Electric Arc Methods to Synthesize Carbon Nanostructures

Z. A. Matysina$^1$, Ol. D. Zolotarenko$^{1,2}$, M. Ualkhanova$^3$, O. P. Rudakova$^{1,2}$, N. Y. Akhanova$^{3,4}$, An. D. Zolotarenko$^{1,2}$, D. V. Shchur$^1$, M. T. Gabdullin$^4$, N. A. Gavrylyuk$^2$, O. D. Zolotarenko$^1$, M. V. Chymbai$^{1,2}$, and I. V. Zagorulko$^5$

$^1$I. M. Frantsevich Institute for Problems of Materials Science of the N.A.S. of Ukraine, 3, Academician Krzhizhanovsky Str., UA-03142 Kyiv, Ukraine
$^2$O. O. Chuiko Institute of Surface Chemistry of the N.A.S. of Ukraine, 17 General Naumov Str., UA-03164 Kyiv, Ukraine
$^3$Al-Farabi Kazakh National University, 71 Al-Farabi Ave., 050040 Almaty, Kazakhstan
$^4$Kazakh–British Technical University, 59 Tole bi Str., 050000 Almaty, Kazakhstan
$^5$G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received 22.02.2022; final version — 08.07.2022 Download PDF logo PDF

Abstract
The (mainly authors’) publications on the problems of electric arc synthesis (EAS) of different carbon nanostructures (CNS) are reviewed. EAS of CNS can be carried out in both gas and liquid environments. EAS in a gaseous environment has a number of advantages such as high productivity and speed of the condensation process as well as ease of mode control. However, this method of synthesis has also disadvantages; it requires complex vacuum and cooling systems, which make the installation bulky. In addition, this method does not solve the problem of agglomeration of synthesized CNS and has a synthesis by-product in the form of an incrustation (deposit) on the electrode. EAS in a liquid environment is characterized by a more compact equipment, since it does not need vacuum (the process proceeds at atmospheric pressure) and cooling (the liquid environment plays the role of a heat sink) systems. With this method of synthesis, various types of dielectric liquids are used: from distilled water and liquid nitrogen to hydrocarbon solvents, which can serve as a source of carbon in the synthesis zone. By changing the composition of the liquid phase, it is possible to achieve the synthesis of various types of CNS. In addition, this method involves the using of metal electrodes, which, in addition to a long service life, can act as catalysts. In this case, metal particles can be encapsulated with CNS, forming composites with different magnetic properties. In some works, it was shown that, when metal electrodes are used in the process of EAS in a liquid environment, the mixtures of metal carbides could form. The liquid environment after EAS of CNS is also of scientific interest. Probably, the liquid environment contains new modifications of soluble organic compounds, which are being searched by researchers all over the world. Thus, scientists found that, after EAS in a liquid environment using graphite electrodes, the working solution (С6Н6) changed its colour. This indicates the formation of soluble organic compounds in it. In the review, based on the literature data, a table of modes for the industrial synthesis of single-walled CNS was created, and a list of modes (regimes) for creating defective CNS as a method of increasing the adsorption area of nanoparticles is given. The solutions to important problems of the EAS method are fixed: agglomeration of CNS, problem of deposit formation, productivity improvement.

Keywords: plasma-chemical synthesis, electric arc discharge, carbon nanostructures (CNS), carbon nanoclusters (CNC), carbon nanotubes (СNT), cryogenic media, liquid dielectrics.

DOI: https://doi.org/10.15407/ufm.23.03.528

Citation: Z. A. Matysina, Ol. D. Zolotarenko, M. Ualkhanova, O. P. Rudakova, N. Y. Akhanova, An. D. Zolotarenko, D. V. Shchur, M. T. Gabdullin, N. A. Gavrylyuk, O. D. Zolotarenko, M. V. Chymbai, and I. V. Zagorulko, Electric Arc Methods to Synthesize Carbon Nanostructures, Progress in Physics of Metals, 23, No. 3: 528–559 (2022)


References  
  1. N.S. Anikina, O.Ya. Krivushhenko, D.V. Schur, S.Yu. Zaginajchenko, S.S. Chuprov, K.A. Mil’to, and A.D. Zolotarenko, Proc. IX Int. Conf. ‘Hydrogen Material Science and Chemistry of Metal Hydrides’ (Sept. 5–11, 2005, Sevastopol, Crimea, Ukraine), p. 848 (in Russian).
  2. N.S. Anikina, Z.S. Yu, M.I. Maistrenko, A.D. Zolotarenko, G.A. Sivak and D.V. Schur, Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. Vol. 172 (2005), p. 207.
  3. Z.A. Matysina, S.Yu. Zaginaychenko, and D.V. Schur, Rastvorimost’ Primesey v Metallakh, Splavakh, Intermetallidakh, Fulleritakh [Solubility of Impurities in Metals, Alloys, Intermetallics, Fullerites] (Dnepropetrovsk: Nauka i Obrazovanie: 2006) (in Russian).
  4. N.S. Anikina, D.V. Schur, S.Y. Zaginaichenko, and A.D. Zolotarenko, Proc. 10th Int. Conf. ‘Hydrogen Materials Science and Chemistry of Carbon Nanomaterials’ (Sept. 22–28, 2007, Sudak, Crimea, Ukraine), p. 680.
  5. N.S. Anikina, D.V. Schur, S.Y. Zaginaichenko, A.D. Zolotarenko, and O.Ya. Krivushenko, Proc. 10th Int. Conf. ‘Hydrogen Materials Science and Chemistry of Carbon Nanomaterials’ (Sept. 22–28, 2007, Sudak, Crimea, Ukraine), p. 676.
  6. D.V. Schur, S.Yu. Zaginaichenko, and Z.A. Matysina, Carbon Nanomaterials in Clean Energy Hydrogen Systems. NATO Science Series (Springer: 2008), p. 67; https://doi.org/10.1007/978-1-4020-8898-8_6
  7. D.V. Schur, S.Yu. Zaginaichenko, A.D. Zolotarenko, and T.N. Veziroglu, Carbon Nanomaterials in Clean Energy Hydrogen Systems. NATO Science Series (Springer: 2008), p. 85; https://doi.org/10.1007/978-1-4020-8898-8_7
  8. D.V. Schur, S.Yu. Zaginaichenko, E.A. Lysenko, T.N. Golovchenko, and N.F. Javadov, Carbon Nanomaterials in Clean Energy Hydrogen Systems (Springer: 2008), p. 53; https://doi.org/10.1007/978-1-4020-8898-8_5
  9. A.D. Zolotarenko D.V. Schur, S.Yu. Zaginajchenko, N.S. Anikina, Z.A. Matysina, O.Ya. Krivushchenko, V.V. Skorokhod, An.D. Zolotarenko, and Al.D. Zolotarenko, Abstr. XI Int. Conf. ‘Vodorodnoye Materialovedenie i Khimiya Uglerodnykh Nanomaterialov’ [Hydrogen Materials Science and Chemistry of Carbon Materials] (Yalta, Crimea, Ukraine: 2009), p. 606 (in Russian)
  10. N.A. Gavryljuk, N.E. Ahanova, D.V. Shhur, A.P. Pomytkin, A. Veziroglu, T.N. Veziroglu, M.T. Gabdullin, T.S. Ramazanov, Al.D. Zolotarenko, and An.D. Zolotarenko, Alternative Energy and Ecology (ISJAEE), 1–3: 47 (2021) (in Russian); https://doi.org/10.15518/isjaee.2021.01.004
  11. N.Ye. Akhanova, D.V. Shchur, A.P. Pomytkin, Al.D. Zolotarenko, An.D. Zolotarenko, N.A. Gavrylyuk, M. Ualkhanova, W. Bo, and D. Ang, J. Nanosci. Nanotechnol., 21: 2435 (2021); https://doi.org/10.1166/jnn.2021.18970
  12. A.G. Dubovoj, A.E. Perekos, V.A. Lavrenko, Yu.M. Rudenko, T.V. Efimova, V.P. Zalustkii, T.V. Rushitskaya, A.V. Kotko, Al.D. Zolotarenko, and An.D. Zolotarenko, Nanosistemi, Nanomateriali, Nanotehnologii, 11, No. 1: 131 (2013) (in Russian).
  13. V.A. Lavrenko, I.A. Podchernyaeva, D.V. Shchur, An.D. Zolotarenko, and Al.D. Zolotarenko, Powder Metallurgy and Metal Ceramics, 56, Nos. 9–10: 504 (2018); https://doi.org/10.1007/s11106-018-9922-z
  14. S.Yu. Zaginajchenko, D.V. Schur, M.T. Gabdullin, N.F. Dzhavadov, Al.D. Zolotarenko, An.D. Zolotarenko, A.D. Zolotarenko, S.H. Mamedova, G.D. Omarova, and Z.T. Mamedova, Alternative Energy and Ecology (ISJAEE), Nos. 19–21: 72 (2018) (in Russian).
  15. N.Y. Akhanova, D.V. Shchur, A.P. Pomytkin, Al.D. Zolotarenko, An.D. Zolotarenko, N.A. Gavrylyuk, M. Ualkhanova, W. Bo, and D. Ang, J. Nanosci. Nanotechnol., 21, No. 4: 2446 (2021); https://doi.org/10.1166/jnn.2021.18971
  16. N. Akhanova, S. Orazbayev, M. Ualkhanova, A.Y. Perekos, A.G. Dubovoy, D.V. Schur, Al.D. Zolotarenko, An.D. Zolotarenko, N.A. Gavrylyuk, M.T. Gabdullin, and T.S. Ramazanov, J. Nanosci. Nanotechnol. Applications, 3, No. 3: 1 (2019); https://doi.org/10.18875/2577-7920.3.302
  17. I.V. Korotash, Eh.M. Rudenko, M.M. Nyshchenko, G.P. Prikhod’ko, O.I. Rzheshevska, and N.A. Gavrylyuk, Metallofiz. Noveishie Tekhnol., 29, No. 7: 849 (2007).
  18. S.P. Lykhtorovich, M.M. Nyshchenko, I.E. Galstyan, Eh.M. Rudenko, I.V. Korotash, O.I. Rzheshevska, G.P. Prikhodko, and N.A. Gavrylyuk, Metallofiz. Noveishie Tekhnol., 32, No. 4: 475 (2010).
  19. Y.M. Shulga, V.M. Martynenko, A.V. Krestinin, A.P. Kharitonov, G.I. Davidova, E.I. Knerelman, V.I. Krastev, and D.V. Schur, Int. J. Hydrogen Energy, 36, No. 1: 1349 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.084
  20. D.V. Schur, A.D. Zolotarenko, A.D. Zolotarenko, O.P. Zolotarenko, M.V. Chimbai, N.Y. Akhanova, M. Sultangazina, and E.P. Zolotarenko, Physical Sciences and Technology, 6, Nos. 1–2: 46 (2019). https://doi.org/10.26577/phst-2019-1-p9
  21. G.P. Prihod’ko, N.A. Gavriljuk, L.V. Dijakon, N.P. Kulish, A.V. Melezhik, and Yu.I. Sementsov, Nanosistemi, Nanomateriali, Nanotehnologii, 4: 1081 (2006) (in Russian).
  22. Yu.I. Sementsov, N.A. Gavrilyuk, G.P. Prikhod’ko, A.V. Melezhyk, M.L. Pyatkovsky, V.V. Yanchenko, S.L. Revo, E.A. Ivanenko, and A.I. Senkevich, Chemistry and Biology: 757 (2007).
  23. Yu. Sementsov, N. Gavriluk, T. Aleksyeyeva, and O. Lasarenko, Nanosistemi, Nanomateriali, Nanotehnologii, 5, No. 2: 351 (2007).
  24. Y.I. Sementsov, N.A. Gavriluk, G.P. Prikhod’ko, T.A. Aleksyeyeva, and V.V. Yanchenko, Carbon Nanomaterials in Clean Energy Hydrogen Systems (Springer: 2008), p. 327; https://doi.org/10.1007/978-1-4020-8898-8_39
  25. Yu.M. Shulga, S.A. Baskakov, A.D. Zolotarenko, E.N. Kabachkov, V.E. Muradian, D.N. Voilov, V.A. Smirnov, V.M. Martynenko, D.V. Schur, and A.P. Pomytkin, Nanosistemi, Nanomateriali, Nanotehnologii, 11, No. 1: 161 (2013) (in Russian).
  26. A.A. Volodin, A.D. Zolotarenko, A.A. Bel’mesov, E.V. Gerasimova, D.V. Sсhur, V.R. Tarasov, S.Yu. Zaginaichenko, S.V. Doroshenko, An.D. Zolotarenko, and Al.D. Zolotarenko, Nanosistemi, Nanomateriali, Nanotehnologii, 12, No. 4: 705 (2014).
  27. D.V. Schur, S.Y. Zaginaichenko, and T.N. Veziroglu, Int. J. Hydrogen Energy, 40, No. 6: 2742 (2015); https://doi.org/10.1016/j.ijhydene.2014.12.092
  28. D.V. Schur, S.Y. Zaginaichenko, A.F. Savenko, V.A. Bogolepov, N.S. Anikina, A.D. Zolotarenko, Z.A. Matysina, N. Veziroglu, and N.E. Scryabina, Int. J. Hydrogen Energy, 36, No. 1: 1143 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.087
  29. D.V. Schur and V.A. Lavrenko, Vacuum, 44, No. 9: 897 (1993); https://doi.org/10.1016/0042-207X(93)90247-8
  30. Z.A. Matysina, O.S. Pogorelova, S.Yu. Zaginaichenko, and D.V. Schur, J. Phys. Chem. Solids, 56, No. 1: 9 (1995); https://doi.org/10.1016/0022-3697(94)00106-5
  31. Z.A. Matysina, S.Yu. Zaginaichenko, and D.V. Schur, Int. J. Hydrogen Energy, 21, Nos. 11–12: 1085 (1996); https://doi.org/10.1016/S0360-3199(96)00050-X
  32. Yu.M. Lytvynenko and D.V. Schur, Renewable Energy, 16, No. 1: 753 (1999); https://doi.org/10.1016/S0960-1481(98)00272-9
  33. Z.A. Matysina and D.V. Schur, Russ. Phys. J., 44, No. 11: 1237 (2001); https://doi.org/10.1023/A:1015318110874
  34. Z.A. Matysina, S.Y. Zaginajchenko, D.V. Shhur, A.D. Zolotarenko, Al.D. Zolotarenko, and T.M. Gabdullin, Alternative Energy and Ecology, 13–15: 37 (2017) (in Russian); https://doi.org/10.15518/isjaee.2017.13-15.037-060
  35. Z.A. Matysina, S.Y. Zaginaichenko, D.V. Schur, Al.D. Zolotarenko, An.D. Zolotarenko, and M.T. Gabdullin, Russ. Phys. J., 61, No. 2: 253 (2018); https://doi.org/10.1007/s11182-018-1395-5
  36. Z.A. Matysina, S.Y. Zaginaichenko, D.V. Schur, T.N. Veziroglu, A. Veziroglu, M.T. Gabdullin, Al.D. Zolotarenko, and An.D. Zolotarenko, Int. J. Hydrogen Energy, 43, No. 33: 16092 (2018); https://doi.org/10.1016/j.ijhydene.2018.06.168
  37. D.V. Schur, A. Veziroglu, S.Y. Zaginaychenko, Z.A. Matysina, T.N. Veziroglu, M.T. Gabdullin, T.S. Ramazanov, An.D. Zolotarenko, and Al.D. Zolotarenko, Int. J. Hydrogen Energy, 44, No. 45: 24810 (2019); https://doi.org/10.1016/j.ijhydene.2019.07.205
  38. Z.A. Matysina, N.A. Gavrylyuk, M.Т. Kartel, A. Veziroglu, T.N. Veziroglu, A.P. Pomytkin, D.V. Schur, T.S. Ramazanov, M.T. Gabdullin, An.D. Zolotarenko, Al.D. Zolotarenko, and N.A. Shvachko, Int. J. Hydrogen Energy, 46, No. 50: 25520 (2021); https://doi.org/10.1016/j.ijhydene.2021.05.069
  39. D.V. Shchur, S.Yu. Zaginaichenko, A. Veziroglu, T.N. Veziroglu, N.A. Gavrylyuk, A.D. Zolotarenko, M.T. Gabdullin, T.S. Ramazanov, Al.D. Zolotarenko, and An.D. Zolotarenko, Russ. Phys. J., 64, No. 1: 89 (2021); https://doi.org/10.1007/s11182-021-02304-7
  40. Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Schur, Al.D. Zolotarenko, An.D. Zolotarenko, M.T. Gabdullin, L.I. Kopylova, and T.I. Shaposhnikova, Russ. Phys. J., 61: 2244 (2019); https://doi.org/10.1007/s11182-019-01662-7
  41. S.Yu. Zaginaichenko, Z.A. Matysina, D.V. Schur, and A.D. Zolotarenko, Int. J. Hydrogen Energy, 37, No. 9: 7565 (2012); https://doi.org/10.1016/j.ijhydene.2012.01.006
  42. D.V. Schur, M.T. Gabdullin, V.A. Bogolepov, A. Veziroglu, S.Yu. Zaginaichenko, A.F. Savenko, and K.A. Meleshevich, Int. J. Hydrogen Energy, 41, No. 3: 1811 (2016); https://doi.org/10.1016/j.ijhydene.2015.10.011
  43. D.V. Schur, N.S. Astratov, A.P. Pomytkin, and A.D. Zolotarenko, Proc. Int. Conf. Hydrogen Materials and Chemistry (Sept. 14–20, 2003, Sudak, Crimea, Ukraine), p. 424 (in Russian).
  44. S.A. Tikhotskii, I.V. Fokin, and D.V. Schur, Izv., Phys. Solid Earth, 47, No. 4: 326 (2011); https://doi.org/10.1134/S1069351311030062
  45. V.A. Lavrenko, D.V. Shchur, A.D. Zolotarenko, and A.D. Zolotarenko, Powder Metallurgy and Metal Ceramics, 57, No. 9: 596 (2019); https://doi.org/10.1007/s11106-019-00021-y
  46. An.D. Zolotarenko, Al.D. Zolotarenko, A. Veziroglu, T.N. Veziroglu, N.A. Shvachko, A.P. Pomytkin, N.A. Gavrylyuk, D.V. Schur, T.S. Ramazanov, and M.T. Gabdullin, Int. J. Hydrogen Energy, 47, No. 11: 2781 (2021); https://doi.org/10.1016/j.ijhydene.2021.03.025
  47. G.G. Gnesin and V.V. Skorokhod, Neorganicheskoye Materialovedenie. Materialy i Tekhnologii [Inorganic Materials Science. Materials and Technologies] (Kiev: Naukova Dumka: 2008) (in Russian).
  48. L.V. Radushkevich and V.M. Luk’yanovich, Russ. J. Phys. Chem., 26: 88 (1952) (in Russian).
  49. S. Iijima, Nature, 354: 56 (1991); https://doi.org/10.1038/354056a0
  50. V.A. Bogolepov, D.V. Schur, V.M. Adeev, T.N. Golovchenko, T.V. Voronaya, A.V. Kotko, and E.A. Lysenko, Proc. XI Int. Conf. ‘Hydrogen Materials Science and Chemistry of Carbon Nanomaterials’ (Aug. 25–31, 2009, Yalta, Crimea, Ukraine), p. 406.
  51. Zh.A. Mileeva, V.A. Bogolepov, D.V. Schur, S.Yu. Zaqjnaichenko, V.A. Begenev, I.L. Shabalin, and D.K. Ross, Proc. XI Int. Conf. ‘Hydrogen Materials Science and Chemistry of Carbon Nanomaterials’ (Aug. 25–31, 2009, Yalta, Crimea, Ukraine), p. 746.
  52. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.-H. Lee, S.-G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuser, D. Tomanek, J.E. Fisher, and R.E. Smally, Science, 273, No. 5274: 483 (1996); https://doi.org/10.1126/science.273.5274.483
  53. A. Rao, E. Richter, S. Bandow, B. Chase, P.C. Eklund, K.A. Williams, S. Fang, K.R. Subbaswamy, M. Menon, A. Thess, R.E. Smally, G. Dresselhaus, and M.S. Dresslhaus, Science, 275: 187(1996).
  54. V.Yu. Dolmatov, M.V. Veretennikova, V.A. Marchukov, and V.G. Sushchev, Phys. Solid State, 46, No. 4: 596 (2004).
  55. D.V. Schur, S.Yu. Zaginaichenko, and T.N. Veziroglu, Int. J. Hydrogen Energy, 40, No. 6: 2742 (2015); https://doi.org/10.1016/j.ijhydene.2014.12.092
  56. Bol’shaya Sovetskaya Ehntsiklopediya [Great Soviet Encyclopaedia] (Moscow: Sov. Ehntsiklopediya: 1969–1978) (in Russian).
  57. N. Sano, T. Kikuchi, H. Wang, M. Chhowalla, and G.A.J. Amaratunga, Carbon, 42, No. 1: 95 (2004); https://doi.org/10.1016/j.carbon.2003.10.001
  58. H. Alexandrou, N.S. Wang, and G.A.J. Amaratunga, J. Chem. Phys., 120, No. 2: 1055 (2004); https://doi.org/10.1063/1.1629274
  59. T. Kaneko, T. Okada, and R. Hatakeyama, XXVII ICPIG (Eindhoven, Netherlands: 2005), p. 5.
  60. N. Sano, Mater. Chem. Phys., 88, Nos. 2–3: 235 (2004); https://doi.org/10.1016/j.matchemphys.2004.07.018
  61. O.D. Zolotarenko, O.P. Rudakova, M.T. Kartel, G.O. Kaleniuk, A.D. Zolotarenko, D.V. Shchur, and Yu.O. Tarasenko, Surface, 12, No. 27: 263 (2020) (in Ukrainian); https://doi.org/10.15407/Surface.2020.12.263
  62. D.V. Shchur, Yu.M. Shulga, B.P. Tarasov, and S.Yu. Zaginaichenko, Abstr. Int. Conf. ‘Carbon Nanotubes’ (Apr. 10–11, 2000, Miami, FL, USA), p. 186.
  63. N. Sano, H. Wang, M. Chhowalla, I. Alexandrou, and G.A.J. Amaratunga, Nature, 414: 506 (2001); https://doi.org/10.1038/35107141
  64. A.G. Dubovoy, A.Ye. Perekos, V.A. Lavrenko, Yu.M. Rudenko, T.V. Yefimova, V.P. Zalutskiy, T.V. Ruzhitskaya, A.V. Kotko, Al.D. Zolotarenko, and An.D. Zolotarenko, Nanosistemi, Nanomateriali, Nanotehnologii, 11, No. 6: 131 (2013) (in Russian).
  65. Y. Zheng, M.Nishikita-Gano, C. Xiao, and T. Ando, Jpn. J. Appl. Phys., 41, No. 4A: L408 (2002); https://doi.org/10.1143/JJAP.41.L408
  66. Al.D. Zolotarenko, An.D. Zolotarenko, N.S. Anikina, O.Ya. Krivushchenko, E.I. Golovko, and S.Yu. Zaginaichenko, Proc. XI Int. Conf. ‘Hydrogen Materials Science and Chemistry of Carbon Nanomaterials’ (Aug. 25–31, 2009, Yalta, Crimea, Ukraine), p. 778.
  67. V.A. Lavrenko, S.Yu. Zaginaichenko, N.A. Shvachko, O.V. Milto, V.B. Molodkin, A.E. Perekos, V.M. Nadutov, Yu.A. Tarasenko, Al.D. Zolotarenko, and An.D. Zolotarenko, NATO Science for Peace and Security, Series C. Carbon Nanomaterials in Clean Energy Hydrogen Systems, NATO Science Series (Dordrecht, Netherlands: Springer: 2011), p. 127; https://doi.org/10.1007/978-94-007-0899-0_10
  68. E. Rudakova, S.Yu. Zaginaichenko, A.G. Dubovoy, D.V. Schur, A.E. Perekos, V.P. Zalutskiy, M.M. Divizinyuk, E.V. Azarenko, Yu.A. Tarasenko, An.D. Zolotarenko, and Al.D. Zolotarenko, NATO Science for Peace and Security, Series C. 2010 ARW ‘Carbon Nanomaterials in Clean Energy Hydrogen Systems’. NATO Science Series (Dordrecht, Netherlands: Springer: 2011), p. 137.
  69. S.Yu. Zaginaichenko, A.E. Perekos, D.V. Schur, A.G. Dubovoy, A.D. Zolotarenko, An.D. Zolotarenko, Al.D. Zolotarenko, A.V. Kotko, T.V. Efimova, V.P. Zalutskiy, and T.V. Rugitskaya. Proc. of IX Int. Conf. ‘Heat Transfer, Fluid Mechanics and Thermodynamics’ (July 16–18, 2012, Malta), p. 1720.
  70. Kh.A. Abdullin, M.T. Gabdullin, T.S. Ramazanov, D.G. Batryshev, D.V. Ismailov, and D.V. Shchur, Vestnik KazNU. Phys. Ser., 53, No. 2: 68 (2015) (in Russian); https://bph.kaznu.kz/index.php/zhuzhu/article/view/373
  71. V.A. Lavrenko, I.A. Podchernyaeva, D.V. Shchur, An.D. Zolotarenko, and Al.D. Zolotarenko, Powder Metallurgy and Metal Ceramics, 56, Nos. 9–10: 504 (2018); https://doi.org/10.1007/s11106-018-9922-z
  72. M. Ualkhanova, A.Ye. Perekos, A.G. Dubovoy, D.V. Schur, Al.D. Zolotarenko, An.D. Zolotarenko, N.A. Gavrylyuk, M.T. Gabdullin, T.S. Ramazanov, N. Akhanova, and S. Orazbayev, Nanoscience and Nanotechnology Applications, 3, No. 3: 1 (2019).
  73. X. Li, H. Zhu, B. Jiang, J. Ding, C. Xu, and D. Wu, Carbon, 411: 1645 (2002); https://doi.org/10.1016/S0008-6223(03)00125-8
  74. Ol.D. Zolotarenko, Fіzyko-Khіmіchnі Osoblyvostі Syntezu Me–C Nanokompozytіv na Osnovі Fe ta Ni [Physico-Chemical Features of the Synthesis of Me–C Nanocomposites Based on Fe and Ni] (Thesis of Disser. for Cand. Chem. Sci.) (Kyiv: Institute for Problems of Material Science, N.A.S.U.: 2014) (in Ukrainian).
  75. An.D. Zolotarenko, Al.D. Zolotarenko, D.V. Schur, S.Yu. Zaginaichenko, and A.G. Dubovoy, Proc. XI Int. Conf. ‘Hydrogen Materials Science and Chemistry of Carbon Nanomaterials’ (Aug. 25–31, 2009, Yalta, Crimea, Ukraine), p. 402.
  76. S. Noriaki, C. Tawatchai, K. Tatsuo, and T. Wiwut, J. Appl. Phys., 96, No. 1: 645 (2004); https://doi.org/10.1063/1.1756216
  77. Y.L. Hsin, K.C. Hwang, F.-R. Chen, and J.-J. Kai, Adv. Mater., 13, No. 11: 830 (2001); https://doi.org/10.1002/1521-4095(200106)13:11<830::AID-ADMA830>3.0.CO;2-4
  78. S. Iijima and T. Ichihashi, Nature, 363: 603 (1993); https://doi.org/10.1038/363603a0
  79. M. Chhowalla, K.B.K. Teo, C. Ducati, N.L. Rupesinghe, G.A.J. Amaratunga, A.C. Ferrari, D. Roy, J. Robertson, and W.I. Milne, J. Appl. Phys., 90, No. 10: 5308 (2001); https://doi.org/10.1063/1.1410322
  80. T. Nozaki, Y. Kimura, and K. Okazaki, J. Phys. D: Appl. Phys., 35, No. 21: 2779 (2002); https://doi.org/10.1088/0022-3727/35/21/314
  81. M. Endo, K. Takeuchi, S. Lagrashi, K. Kobori, M. Shiraishi, and H.W. Kroto, J. Phys. Chem. Solids, 54, No. 12: 1841 (1993); https://doi.org/10.1016/0022-3697(93)90297-5
  82. H.M. Cheng, F. Li, G. Su, H.Y. Pan, L.L. He, X. Sun, and M.S. Dresselhaus, J. Appl. Phys. Lett., 72: 3282(1998); https://doi.org/10.1063/1.121624
  83. S.Yu. Zaginaichenko, Al.D. Zolotarenko, An.D. Zolotarenko, D.V. Schur, N.S. Anikina, O.Ya. Krivushchenko, A. Magrez, and M. Baibarac, Proc. XXI Annual Int. Conf. ‘Composites or Nano Engineering’ (July 21–27, 2013, Tenerife, Canary Islands, Spain), p. 913.
  84. H.W. Zhu, X.S. Li, B. Jiang, C.L. Xu, Y.F. Zhu, D.H. Wu, and X.H. Chen, Chem. Phys. Lett., 366: 664(2002); 10.1016/S0009-2614(02)01648-2
  85. N. Sano, H. Wang, I. Alexandrou, M. Chhowalla, K.B.K. Teo, G.A.J. Amaratunga, and K. Iimura, J. Appl. Phys., 92: 2783 (2002); https://doi.org/10.1063/1.1498884
  86. N. Sano, M. Naito, M. Chhowalla, T. Kikuchi, S. Matsuda, K. Iimura, H. Wang, T. Kanki, and G.A.J. Amaratunga, Chem. Phys. Lett., 378, Nos. 1–2: 29 (2003); https://doi.org/10.1016/S0009-2614(03)01246-6
  87. Kh.А. Аbdullin, М.Т. Gabdullin, Т.S. Ramazanov, D.G. Batryshev, D.V. Ismailov, D.V. Schur, and D.S. Kerimbekov, Vestnik KazNU. Phys. Ser., 52, No. 1: 46 (2015) (in Russian); https://bph.kaznu.kz/index.php/zhuzhu/article/view/960
  88. M.V. Antisari, R. Marazzi, and R. Krsmanovic, Carbon, 41, No. 12: 2393 (2003); https://doi.org/10.1016/S0008-6223(03)00297-5
  89. H. Lange, M. Sioda, A. Huczko, Y.Q. Zhu, H.W. Kroto, and D.R.M. Walton, Carbon, 41: 1617(2003); https://doi.org/10.1016/S0008-6223(03)00111-8
  90. L.P. Biro, Z.E. Horvath, L. Szalmas, K. Kertesz, F. Weber, G. Juhasz, G. Radnoczi, and J. Gyulai, Chem. Phys. Lett., 372, Nos. 3–4: 399 (2003); https://doi.org/10.1016/S0009-2614(03)00417-2
  91. J.S. Qiu, Y. Zhou, Z.G. Yang, S.C. Guo, S.C. Tsang, and P.J.F. Harris, Fuel, 79: 1303 (2000); https://doi.org/10.1016/S0016-2361(99)00281-1
  92. J.S. Qiu, F. Zhang, Y. Zhou, H.M. Han, D.S. Hu, S.C. Tsang, and P.J.F. Harris, Fuel, 81: 1509 (2002); https://doi.org/10.1016/S0016-2361(02)00069-8
  93. J.S. Qiu, Y. Zhou, L.N. Wang, and S.C. Tsang, Carbon, 36, No. 4: 465 (1998); https://doi.org/10.1016/S0008-6223(98)90019-7
  94. J.S. Qiu, Y.F. Li, Y.P. Wang, T.H. Wang, Z.B. Zhao, Y. Zhou, F.Li, and H.M. Cheng, Carbon, 41, No. 11: 2170 (2003); https://doi.org/10.1016/S0008-6223(03)00242-2
  95. J.S. Qiu, Y.F. Li, Y. Wang, Z. Zhao, Y. Zhou, and Y. Wang, Fuel, 83: 615 (2004); https://doi.org/10.1016/j.fuel.2003.09.005
  96. A.F. Savenko, M.A. Polishchuk, D.V. Shchur, S.Yu. Zagibaichenko, V.A. Bogolepov, A.P. Pomytkin, and E.A. Kamenetskaya, Nanosistemi, Nanomateriali, Nanotehnologii, 11, No. 1: 141 (2011).
  97. N.S. Koprinarov, M.A. Constantinova, G.V. Pchelarov, and M.V. Marinov, J. Crystal Growth, 171, Nos. 1–2: 111(1997); https://doi.org/10.1016/S0022-0248(96)00453-8
  98. M. Ishigami, J. Cumings, A. Zettl, and S. Chen, Chem. Phys. Lett., 319, Nos. 5–6: 457 (2000); https://doi.org/10.1016/S0009-2614(00)00151-2
  99. H. Lange, K. Saidane, and M. Razafinimanana, J. Physics D: Appl. Phys., 32, No. 9: 1024(1999); https://doi.org/10.1088/0022-3727/32/9/313
  100. N. Sano, J. Nakano, and T. Kanki, Carbon, 42: 667 (2004); https://doi.org/10.1016/j.carbon.2003.12.078
  101. N. Sano and S.I. Ukita, Mater. Chem. Phys., 99, Nos. 2–3: 447 (2006); https://doi.org/10.1016/j.matchemphys.2005.11.019
  102. An.D. Zolotarenko, D.V. Schur, Al.D. Zolotarenko, M.V. Chimbai, O.P. Zolotarenko, and A.D. Zolotarenko, Curr. Trends Chem. Eng. Process Technol., 2018, No. 01: 1 (2018); https://doi.org/10.29011/CTCEPT-103/100003
  103. A.D. Zolotarenko, A.D. Zolotarenko, Al.D. Zolotarenko, G.A. Vojchuk, V.M. Adeev, A.V. Kotko, A.Yu. Koval, S.A. Firstov, D.V. Schur, O.V. Milto, S.Yu. Zaginaichenko, and E.I. Golovko, Proc. IX Int. Conf. ‘Hydrogen Materials Science and Chemistry of Carbon Nanomaterials’ (Sept. 5–11, 2005, Sevastopol, Crimea, Ukraine), p. 1014.
  104. Al.D. Zolotarenko, An.D. Zolotarenko, Al.D. Zolotarenko, S.Yu. Zaginaichenko,V.M. Adeev, D.V. Schur, A.V. Kotko, and E.I. Golovko, Abstr. Int. Conf. ‘Carbon’05’ (Jul. 03–07, 2005, Gyeongju, Korea), p. 90.
  105. J. Prabhuram, T.S. Zhao, C.W. Wong, and J.W. Guo, J. Power Sources, 134: 1 (2004); https://doi.org/10.1016/j.jpowsour.2004.02.021
  106. O.V. Mil’to, A.D. Zolotarenko, Al.D. Zolotarenko, An.D. Zolotarenko, T.I. Shaposhnikova, N.G. Khotynenko, V.M. Adejev, A.V. Kotko, S.Yu. Zaginaichenko, and D.V. Schur, Proc. IX Int. Conf. ‘Hydrogen Materials Science and Chemistry of Carbon Nanomaterials’ (Sept. 5–11, 2005, Sevastopol, Crimea, Ukraine), p. 1074.
  107. T. Matsumoto, T. Komatsu, K. Arai, T. Yamazaki, M. Kijima, H. Shimizu, Y. Takasawa, and J. Nakamura, Chem. Commun., 7: 840 (2004); https://doi.org/10.1039/b400607k
  108. T. Yoshitake, Y. Shimakawa, S. Kuroshima, H. Kimura, T. Ichihashi, Y. Kubo, D. Kasuya, K. Takahashi, F. Kokai, M. Yudasaka, and S. Iijima, Physica B, 323, Nos. 1–4: 124 (2002); https://doi.org/10.1016/S0921-4526(02)00871-2
  109. A.D. Zolotarenko, A.D. Zolotarenko, A.D. Zolotarenko, G.A. Voychuk, V.M. Adeev, A.V. Briefly, A.Yu. Koval, S.A. Firstov, D.V. Schur, O.V. Milto, S.Yu. Zaginaichenko, and E.I. Golovko, Nanosistemi, Nanomateriali, Nanotehnologii, 3, No. 4: 1133 (2005).
  110. An.D. Zolotarenko, Al.D. Zolotarenko, A.E. Perekos, A.G. Dubovoy, A.V. Kotko, T.V. Efimova, V.P. Zalutskiy, T.V. Rugitskaya, and S.Yu. Zaginaichenko, Proc. XI Int. Conf. ‘Hydrogen Materials Science and Chemistry of Carbon Nanomaterials’ (Aug. 25–31, 2009, Yalta, Crimea, Ukraine), p. 772.
  111. A.D. Zolotarenko, A.A. Volodin, D.V. Schur, B.P. Tarasov, Al.D. Zolotarenko, An.D. Zolotarenko, and E.P. Rudakova, Proc. Int. Symposium (Minsk: 2011), p. 286 (in Russian).
  112. O.D. Zolotarenko, O.O. Volodіn, D.V. Schur, B.P. Tarasov, Ol.D. Zolotarenko, An.D. Zolotarenko, and O.P. Rudakova, Abstr. II Conf. Young Scientists ‘Reality and Prospects of Materials Science’ (Kyiv: 2011), p. 137 (in Ukrainian).
  113. D.V. Schur, A.G. Dubovoy, S.Yu. Zaginaichenko, A.V. Kotko, V.A. Bogolepov, A.F. Savenko, A.D. Zolotarenko, An.D. Zolotarenko, and Al.D. Zolotarenko, Proc. IX Int. Conf. ‘Hydrogen Materials Science and Chemistry of Carbon Nanomaterials’ (Sept. 5–11, 2005, Sevastopol, Crimea, Ukraine); https://doi.org/10.13140/RG.2.2.28671.51367
  114. A.D. Zolotarenko, M.T. Gabdullin, D.V. Shchur, S.V. Zaginaichenko, A.G. Dubovoi, A.P. Pomytkin, A. Magrez, and M. Baibarac, VIII Int. Conf. ‘Modern Achievements of Physics and Fundamental Physical Education’ (Oct. 9–11, 2013, Almaty), p. 210 (in Russian).
  115. D. Bera, E. Brinley, S.C. Kuiry, M. McCutchen, and S. Seal, Rev. Sci. Instrum., 76, No. 3: 033903 (2005); https://doi.org/10.1063/1.1857465
  116. J. Shenli, G. Xing, Q. Xu, and Z. Shi, Proc. 1st IEEE Int. Conf. Nano/Micro Engineered and Molecular Systems (Jan. 18–21, 2006, Zhuhai, China), p. 959; https://doi.org/10.1109/NEMS.2006.334574
  117. Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Schur, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, M.V. Chymbai, Yu.O. Tarasenko, I.V. Zagorulko, and O.D. Zolotarenko, Metallofiz. Noveishie Technol., 43, No. 10: 1417 (2021); https://doi.org/10.15407/mfint.43.10.1417
  118. Ol. Zolotarenko, E. Rudakovа, An. Zolotarenko, D. Schur, and M. Chymbai, Proc. IX Int. Scientific and Practical Conf. ‘Trends of Development Modern Science and Practice’ (Nov. 16–19, 2021, Stockholm, Sweden), p. 107.
  119. Al.D. Zolotarenko, An.D. Zolotarenko, Y.I. Sementsov, D.V. Schur, N.A. Gavrylyuk, A.D. Zolotarenko, Yu.A. Tarasenko, and E.P. Rudakovа, Proc. VII Int. Materials Science Conf. HighMatTech-2021 (Oct. 5–7, 2021, Kyiv, Ukraine), p. 13; https://umrs.org.ua/activities/conferences/highmattech-2021/
  120. E.A. Tsapko and I.Ye. Galstian, Positron spectroscopy study of structural defects and electronic properties of carbon nanotubes, Prog. Phys. Met., 21, No. 2: 153 (2020); https://doi.org/10.15407/ufm.21.02.153
  121. T.M. Radchenko, V.A. Tatarenko, and G. Cuniberti, Effects of external mechanical or magnetic fields and defects on electronic and transport properties of graphene, Mater. Today: Proc., 35, Pt. 4: 523 (2021); https://doi.org/10.1016/j.matpr.2019.10.014
  122. A.G. Solomenko, R.M. Balabai, T.M. Radchenko, and V.A. Tatarenko, Functionalization of quasi-two-dimensional materials: chemical and strain-induced modifications Prog. Phys. Met., 23, No. 2: 147 (2022); https://doi.org/10.15407/ufm.23.02.147
  123. T.M. Radchenko, I.Yu. Sahalianov, V.A. Tatarenko, Yu.I. Prylutskyy, P. Szroeder, M. Kempiński, and W. Kempiński, The impact of uniaxial strain and defect pattern on magnetoelectronic and transport properties of graphene, Handbook of Graphene: Growth, Synthesis, and Functionalization (Eds. E. Celasco and A. Chaika) (Beverly, MA: Scrivener Publishing LLC: 2019), Vol. 1, Ch. 14, p. 451; https://doi.org/10.1002/9781119468455.ch14
  124. T.M. Radchenko, I.Yu. Sahalianov, V.A. Tatarenko, Yu.I. Prylutskyy, P. Szroeder, M. Kempiński, and W. Kempiński, Strain- and adsorption-dependent electronic states and transport or localization in graphene, Springer Proceedings in Physics: Nanooptics, Nanophotonics, Nanostructures, and Their Applications (Eds. O. Fesenko and L. Yatsenko) (Cham, Switzerland: Springer: 2018), Vol. 210, Ch. 3, p. 25; https://doi.org/10.1007/978-3-319-91083-3_3
  125. T.M. Radchenko, V.A. Tatarenko, I.Yu. Sagalianov, and Yu.I. Prylutskyy, Configurations of structural defects in graphene and their effects on its transport properties, Graphene: Mechanical Properties, Potential Applications and Electrochemical Performance (Ed. B.T. Edwards) (New York: Nova Science Publishers: 2014), Ch. 7, p. 219.
  126. T.M. Radchenko, V.A. Tatarenko, V.V. Lizunov, V.B. Molodkin, I.E. Golentus, I.Yu. Sahalianov, and Yu.I. Prylutskyy, Defect-pattern-induced fingerprints in the electron density of states of strained graphene layers: diffraction and simulation methods, Phys. Status Solidi B, 256, No. 5: 1800406 (2019); https://doi.org/10.1002/pssb.201800406
  127. D.M.A. Mackenzie, M. Galbiati, X.D. de Cerio, I.Y. Sahalianov, T.M. Radchenko, J. Sun, D. Peña, L. Gammelgaard, B.S. Jessen, J.D. Thomsen, P. Bøggild, A. Garcia-Lekue, L. Camilli, and J.M. Caridad, Unraveling the electronic properties of graphene with substitutional oxygen, 2D Materials, 8, No. 4: 045035 (2021); https://doi.org/10.1088/2053-1583/ac28ab
  128. I.Yu. Sahalianov, T.M. Radchenko, V.A. Tatarenko, and Yu.I. Prylutskyy, Magnetic field-, strain-, and disorder-induced responses in an energy spectrum of graphene, Ann. Phys., 398: 80 (2018); https://doi.org/10.1016/j.aop.2018.09.004
  129. I.Yu. Sagalianov, T.M. Radchenko, V.A. Tatarenko, and G. Cuniberti, Sensitivity to strains and defects for manipulating the conductivity of graphene, EPL, 132: 48002 (2020); https://doi.org/10.1209/0295-5075/132/48002
  130. T.M. Radchenko and V.A. Tatarenko, A statistical-thermodynamic analysis of stably ordered substitutional structures in graphene, Physica E: Low-Dimensional Systems and Nanostructures, 42, No. 8: 2047 (2010); https://doi.org/10.1016/j.physe.2010.03.024
  131. T.M. Radchenko and V.A. Tatarenko, Kinetics of atomic ordering in metal-doped graphene, Solid State Sci., 12, No. 2: 204 (2010); https://doi.org/10.1016/j.solidstatesciences.2009.05.027
  132. T.M. Radchenko and V.A. Tatarenko, Statistical thermodynamics and kinetics of long-range order in metal-doped graphene, Solid State Phenom., 150: 43 (2009); https://doi.org/10.4028/www.scientific.net/SSP.150.43
  133. T.M. Radchenko and V.A. Tatarenko, Stable superstructures in a binary honeycomb-lattice gas, Int. J. Hydrogen Energy, 36, No. 1: 1338 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.112
  134. P. Szroeder, I.Yu. Sagalianov, T.M. Radchenko, V.A. Tatarenko, Yu.I. Prylutskyy, and W. Strupiński, Effect of uniaxial stress on the electrochemical properties of graphene with point defects, Appl. Surf. Sci., 442: 185 (2018); https://doi.org/10.1016/j.apsusc.2018.02.150
  135. P. Szroeder, I. Sahalianov, T. Radchenko, V. Tatarenko, and Yu. Prylutskyy, The strain- and impurity-dependent electron states and catalytic activity of graphene in a static magnetic field, Optical Mater., 96: 109284 (2019); https://doi.org/10.1016/j.optmat.2019.109284
  136. A. Selvakumar, U. Sanjith, T.R. Tamilarasen, R. Muraliraja, W. Sha, and J. Sudagar, A critical review of carbon nanotube-based surface coatings, Prog. Phys. Met., 23, No. 1: 3 (2022); https://doi.org/10.15407/ufm.23.01.003