining different alloying principles are analysed. The necessity for the formation of a heterophase structure consisting of multitype hard compounds (carbides, borides, and carboborides) distributed in a secondary-hardened martensite matrix is highlighted as a key approach to reaching an advanced abrasive wear resistance of the cast components. The target structural state can be obtained by simultaneous adding several strong carbide-forming elements (Ti, W, Mo, V, and Cr) taken in the same amount (by analogy with high-entropy alloys). This allows the elements to compete with each other to form different phases during crystallization, which ensures the general refinement of the alloy structural constituents. The advantages of partial replacement of carbon with boron in Fe-based alloys are emphasised that allows the formation of boride and carboboride compounds having much higher hardness compared to carbides. This makes it possible to achieve an advanced level of wear resistance in the absence (or at low content) of alloying elements, benefiting from a significant reduction in the cost of the alloy. The influence of alloying elements on the physical and mechanical properties of boride phases is analysed; prospects are outlined, and novel (‘hybrid’) alloys combining the multialloying principle with high boron content are presented. The main technological approaches applied to improve the mechanical and tribological properties of boron-containing wear-resistant casting are described.

Keywords: multicomponent cast iron, high-boron cast iron, wear resistance, microstructure, boron, carbides, borides.

DOI: https://doi.org/10.15407/ufm.23.04.583

Citation: Yu. G. Chabak, V. I. Zurnadzhy, M. A. Golinskyi, V. G. Efremenko, N. P. Zaichuk, I. Petryshynets, and S. P. Shymchuk, Current Functional Materials for Wear-Resistant Casting: from Multicomponent Cast Irons to Hybrid High-Boron Alloys, Progress in Physics of Metals, 23, No. 4: 583–612 (2022)


References  
  1. K. Holmberg and A. Erdemir, Friction, 5, No. 3: 263 (2017); https://doi.org/10.1007/s40544-017-0183-5
  2. E. Badisch and C. Mitterer, Tribol. Int., 36, No. 10: 765 (2003); https://doi.org/10.1016/S0301-679X(03)00058-6
  3. J. Rendón and M. Olsson, Wear, 267, No. 11: 2055 (2009); https://doi.org/10.1016/j.wear.2009.08.005
  4. N. Ojala, K. Valtonen, V. Heino, M. Kallio, J. Aaltonen, P. Siitonen, and V.T. Kuokkala, Wear, 317, Nos. 1–2: 225 (2014); https://doi.org/10.1016/j.wear.2014.06.003
  5. A.D. Koval’, V.G. Efremenko, M.N. Brykov, M.I. Andrushchenko, R.A. Kulikovskii, and A.V. Efremenko, J. Frict. Wear, 33. No. 1: 39 (2012); https://doi.org/10.3103/S1068366612010072
  6. M. Shah and S.D. Bakshi, Wear, 402, No. 11: 207 (2018); https://doi.org/10.1016/j.wear.2018.02.020
  7. M.О. Vasylyev, S.І. Sidorenko, S.М. Voloshko, and T. Ishikawa, Usp. Fiz. Met., 17, No. 3: 209 (2016); https://doi.org/10.15407/ufm.17.03.209
  8. Y. Chabak, V. Efremenko, V. Zurnadzhy, V. Puchy, I. Petryshynets, B. Efremenko, V. Fedun, K. Shimizu, I. Bogomol, V. Kulyk, and D. Jakubeczyova, Metals, 12, No. 2: 218 (2022); https://doi.org/10.3390/met12020218
  9. Y.X. Ye, C.Z. Liu, H. Wang, and T.G. Nieh, Acta Mater., 147: 78 (2018); https://doi.org/10.1016/j.actamat.2018.01.014
  10. D. Zhang, C. Kenel, and D.C. Dunand, Acta Mater., 221: 117420 (2021); https://doi.org/10.1016/j.actamat.2021.117420
  11. Y.G. Chabak, V.I. Fedun, K. Shimizu, V.G. Efremenko, V.I. Zurnadzhy, and K. Shimizu, Probl. At. Sci. Technol., 104, No. 4: 100 (2016).
  12. M.O. Vasylyev, B.M. Mordyuk, S.M. Voloshko, V.I. Zakiyev, A.P. Burmak, and D. V. Pefti, Metallofiz. Noveishie Tekhnol., 41, No. 11: 1499 (2019) (in Ukrainian); https://doi.org/10.15407/mfint.41.11.1499
  13. Z.A. Duriagina, M.R. Romanyshyn, V.V. Kulyk, T.M. Kovbasiuk, A.M. Trostianchyn, and I.A. Lemishka, J. Achiev. Mater. Manuf. Eng., 100, No. 2: 49 (2020); https://doi.org/10.5604/01.3001.0014.3344
  14. H.Q. Wu, M. Hashimoto, N. Sasaguri, and Y. Matsubara, Jpn. Foundry Eng. Soc., 68, No. 8: 637 (1996) (in Japanese); https://doi.org/10.11279/jfes.68.637
  15. H. Wu, N. Sasaguri, M. Hashimoto, and Y. Matsubara, Jpn. Foundry Eng. Soc., 69, No. 11: 917 (1997); https://doi.org/10.11279/jfes.69.917
  16. M. Hashimoto, O. Kubo, and Y. Matsubara, ISIJ Int., 44, No. 2: 372 (2004); https://doi.org/10.2355/isijinternational.44.372
  17. Y. Yokomizo, N. Sasaguri, K. Nanjo, and Y. Matsubara, Jpn. Foundry Eng. Soc., 74, No. 1: 9 (2002) (in Japanese); https://doi.org/10.11279/jfes.74.9
  18. Y. Matsubara, Research and Development of Abrasion Wear Resistant Cast Alloys for Rolls of Rolling and Pulverizing Mills (Kurume: 2002), p. 30.
  19. W.M. Pasini, M.R. Belle, L. Pereira, R.F. do Amaral, and V.K. de Barcellos, Mater. Res., 24, No. 2: e20200398 (2021); https://doi.org/10.1590/1980-5373-MR-2020-0398
  20. Y. Matsubara, N. Sasaguri, and K. Shimizu, Wear, 250, Nos. 1–12: 502 (2001); https://doi.org/10.1016/S0043-1648(01)00599-3
  21. J. Opapaiboon, M.S.N. Ayudhaya, P. Sricharoenchai, S. Inthidech, and Y. Matsubara, Mater. Trans., 60, No. 2: 346 (2019); https://doi.org/10.2320/matertrans.M2018318
  22. J. Opapaiboon, P. Sricharoenchai, S. Inthidech, and Y. Matsubara, Mater. Trans., 56, No. 5: 720 (2015); https://doi.org/10.2320/matertrans.M2015001
  23. S. Inthidech and Y. Matsubara, Int. J. Metalcast., 14, No. 1: 132 (2020); https://doi.org/10.1007/s40962-019-00343-y
  24. Y.P. Wang, D.Y. Li, L. Parent, and H. Tian, Wear, 271, Nos. 9–10: 1623 (2011); https://doi.org/10.1016/j.wear.2010.12.029
  25. Y. Zhang, K. Shimizu, X. Yaer, K. Kusumoto, and V.G. Efremenko, Wear, 390–391: 135 (2017); https://doi.org/10.1016/j.wear.2017.07.017
  26. V.G. Efremenko, K. Shimizu, A.P. Cheiliakh, T.V. Pastukhova, Yu.G. Chabak, and K. Kusumoto, Int. J. Miner., Metall. Mater., 23, No. 6: 645 (2016); https://doi.org/10.1007/s12613-016-1277-1
  27. K. Kusumoto, K. Shimizu, V.G. Efremenko, H. Hara, M. Shirai, J. Ito, M. Hatate, Y. Gaqi, and R.H. Purba, Wear, 426–427: 122 (2019); https://doi.org/10.1016/j.wear.2019.01.108
  28. Y. Zhang, K. Shimizu, K. Kusumoto, K. Tamura, H. Hara, and J. Ito, Mater. Trans., 58, No. 6: 927 (2017); https://doi.org/10.2320/matertrans.F-M2017810
  29. T. Meebupha, S. Inthidec, P. Sricharoenchai, and Y. Matsubara, Mater. Trans, 58, No. 4: 655 (2017); https://doi.org/10.2320/matertrans.M2016396
  30. Konstrukcionnye Materialy: Spravochnik [Structural Materials: Handbook] (Ed. B.N. Arzamasov) (Moskva: Mashinostroenie: 1990) (in Russian).
  31. T. Sasaki, T. Yakou, M. Umemoto, and Y. Todaka, Wear, 260, Nos. 9–10: 1090 (2006); https://doi.org/10.1016/j.wear.2005.07.010
  32. G. Shafirstien, M. Bamberger, M. Langohr, and F. Maisenhalder, Surf. Coat. Technol., 45, Nos. 1–3: 417 (1991); https://doi.org/10.1016/0257-8972(91)90251-Q
  33. I.R. Shein, N.I. Medvedeva, and A.L. Ivanovskii, Physica B, 371, No. 1: 126 (2006); https://doi.org/10.1016/j.physb.2005.10.093
  34. U. Sen, S. Sen, and F. Yilmaz, J. Mater. Process. Technol., 148, No. 1: 1 (2004); https://doi.org/10.1016/j.jmatprotec.2004.01.015
  35. L.J. Xu, G.S. Zhang, J.W. Li, Z.W. Dong, and S.Z. Wei, Adv. Mater. Res., 189–193: 3968 (2011); https://doi.org/10.4028/www.scientific.net/AMR.189-193.3968
  36. H. Yang, X.X. Wang, and J.B. Qu, J. Iron Steel Res. Int., 21, No. 8: 787 (2014); https://doi.org/10.1016/S1006-706X(14)60142-4
  37. Y.X. Li, Z.L. Liu, and X. Chen, Int. J. Cast Met. Res., 21, Nos. 1–4: 67 (2008); https://doi.org/10.1179/136404608X361684
  38. V.G. Efremenko, K.M. Wu, K. Shimizu, I. Petryshynets, B.V. Efremenko, H. Halfa, Yu.G. Chabak, A.A. Malyshevskyi, and V.I. Zurnadzy, Practical Metallography, 57, No. 10: 714 (2020); https://doi.org/10.3139/147.110683
  39. Y. Ma, Y. Liu, J. Li, H. Zhang, and H. Yang, Int. J. Mater. Res., 106, No. 2: 151 (2015); https://doi.org/10.3139/146.111158
  40. H. Baker, ASM Handbook Volume 3 (ASM International: Materials Park (OH): 1992) p. 281.
  41. Benxi Iron & Steel Co. Boron Steel, 2. (Beijing: Metallurgical Industry Press: 1977) (in Chinese).
  42. C. Guo and P.M. Kelly, Mater. Sci. Eng. A, 352, Nos. 1–2: 40 (2003); https://doi.org/10.1016/S0921-5093(02)00449-5
  43. N. Filonenko and O. Galdina, Phys. Chem. Solid State, 17, No. 2: 251 (2016); https://doi.org/10.15330/pcss.17.2.251-255
  44. O.K. von Goldbeck, Iron-Binary Phase Diagramms (Berlin–Heidelberg: Springer-Verlag: 1982); https://doi.org/10.1007/978-3-662-08024-5_8
  45. C. Kapfenberger, B. Albert, R. Pottgen, and H. Huppertz, Zeitschrift fur Kristallographie-Crystalline Materials, 221, Nos. 5–7: 477 (2006); https://doi.org/10.1524/zkri.2006.221.5-7.477
  46. U. Sen, S. Sen, S. Koksal, and F. Yilmaz, Mater. Des., 26, No. 2: 175 (2005); https://doi.org/10.1016/j.matdes.2004.05.015
  47. S. Liu, X. Bian, J. Liu, J. Wang, M. Yu, Y. Yang, and R. Fan, Intermetallics, 94: 186 (2018); https://doi.org/10.1016/j.intermet.2017.12.027
  48. J. Lentz, A. Ruttger, and W. Theisen, Mater. Charact., 135: 192 (2018); https://doi.org/10.1016/j.matchar.2017.11.012
  49. D.W. Yi, J.D. Xing, H.G. Fu, Z.Y. Zhang, J. Chen, J.J. Zhang, J.H. Peng, and Y.P. Shi, China Foundry, 14, No. 4: 272 (2017); https://doi.org/10.1007/s41230-017-6119-x
  50. V.A. Barinov, V.A. Curin, S.I. Novikov, I.R. Shein, and V.T. Surikov, Fiz. Met. Metalloved., 103, No. 5: 497 (2007) (in Russian).
  51. A. Gueddouh, B. Bentria, Y. Bourourou, and S. Maabed, Materials Science-Poland, 34, No. 3: 503 (2016); https://doi.org/10.1515/msp-2016-0078
  52. L.J. Xu, B.Y. Li, J.W. Li, G.S. Zhang, and S.Z. Wei, Appl. Mech. Mater., 117–119: 1406 (2011); https://doi.org/10.4028/www.scientific.net/AMM.117-119.1406
  53. D. Yi, J. Xing, Z. Zhang, H. Fu, and C. Yang, Tribol. Lett., 54, No. 2: 107 (2014); https://doi.org/10.1007/s11249-014-0314-3
  54. S. Ma and J. Zhang, Rev. Adv. Mater. Sci., 44, No. 1: 54 (2016);
  55. K.D. Lakeland, E. Graham, and A. Heron, Mechanical Properties and Microstructures of a Series of Fe–C–B Alloys (15 Jan. 1992, Australia) (Brisbane: 1992).
  56. J. Lentz, A. Rottger, and W. Theisen, Acta Mater., 119: 80 (2016); https://doi.org/10.1016/j.actamat.2016.08.009
  57. O.V. Sukhova, Phys. Chem. Solid State, 21, No. 2: 355 (2020); https://doi.org/10.15330/pcss.21.2.355-360
  58. J. Lentz, A. Rottger, and W. Theisen, Acta Mater., 99: 119 (2015); https://doi.org/10.1016/j.actamat.2015.07.037
  59. X. Chen and Y. Li, Mater. Sci. Eng. A, 528, No. 2: 770 (2010); https://doi.org/10.1016/j.msea.2010.09.092
  60. H. Fu, X. Song, Y. Lei, Z. Jiang, J. Yang, J. Wang, and J. Xing, Met. Mater. Int., 15, No. 3: 345 (2009); https://doi.org/10.1007/s12540-009-0345-8
  61. C.Q. Guo, C.D. Wang, X.P. Liu, and P.M. Kelly, China Foundry, 5, No. 1: 28 (2008).
  62. X. Ren, H. Fu, J. Xing, and Y. Yi, Mater. Sci. Eng. A, 742: 617 (2019); https://doi.org/10.1016/j.msea.2018.10.087
  63. H. Fu, Foundry, 54, No. 9: 859 (2005); https://doi.org/10.1007/s00101-005-0914-2
  64. D. Yi, Z. Zhang, H. Fu, and C. Yang, J. Mater. Eng. Perform., 23: 673 (2014); https://doi.org/10.1007/s11665-013-0787-5
  65. H. Fu, Q. Xiao, J. Kuang, Z. Jiang, and J. Xing, Mater. Sci. Eng. A, 466, Nos. 1–2: 160 (2007); https://doi.org/10.1016/j.msea.2007.02.032
  66. H. Fu and Z. Jiang, Acta Metall. Sin., 42, No. 5: 545 (2006) (in Chinese); https://doi.org/10.3321/j.issn:0412-1961.2006.05.020
  67. Y.X. Li, Z.L. Liu, and X. Chen, Int. J. Cast. Met. Res., 21, Nos. 1–4: 67 (2008); https://doi.org/10.1179/136404608X361684
  68. Z. Liu, Y. Li, X. Chen, and K. Hu, Mater. Sci. Eng. A, 486, Nos. 1–2: 112 (2008); https://doi.org/10.1016/j.msea.2007.10.017
  69. M. Yue, F. Han-guang, M. Shang-lin, and L. Yong-ping, Materwiss Werksttech, 45, No. 10: 912 (2014); https://doi.org/10.1002/mawe.201400252
  70. J. Zhang, J. Liu, H. Liao, M. Zeng, and S. Ma, J. Mater. Res. Technol., 8, No. 6: 6308 (2019); https://doi.org/10.1016/j.jmrt.2019.09.004
  71. L. Feng and L. Zhenhua, Mater. Res. Express, 7: 016551 (2020); https://doi.org/10.1088/2053-1591/ab65e9
  72. H.G. Fu, Y.P. Lei, J.D. Xing, and L.M. Huang, Ironmaking Steelmaking, 35, No. 5: 371 (2008); https://doi.org/10.1179/174328108X271484
  73. H. Fu, D. Zou, Z. Jiang, J. Yang, J. Wang, and J. Xing, Mater. Manuf. Processes, 23, No. 5: 469 (2008); https://doi.org/10.1080/10426910802103775
  74. H.G. Fu, D.M. Fu, and J.D. Xing, Mater. Manuf. Processes, 23, No. 2: 123 (2008); https://doi.org/10.1080/10426910701774353
  75. H.G. Fu, Zhuzao (Foundry), 55, No. 3: 292 (2006);
  76. S. Ma, J. Xing, H. Fu, D. Yi, Y. Li, J. Zhang, B. Zhu, and Y. Gao, Mater. Chem. Phys., 132, Nos. 2–3: 977 (2012); https://doi.org/10.1016/j.matchemphys.2011.12.044
  77. G. Liu, J. Xing, S. Ma, Y. He, H. Fu, Y. Gao, Y. Wang, and Y. Wang, Metall. Mater. Trans. A, 46, No. 5: 1900 (2015); https://doi.org/10.1007/s11661-015-2820-9
  78. X. Zhang, W. Chen, and H. Luo, Tribol. Lett., 66, No. 3: 1 (2018); https://doi.org/10.1007/s11249-018-1066-2
  79. S. Ma, J. Xing, H. Fu, D. Yi, X. Zhi, and Y. Li, Surf. Coat. Technol., 204, No. 14: 2208 (2010); https://doi.org/10.1016/j.surfcoat.2009.12.010
  80. S. Ma, J. Xing, Y. He, H. Fu, Y. Li, and G. Liu, Acta Mater., 115: 392 (2016); https://doi.org/10.1016/j.actamat.2016.06.016
  81. Y. Wang J. Xing S. Ma G. Liu Y. He D. Yang, and Y. Bai, Corros. Sci., 98: 240 (2015); https://doi.org/10.1016/j.corsci.2015.05.039
  82. S. Ma, J. Xing, D. Yi, H. Fu, J. Zhang, Y. Li, Z. Zhang, G. Liu, and B. Zhu, Surf. Coat. Technol., 205, Nos. 21–22: 4902 (2011); https://doi.org/10.1016/j.surfcoat.2011.04.101
  83. S. Ma, J. Xing, H. Fu, Y. Gao, and J. Zhang, Acta Mater., 60, No. 3: 831 (2012); https://doi.org/10.1016/j.actamat.2011.11.004
  84. Y. Jian, Z. Huang, J. Xing, X. Liu, L. Sun, B. Zheng, and Y. Wang, Wear, 362–363: 68 (2016); https://doi.org/10.1016/j.wear.2016.04.029
  85. L.I. Musen, F.U. Shaoli, X.U. Wandong, and Z.R.Y. Ruihuang, Acta. Metall. Sin., 31, No. 5: 201 (1995).
  86. S. Ma, J. Zhang, and S. Ma, Mater. Test., 58, No. 2: 127 (2016); https://doi.org/10.3139/120.110834
  87. D. Yi, J. Xing, S. Ma, H. Fu, W. Chen, Y. Li, J. Yan, J. Zhang, Z. Liu, and J. Zhu, Tribol. Lett., 42, No. 1: 67 (2011); https://doi.org/10.1007/s11249-011-9748-z
  88. D. Yi, J. Xing, H. Fu, H. Fu, Z. Zhang, J. Zhang, C. Yang, S. Ma, and Y. Li, Tribol. Lett., 58, No. 2: 1 (2015); https://doi.org/10.1007/s11249-015-0501-x
  89. J.-C. Kuang, H. Fu, C. Ye., Y.-Q. Liu, and Y.-P. Chen, Journal of Sichuan University (Engineering Science Edition), 38, No. 4: 105 (2006).
  90. Z.L. Liu, X. Chen, Y.X. Li, and K.H. Hu, J. Iron Steel Res. Int., 16: 37 (2009); https://doi.org/10.1016/S1006-706X(09)60041-8
  91. H. Fu, Q. Xiao, K. Qiang, J. Jiacai, X. Jiang, X. Zhiqiang, and J. Xing, Mater. Sci. Eng., 466: 160 (2007); https://doi.org/10.1016/j.msea.2007.02.032
  92. Z. Liu, Y. Li, X. Chen, and K. Hu, Foundry, 56, No. 4: 400 (2007).
  93. X. Shi, Y. Jiang, and R. Zhou, J. Iron Steel Res. Int., 23, No. 11: 1226 (2016); https://doi.org/10.1016/S1006-706X(16)30180-7
  94. J. Zhang, Y. Gao, J. Xing, S. Ma, D. Yi, L. Liu, and J. Yan, J. Mater. Eng. Perform., 20, No. 9: 1658 (2011); https://doi.org/10.1007/s11665-010-9809-8
  95. L. He, Y. Liu, J. Li, and B. Li, Mater. Des., 36: 88 (2012); https://doi.org/10.1016/j.matdes.2011.10.043
  96. J. Zhang, Y. Gao, J. Xing, X. Wei, S. Ma, and B. Che, Tribol. Trans., 56, No. 3: 461 (2013); https://doi.org/10.1080/10402004.2012.759304
  97. D. Yi, J. Xing, S. Ma, H. Fu, W. Chen, Y. Li, J. Yan, J. Zhang, Z. Liu, and J. Zhu, Tribol. Lett., 42: 67 (2011); https://doi.org/10.1007/s11249-011-9748-z
  98. S. Ma, J. Xing, G. Liu, D. Yi, H. Fu, J. Zhang, and Y. Li, Mater. Sci. Eng. A, 527, No. 26: 6800 (2010); https://doi.org/10.1016/j.msea.2010.07.066
  99. J. Lentz, A. Ruttger, F. Grozwendt, and W. Theisen, Mater. Des., 156: 113 (2018); https://doi.org/10.1016/j.matdes.2018.06.040
  100. Y. Jian, Z. Huang, J. Xing, and B. Wang, Mater. Charact., 110: 138 (2015); https://doi.org/10.1016/j.matchar.2015.10.017
  101. Z. Huang, J. Xing, and C. Guo, Mater. Des., 31, No. 6: 3084 (2010); https://doi.org/10.1016/j.matdes.2010.01.003
  102. I. Goldfarb, W.D. Kaplan, S. Ariely, and M. Bamberger, Philos. Mag. A, 72, No. 4: 963 (1995); https://doi.org/10.1080/01418619508239947
  103. C.T. Zhou, J.D. Xing, B. Xiao, J. Feng, X.J. Xie, and Y.H. Chen, Comput. Mater. Sci., 44, No. 4: 1056 (2009); https://doi.org/10.1016/j.commatsci.2008.07.035
  104. M.-M. Zhong, C. Huang, and C.-L. Tian, Int. J. Mod. Phys. B, 30: 1650201 (2016); https://doi.org/10.1142/S0217979216502015
  105. B. Wang, D.Y. Wang, Z. Cheng, X. Wang, and Y.X. Wang, Chem. Phys. Chem., 14: 1245 (2013); https://doi.org/10.1002/cphc.201201009
  106. P. Christodoulou and N. Calos, Mater. Sci. Eng. A, 301: 103 (2001); https://doi.org/10.1016/S0921-5093(00)01808-6
  107. J. Lentz, A. Ruttger, and W. Theisen, Steel Res. Int., 91, No. 5: 103 (2019); https://doi.org/10.1002/srin.201900416
  108. X. Wei, Z. Chen, J. Zhong, L. Wang, W. Yang, and Y. Wang, Comput. Mater. Sci., 147: 322 (2018); https://doi.org/10.1016/j.commatsci.2018.02.001
  109. Y. Jian, Z. Huang, J. Xing, X. Guo, Y. Wang, and Z. Lv, Tribol. Int., 103: 243 (2016); https://doi.org/10.1016/j.triboint.2016.07.008
  110. Y. Yi, J. Xing, Y. Lu, Y. Gao, H. Fu, L. Yu, M. Wan, and Q. Zheng, Wear, 408: 160 (2018); https://doi.org/10.1016/j.wear.2018.05.014
  111. Y. Yi, J. Xing, M. Wan, L. Yu, Y. Lu, and Y. Jian, Mater. Sci. Eng. A, 708: 274 (2017); https://doi.org/10.1016/j.msea.2017.09.135
  112. Y. Liu, B. Li, J. Li, L. He, S. Gao, and T.G. Nieh, Mater. Lett., 64, No. 11: 1299 (2010); https://doi.org/10.1016/j.matlet.2010.03.013
  113. W. Hartono, S. Aso, S. Goto, and Y. Komatsu, Int. J. Soc. Mater. Eng. Resour., 10, No. 1: 99 (2002); https://doi.org/10.5188/ijsmer.10.99
  114. S. Ma, J. Xing, S. Guo, Y. Bai, H. Fu, P. Lyu, Z. Huang, and W. Chen, Mater. Chem. Phys., 199: 356 (2017); https://doi.org/10.1016/j.matchemphys.2017.07.023
  115. Z. Huang, J. Xing, and L. Lv, Mater. Charact., 75: 63 (2013); https://doi.org/10.1016/j.matchar.2012.09.007
  116. X. Ren, L. Han, H. Fu, and J. Wang, Materials, 14, No. 13: 3709 (2021); https://doi.org/10.3390/ma14133709
  117. M. Frotscher, W. Klein, J. Bauer, C.-M. Fang, J.-F. Halet, A. Senyshyn, C. Baehtz, and B. Albert, Zeitschrift für Anorganische und Allgemeine Chemie, 633, No. 15: 2626 (2007); https://doi.org/10.1002/zaac.200700376
  118. H. Wang and T. Wang, Mater. Lett., 285: 129035 (2021); https://doi.org/10.1016/j.matlet.2020.129035
  119. Z. Yu, H.G. Fu, Y.H. Jiang, Q.H. Cen, Y.P. Lei, R. Zhou, and H.X. Guo, Materialwiss. Werkstofftech., 43, No. 12: 1080 (2012); https://doi.org/10.1002/mawe.201200058
  120. S. Ma, W. Pan, J. Xing, S. Guo, H. Fu, and P. Lyu, Mater. Charact., 132: 1 (2017); https://doi.org/10.1016/j.matchar.2017.08.001
  121. X. Shi, Y. Jiang, Z. Li, and J. Hu, Trans. Indian Inst. Met., 69: 10 (2016); https://doi.org/10.1007/s12666-016-0839-2
  122. Q. Cen and H. Fu, Materialwiss. Werkstofftech., 44, No. 7: 612 (2013); https://doi.org/10.1002/mawe.201300090
  123. J. A. Jimenez, G. GonzalezDncel, and O. A. Ruano, Adv. Mater., 7, No. 2: 130 (1995); https://doi.org/10.1002/adma.19950070205
  124. C. Xiang, L. Yanxiang, W. Zhisheng, Z. Huawei, and L. Yuan, Rare Met. Mater. Eng., 47, No. 3: 803 (2018).
  125. V.G. Efremenko, K. Shimizu, A.P. Cheiliakh, T.V. Kozarevs’ka, Y.G. Chabak, H. Hara, and K. Kusumoto, J. Frict. Wear, 34, No. 6: 466 (2013); https://doi.org/10.3103/S1068366613060068
  126. A. Bedolla-Jacuinde, R. Correa, J. G. Quezada, and C. Maldonado, Mater. Sci. Eng. A, 398, Nos. 1–2: 297 (2005); https://doi.org/10.1016/j.msea.2005.03.072
  127. K. Kusumoto, K. Shimizu, X. Yaer, Y. Zhang, Y. Ota, and J. Ito, Wear, 376: 22 (2017); https://doi.org/10.1016/j.wear.2017.01.096
  128. J. Lu, J. Zhao, and L. Fenghua, Metall. Mater. Trans. A, 53: 1 (2022); https://doi.org/10.1007/s11661-022-06718-x
  129. Y.F. Zhou, Y.L. Yang, D. Li, J. Yang, Y.W. Jiang, X.J. Ren, and Q.X. Yang, Weld. J., 91, No. 8: 229 (2012).
  130. R.N. Jia, T.Q. Tu, K.H. Zheng, Z.B. Jiao, and Z.C. Luo, Mater. Today Commun., 29: 102906 (2021); https://doi.org/10.1016/j.mtcomm.2021.102906
  131. Yu.G. Chabak and V.G. Efremenko, Metallofiz. Noveishie Tekhnol., 34: 1205 (2012).
  132. Yu.G. Chabak, K. Shimizu, V.G. Efremenko, M.A. Golinskyi, K. Kusumoto, V.I. Zurnadzhy, and A.V. Efremenko, Int. J. Miner. Metall. Mater., 29 No. 1: 78 (2022); https://doi.org/10.1007/s12613-020-2135-8