Iron in Endometallofullerenes

Z. A. Matysina$^1$, Ol. D. Zolotarenko$^{1,2}$, O. P. Rudakova$^{1,2}$, N. Y. Akhanova$^{3,4}$, A. P. Pomytkin$^1$, An. D. Zolotarenko$^{1,2}$, D. V. Shchur$^1$, M. T. Gabdullin$^4$, M. Ualkhanova$^3$, N. A. Gavrylyuk$^2$, A. D. Zolotarenko$^1$, M. V. Chymbai$^{1,2}$, and I. V. Zagorulko$^5$

$^1$I. M. Frantsevich Institute for Problems of Materials Science of the N.A.S. of Ukraine, 3, Academician Krzhizhanovsky Str., UA-03142 Kyiv, Ukraine
$^2$O. O. Chuiko Institute of Surface Chemistry of the N.A.S. of Ukraine, 17 General Naumov Str., UA-03164 Kyiv, Ukraine
$^3$Al-Farabi Kazakh National University, 71 Al-Farabi Ave., 050040 Almaty, Kazakhstan
$^4$Kazakh–British Technical University, 59 Tole bi Str., 050000 Almaty, Kazakhstan
$^5$G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received 18.06.2021; final version — 15.06.2022 Download PDF logo PDF

Abstract
We study the experimental and theoretical works concerned with the description of state-of-the-art methods for the preparation of iron-containing endohedral metallofullerenes (EMF), as well as works, which dispute such results due to the extremely low efficiency of the used methods. We discuss the features of traditional methods for the fabrication of endometallofullerenes, their advantages and disadvantages, and indicate the areas of possible application of the synthesis products. As shown, the EMF is obtained mainly by two methods, namely, arc discharge (plasma) and synthesis using ablation and implantation methods. Despite a very small number of works on iron endometallofullerenes, the group of authors achieved some progress in their analysis. Thus, the fact of obtaining the Fe-containing endometallofullerenes with their isolation from a mixture of synthesis products is proved. In addition, the influence of the magnetic state of metal atoms on the stability of endohedral fullerenes is predicted, a relationship between the EMF output and the plasma temperature as well as the chemical nature of the precursor of Fe atoms are established. Particularly, as found, with an increase of the group number in the periodic table, in which the metal is located, the EMF yield decreases exponentially. We conclude that, due to the magnetic properties of EMF, they are prospective materials in the field of clinical diagnostics (e.g., as a contrast agents in the magnetic resonance imaging) and medicine (for magnetically controlled delivery of drugs directly to a diseased organ).

Keywords: endofullerene, endometallofullerene, iron-containing endofullerene, magnetic state, ablation, implantation, arc discharge, synthesis, precursor.

DOI: https://doi.org/10.15407/ufm.23.03.510

Citation: Z. A. Matysina, Ol. D. Zolotarenko, O. P. Rudakova, N. Y. Akhanova, A. P. Pomytkin, An. D. Zolotarenko, D. V. Shchur, M. T. Gabdullin, M. Ualkhanova, N. A. Gavrylyuk, A. D. Zolotarenko, M. V. Chymbai, and I. V. Zagorulko, Iron in Endometallofullerenes, Progress in Physics of Metals, 23, No. 3: 510–527 (2022)


References  
  1. D.V. Schur and V.A. Lavrenko, Vacuum, 44, No. 9: 897 (1993); https://doi.org/10.1016/0042-207X(93)90247-8
  2. D.V. Schur, A. Veziroglu, S.Y. Zaginaychenko, Z.A. Matysina, T.N. Veziroglu, M.T. Gabdullin, T.S. Ramazanov, An.D. Zolotarenko, and Al.D. Zolotarenko, Int. J. Hydrogen Energy, 44, No. 45: 24810 (2019); https://doi.org/10.1016/j.ijhydene.2019.07.205
  3. Z.A. Matysina, S.Y. Zaginajchenko, D.V. Shhur, A.D. Zolotarenko, Al.D. Zolotarenko, and T.M. Gabdullin, Al’ternativnaya Ehnergetika i Ehkologiya, Nos. 13–15: 37 (2017) (in Russian); https://doi.org/10.15518/isjaee.2017.13-15.037-060
  4. Z.A. Matysina, S.Y. Zaginaichenko, D.V. Schur, T.N. Veziroglu, A. Veziroglu, M.T. Gabdullin, Al.D. Zolotarenko, and An.D. Zolotarenko, Int. J. Hydrogen Energy, 43, No. 33: 16092 (2018); https://doi.org/10.1016/j.ijhydene.2018.06.168
  5. Z.A. Matysina, S.Y. Zaginaichenko, D.V. Schur, Al.D. Zolotarenko, An.D. Zolotarenko, and M.T. Gabdullin, Russ. Phys. J., 61, No. 2: 253 (2018); https://doi.org/10.1007/s11182-018-1395-5
  6. N.S. Anikina, D.V. Schur, S.Y. Zaginaichenko, A.D. Zolotarenko, and O.Ya. Krivushenko, Proc. 10th Int. Conf. ‘Hydrogen Materials Science and Chemistry of Carbon Nanomaterials’ (Sept. 22–28, 2007, Sudak, Crimea, Ukraine), p. 676.
  7. Z.A. Matysina, S.Yu. Zaginaychenko, and D.V. Schur, Rastvorimost’ Primesey v Metallakh, Splavakh, Intermetallidakh, Fulleritakh [Solubility of Impurities in Metals, Alloys, Intermetallics, Fullerites] (Dnepropetrovsk: Nauka i Obrazovanie: 2006) (in Russian).
  8. D.V. Schur, S.Y. Zaginaichenko, A.F. Savenko, V.A. Bogolepov, N.S. Anikina, A.D. Zolotarenko, Z.A. Matysina, N. Veziroglu, and N.E. Scryabina, Int. J. Hydrogen Energy, 36, No. 1: 1143 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.087
  9. O.I. Nakonechna, M.M. Dashevskyi, О.І. Boshko, V.V. Zavodyannyi, and N.N. Belyavina, Prog. Phys. Met., 20, No. 1: 5 (2019); https://doi.org/10.15407/ufm.20.01.005
  10. E.A. Tsapko and I.Ye. Galstian, Positron spectroscopy study of structural defects and electronic properties of carbon nanotubes, Prog. Phys. Met., 21, No. 2: 153 (2020); https://doi.org/10.15407/ufm.21.02.153
  11. A. Selvakumar, U. Sanjith, T.R. Tamilarasen, R. Muraliraja, W. Sha, and J. Sudagar, A critical review of carbon nanotube-based surface coatings, Prog. Phys. Met., 23, No. 1: 3 (2022); https://doi.org/10.15407/ufm.23.01.003
  12. A.G. Solomenko, R.M. Balabai, T.M. Radchenko, and V.A. Tatarenko, Functionalization of quasi-two-dimensional materials: chemical and strain-induced modifications, Prog. Phys. Met., 23, No. 2: 147 (2022); https://doi.org/10.15407/ufm.23.02.147
  13. D.V. Schur, A.D. Zolotarenko, A.D. Zolotarenko, O.P. Zolotarenko, M.V. Chimbai, N.Y. Akhanova, M. Sultangazina, and E.P. Zolotarenko, Phys. Sci. Technol., 6, Nos. 1–2: 46 (2019); https://doi.org/10.26577/phst-2019-1-p9
  14. A.A. Volodin, A.D. Zolotarenko, A.A. Bel’mesov, E.V. Gerasimova, D.V. Sсhur, V.R. Tarasov, S.Yu. Zaginaichenko, S.V. Doroshenko, An.D. Zolotarenko, and Al.D. Zolotarenko, Nanosistemi, Nanomateriali, Nanotehnologii, 12, No. 4: 705 (2014).
  15. V.A. Lavrenko, I.A. Podchernyaeva, D.V. Shchur, An.D. Zolotarenko, and Al.D. Zolotarenko, Powder Metall. Met. Ceram., 56, Nos. 9–10: 504 (2018); https://doi.org/10.1007/s11106-018-9922-z
  16. N. Akhanova, S. Orazbayev, M. Ualkhanova, A.Y. Perekos, A.G. Dubovoy, D.V. Schur, Al. D. Zolotarenko, An. D. Zolotarenko, N.A. Gavrylyuk, M.T. Gabdullin, and T.S. Ramazanov, J. Nanosci. Nanotechnol. Appl., 3, No. 3: 1 (2019); https://doi.org/10.18875/2577-7920.3.302
  17. A.G. Dubovoj, A.E. Perekos, V.A. Lavrenko, Yu.M. Rudenko, T.V. Efimova, V.P. Zalustkii, T.V. Rushitskaya, A.V. Kotko, Al.D. Zolotarenko, and An.D. Zolotarenko, Nanosistemi, Nanomateriali, Nanotehnologii, 11, No. 1: 131 (2013) (in Russian).
  18. S.Yu. Zaginajchenko, D.V. Schur, M.T. Gabdullin, N.F. Dzhavadov, Al.D. Zolotarenko, An.D. Zolotarenko, A.D. Zolotarenko, S.H. Mamedova, G.D. Omarova, and Z.T. Mamedova, Al’ternativnaya Ehnergetika i Ehkologiya, Nos. 19–21: 72 (2018) (in Russian); https://doi.org/10.15518/isjaee.2018.19-21.072-090
  19. N.Ye. Akhanova, D.V. Shchur, A.P. Pomytkin, Al.D. Zolotarenko, An.D. Zolotarenko, N.A. Gavrylyuk, M. Ualkhanova, W. Bo, and D. Ang, J. Nanosci. Nanotechnol., 21, No. 4: 2446 (2021); https://doi.org/10.1166/jnn.2021.18971
  20. N.S. Anikina, D.V. Schur, S.Y. Zaginaichenko, and A.D. Zolotarenko, Proc. of 10th Int. Conf. ‘Hydrogen Materials Science and Chemistry of Carbon Nanomaterials’ (Sept. 22–28, 2007, Sudak, Crimea, Ukraine), p. 672.
  21. D.V. Schur, S.Yu. Zaginaichenko, A.D. Zolotarenko, and T.N. Veziroglu, Carbon Nanomaterials in Clean Energy Hydrogen Systems (Eds. B. Baranowski, S.Yu. Zaginaichenko, D.V. Schur, V.V. Skorokhod, and A. Veziroglu) (Springer Science + Business Media B.V.: 2008), p. 85.
  22. D.V. Schur, S.Yu. Zaginaichenko, E.A. Lysenko, T.N. Golovchenko, and N.F. Javadov, Carbon Nanomaterials in Clean Energy Hydrogen Systems (Eds. B. Baranowski, S.Yu. Zaginaichenko, D.V. Schur, V.V. Skorokhod, and A. Veziroglu) (Springer Science + Business Media B.V.: 2008), p. 53; https://doi.org/10.1007/978-1-4020-8898-8_5
  23. D.V. Schur, N.S. Astratov, A.P. Pomytkin, and A.D. Zolotarenko, Proc. VIII Int. Conf. Hydrogen Material Science and Chemistry (Sept. 14–20, 2003, Sudak, Crimea, Ukraine), p. 424.
  24. Y.M. Shul’ga, S.A. Baskakov, A.D. Zolotarenko, E.N. Kabachkov, V.E. Muradjan, D.N. Voilov, V.A. Smirnov, V.M. Martynenko, D.V. Schur, and A.P. Pomytkin, Nanosistemi, Nanomateriali, Nanotehnologii, 11, No. 1: 161 (2013) (in Russian).
  25. Yu.I. Sementsov, N.A. Gavriluk, G.P. Prikhod’ko, T.A. Aleksyeyeva, O.N. Lazarenko, and V.V. Yanchenko, Carbon Nanomaterials in Clean Energy Hydrogen Systems (Eds. B. Baranowski, S.Yu. Zaginaichenko, D.V. Schur, V.V. Skorokhod, and A. Veziroglu) (Springer Science + Business Media B.V.: 2008), p. 327; https://doi.org/10.1007/978-1-4020-8898-8_39
  26. Yu.I. Sementsov, N.A. Gavrilyuk, G.P. Prikhod’ko, A.V. Melezhyk, M.L. Pyatkovsky, V.V. Yanchenko, S.L. Revo, E.A. Ivanenko, and A.I. Senkevich, Hydrogen Materials Science and Chemistry of Carbon Nanomaterials (Eds. Eds. B. Baranowski, S.Yu. Zaginaichenko, D.V. Schur, V.V. Skorokhod, and A. Veziroglu) (Springer: 2007), p. 757; https://doi.org/10.1007/978-1-4020-5514-0_95
  27. G.P. Prihod’ko, N.A. Gavriljuk, L.V. Dijakon, N.P. Kulish, A.V. Melezhik, and Yu.I. Semencov, Nanosistemi, Nanomateriali, Nanotehnologii, 4: 1081 (2006) (in Russian).
  28. Yu.I. Sementsov, T.A. Alekseeva, M.L. Pjatkovskij, and G.P. Prihod’ko, N.A. Gavrilyuk, N.T. Kartel, Yu.E. Grabovskiy, V.F. Gorchev, and A.Yu. Chunikhin, Proc. IX Int. Conf. ‘Hydrogen Materials Science and Chemistry of Carbon Nanomaterials’ (Sept. 9–13, 2009, Yalta, Crimea, Ukraine), p. 782 (in Russian).
  29. O.P. Dmytrenko, N.P. Kulish, Yu.I. Prylutskyy, N.M. Belyi, L.V. Poperenko, V.S. Stashchuk, E.L. Pavlenko, A.E. Pogorelov, N.S. Anikina, and D.V. Schur, Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. NATO Security through Science Series A: Chemistry and Biology (Eds. T.N. Veziroglu, S.Yu. Zaginaichenko, D.V. Schur, B. Baranowski, A.P. Shpak, V.V. Skorokhod, and A. Kale) (Dordrecht: Springer: 2007), p. 111; https://doi.org/10.1007/978-1-4020-5514-0_12
  30. Yu. Sementsov, N. Gavriluk, T. Aleksyeyeva, and O. Lasarenko, Nanosistemi, Nanomateriali, Nanotehnologii, 5, No 2: 351 (2007).
  31. V.I. Trefilov, D.V. Sсhur, B.P. Tarasov, Yu.M. Shul’ga, A.V. Chernogorenko, V.K. Pishuk, and S.Yu. Zaginaichenko, Fullereny — Osnova Materialov Budushchego [Fullerenes — the Basis of Materials of the Future] (Kiev: ADEF-Ukraina: 2001) (in Russian).
  32. A.F. Hebard, M.J. Rosseinsky, R.C. Haddon, D.W. Murphy, S.H. Glarum, T.T.M. Palstra, A.P. Ramirez, and A.R. Kortan, Nature, 350: 600 (1991); https://doi.org/10.1038/350600a0
  33. K. Holczer, O. Klein, Sh. Huang, R.B. Kaner, K. Fu, R.L. Whetten, and F. Diederich, Science, 252, No. 5009: 1154 (1991); https://doi.org/10.1126/science.252.5009.1154
  34. M.J. Rosseinsky, A.P. Ramirez, S.H. Glarum, D.W. Murphy, R.C. Haddon, A.F. Hebard, T.T.M. Palstra, A.R. Kortan, S.M. Zahurak, and A.V. Makhija, Phys. Rev. Lett., 66, No. 21: 2830 (1991); https://doi.org/10.1103/PhysRevLett.66.2830
  35. R.C. Haddon, A.F. Hebard, M.J. Rosseinsky, D.W. Murphy, S.J. Duclos, K.B. Lyons, B. Miller, J.M. Rosamilia, R.M. Fleming, A.R. Kortan, S.H. Glarum, A.V. Makhija, A.J. Muller, R.H. Eick, S.M. Zahurak, R. Tycko, G. Dabbagh, and F.A. Thiel, Nature, 350: 320 (1991); https://doi.org/10.1038/350320a0
  36. R.C. Haddon, Acc. Chem. Res., 25, No. 3: 127 (1992); https://doi.org/10.1021/ar00015a005
  37. H.H. Wang, A.M. Kini, B.M. Savall, K.D. Carlson, J.M. Williams, K.R. Lykke, P. Wurz, D.H. Parker, and M.J. Pellin, Inorg. Chem., 30, No. 14: 2838 (1991); https://doi.org/10.1021/ic00014a005
  38. N.S. Anikina, O.Ya. Krivushhenko, D.V. Schur, S.Yu. Zaginajchenko, S.S. Chuprov, K.A. Mil’to, and A.D. Zolotarenko, Proc. IX Int. Conf. ‘Hydrogen Material Science and Chemistry of Metal Hydrides’ (Sept. 5–11, 2005, Sevastopol, Crimea, Ukraine), p. 848 (in Russian).
  39. A.V. Eletskii and B.M. Smirnov, Phys.-Usp., 38, No. 9: 935 (1995); https://doi.org/10.1070/PU1995v038n09ABEH000103
  40. Y. Wang, Nature, 356: 585 (1992); https://doi.org/10.1038/356585a0
  41. H. Hoshi, N. Nakamura, Y. Maruyama, T. Nakagawa, Sh. Suzuki, H. Shiromaru, and Y. Achiba, Jpn. J. Appl. Phys., 30, No. 8A: L1397 (1991); https://doi.org/10.1143/JJAP.30.L1397
  42. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, and R.E. Smalley, Nature, 318: 162 (1985); https://doi.org/10.1038/318162a0
  43. Y. Chai, T. Guo, C. Jin, R.E. Haufler, L.P.F. Chibante, J. Fure, L. Wang, J.M. Alford, and R.E. Smalley. J. Phys. Chem., 95, No. 20: 7564 (1991); https://doi.org/10.1021/j100173a002
  44. H. Shinohara and N. Tagmatarchis, Endohedral Metallofullerenes. Fullerenes with Metal Inside (John Wiley & Sons, Ltd.: 2015); https://doi.org/10.1002/9781118698006
  45. K. Sueki, K. Kikuchi, K. Akiyama, T. Sawa, M. Katada, S. Ambe, F. Ambe, and H. Nakahara, Chem. Phys. Lett., 300, Nos. 1–2: 140 (1999); https://doi.org/10.1016/S0009-2614(98)01353-0
  46. H.C. Dorn and E.B. Iezzi, Endohedral Metallofullerene Derivatives (Patent US 20090240042A1, 2006).
  47. V.T. Lebedev, M.V. Sujasova, A.A. Szhogina, and V.P. Sedov, Sposob Polucheniya Endofullerenov 3d-Metallov [The Technology of 3d-Metallic Endofullerenes] (Patent RF 2664133 No. 218.016.7C5D, 2017) (in Russian).
  48. Z. Chen, L. Ma, Y. Liu, and C. Chen, Theranostics, 2, No. 3: 238 (2012); https://doi.org/10.7150/thno.3509
  49. T. Pradeep, G.U. Kulkarni, K.R. Kannan, T.N. Guru Row, and C.N.R. Rao, J. Am. Chem. Soc., 11, No. 46: 2272 (1992); https://doi.org/10.1021/ja00032a059
  50. L.M. Roth, J. Huang, J.T. Schwedler, C.J. Cassady, D. Ben-Amots, B. Kahr, and B.S. Freiser, J. Am. Chem. Soc., 113, No. 16: 6298 (1991); https://doi.org/10.1021/ja00016a071
  51. Y. Yuang and B.S. Freiser, J. Am. Chem. Soc. 113: 8186 (1991); https://doi.org/10.1021/ja00021a065
  52. G.N. Churilov, O.A. Bayukov, É.A. Petrakovskaya, A.Ya. Korets, V.G. Isakova, and Ya.N. Titarenko, Tech. Phys., 42: 1111 (1997); https://doi.org/10.1134/1.1258784
  53. T. Uchida, H. Minezaki, K. Tanaka, M. Muramatsu, T. Asaji, Y. Kato, A. Kitagawa, S. Biri, and Y. Yoshida, Rev. Sci. Instrum., 81, No. 2: 02A306 (2010); https://doi.org/10.1063/1.3258027
  54. T. Uchida, H. Minezaki, Y. Yoshida, S. Biri, A. Kitagawa, Y. Kato, T. Asaji, and K. Tanaka, Proc. of 18th Int. Workshop on ECR Ion Sources—ECRIS08 (Sept. 08–15, 2008, Chicago, IL, USA), p. 25.
  55. H. Minezaki, T. Uchida, K. Tanaka, M. Muramatsu, T. Asaji, A. Kitagawa, Y. Kato, R. Racz, S. Biri, and Y. Yoshida. AIP Conf. Proc., 1321, No. 1: 480 (2011); https://doi.org/10.1063/1.3548456
  56. T. Uchida, H. Minezaki, S. Ishihara, M. Muramatsu, R. Rocz, T. Asaji, A. Kitagawa, Y. Kato, S. Biri, A.G. Drentje, and Y. Yoshida, Rev. Sci. Instrum., 85: 02C317 (2014); https://doi.org/10.1063/1.4862212
  57. H. Minezaki, S. Ishihara, T. Uchida, M. Muramatsu, R. Rocz, T. Asaji, A. Kitagawa, Y. Kato, S. Biri, and Y. Yoshida, Rev. Sci. Instrum., 85: 02A945 (2014); https://doi.org/10.1063/1.4850756
  58. H. Minezaki, K. Oshima, T. Uchida, T. Mizuki, R. Racz, M. Muramatsu, T. Asaji, A. Kitagawa, Y. Kato, S. Biri, and Y. Yoshida, Nucl. Instrum. Methods Phys. Res. B, 310: 18 (2013); https://doi.org/10.1063/1.4850756
  59. H. Minezaki, K. Oshima, T. Uchida, T. Mizuki, R. Racz, M. Muramatsu, T. Asaji, A. Kitagawa, Y. Kato, S. Biri, and Y. Yoshida, Nucl. Instrum. Methods Phys. Res. B, 310, No. 1: 18 (2013); https://doi.org/10.1016/j.nimb.2013.05.015
  60. T. Asaji, T. Ohba, T. Uchida, H. Minezaki, S. Ishihara, R. Racz, M. Muramatsu, S. Biri, A. Kitagawa, Y. Kato, and Y. Yoshida, Rev. Sci. Instrum., 85: 02A936 (2014); https://doi.org/10.1063/1.4847255
  61. S. Biri, A. Valek, L. Kenez, A. Janossy, and A. Kitagawa, Rev. Sci. Instrum., 73: 881 (2002); https://doi.org/10.1063/1.1429788
  62. T. Kaneko, S. Abe, H. Ishida, and R. Hatakeyama, Phys. Plasmas, 14: 110705 (2007); https://doi.org/10.1063/1.2814049
  63. Q. Deng, T. Heine, S. Irle, and A. Popov, Nanoscale, 8, No. 6: 3796 (2016); https://doi.org/10.1039/C5NR08645K
  64. E.M. Brunsman, R. Sutton, E. Bortz, S. Kirkpatrick, K. Midelfort, J. Williams, P. Smith, M.E. McHenry, S.A. Majetich, J.O. Artman, M. De Graef, and S.W. Staley, J. Appl. Phys., 75, No. 10: 5882 (1994);https://doi.org/10.1063/1.355548
  65. C.M. Tang, K.M. Deng, J.L. Yang, and X. Wang, Chinese J. Chem., 24, No. 9: 1133 (2006); https://doi.org/10.1002/cjoc.200690213
  66. R.E. Estrada-Salas and A.A. Valladares, J. Mol. Struct.: THEOCHEM, 869: Nos. 1–3: 1 (2008); https://doi.org/10.1016/j.theochem.2008.08.017
  67. G. Gao and H.S. Kang, Chem. Phys. Lett., 462: Nos. 1–3: 72 (2008); https://doi.org/10.1016/j.cplett.2008.07.044
  68. M.B. Javan, N. Tajabor, M. Behdani, and M.R. Rokn-Abadi, Phys. B, 405, No. 24: 4937 (2010); https://doi.org/10.1016/j.physb.2010.09.035
  69. S.G. Semenov, M.E. Bedrina, M.V. Makarova, and A.V. Titov, J. Struct. Chem., 58, No. 3: 447 (2017); https://doi.org/10.15372/JSC20170304
  70. S.G. Semenov and M.E. Bedrina, J. Struct. Chem., 59, No. 3: 506 (2018); https://doi.org/10.1134/S0022476618030022
  71. M.V. Ryzhkov, N.I. Medvedeva, and B. Delley, Polyhedron, 134: 376 (2017); https://doi.org/10.1016/j.poly.2017.06.032
  72. H.T. Gao, G. Kou, L. Will, and G. Du, J. Catalysis, 354: 231 (2017); https://doi.org/10.1016/j.jcat.2017.08.025
  73. V.K. Koltover, Vestnik RFFI, 59, No. 3: 54 (2008).
  74. A. Popov, S. Yang, and L. Dunsch, Chem. Rev., 113, No. 8: 5989 (2013); https://doi.org/10.1021/cr300297r
  75. V.N. Bezmel’nitsyn, A.V. Eletskii, and M.V. Okun’, Phys.-Usp., 41, No. 11: 1091 (1998); https://doi.org/10.1070/PU1998v041n11ABEH000502