Formation and Growth of Cracks in 7075-T6 Aluminium Matrix Hybrid FML Nanocomposite Materials

M. B. Babanli, N. A. Gurbanov, and R. K. Mehtiyev

Azerbaijan State Oil and Industry University, 20 Azadlig Ave., AZ-1010 Baku, Azerbaijan

Received 10.01.2022; final version — 21.06.2022 Download PDF logo PDF

Abstract
The paper scopes on the experimental data, computer and theoretical (analytical) models of the crack formation processes in hybrid nanocrystalline materials with nanoparticle filler of 7075-T6 aluminium matrix under the influence of high-speed and quasi-static deformation regimes. Presenting the main experimental facts and results of the computer modelling, particular attention is paid to the theoretical models describing the formation of nanoscopic cracks in the tips of the microcracks in hybrid nanocrystalline materials at high speeds and quasi-static deformation. A model describing the formation and growth of nanocracks near the tips of the blunt cracks in a hybrid nanocomposite material is proposed. Within the model, the concentration of stresses at the tips of the blunt cracks causes the grain boundaries to slip and dislocations at the grain boundary junctions. The stresses, which create these dislocations, and the load applied to the crack peaks cause the nanocracks to form and grow. As shown, an increase in the radius of curvature at the tips of a thick crack and a decrease of the grains’ size contribute to the growth of nanocracks. These trends are consistent with experimental data on the low decomposition viscosity and high plasticity of the most nanocrystalline materials.

Keywords: fibre metal laminate (FML), hybrid FML nanocomposite, elliptical crack, viscous collapse, tension, plasticity.

DOI: https://doi.org/10.15407/ufm.23.03.489

Citation: M. B. Babanli, N. A Gurbanov, and R. K. Mehtiyev, Formation and Growth of Cracks in 7075-T6 Aluminium Matrix Hybrid FML Nanocomposite Materials, Prog. Phys. Met., 23, No. 3: 489–509 (2022)


References  
  1. H. Conrad and J. Narayan, Appl. Phys. Lett., 81, No. 12: 2241 (2002); https://doi.org/10.1063/1.1507353
  2. M.J. Demkowicz, A.S. Argon, D. Farkas, and M. Frary, Philos. Magaz., 87, No. 28: 4253 (2007); https://doi.org/10.1080/14786430701358715
  3. M.Yu. Gutkin and I.A. Ovid’ko, Phys. Solid State, 52: 1397 (2010); https://doi.org/10.1134/S1063783410070127
  4. J.N. Aslanov and A.B. Sultanova, IFAC-PapersOnLine, 51, No. 30: 12 (2018); https://doi.org/10.1016/j.ifacol.2018.11.236
  5. H.A. Padilla and B.L. Boyce, Exp. Mech., 50: 5 (2010); https://doi.org/10.1007/s11340-009-9301-2
  6. I. Hasanov, I. Abbasov, and N. Gurbanov, Proc. Latvian Acad. Sci. Sec. B, 74, No. 4: 727 (2020); https://doi.org/10.2478/prolas-2020-0044
  7. K.A. Padmanabhan and H. Gleiter, Mater. Sci. Eng. A, 381, Nos. 1–2: 28 (2004); https://doi.org/10.1016/j.msea.2004.02.054
  8. N.A. Gurbanov and M.B. Babanli, Metallofiz. Noveishie Tekhnol., 43, No. 12: 1589 (2021); https://doi.org/10.15407/mfint.43.12.1589
  9. D. Farkas, H. Van Swygenhoven, and P.M. Derlet, Phys. Rev. B, 66, No. 6: 060101 (2002); https://doi.org/10.1103/PhysRevB.66.060101
  10. T. Hanlon, Y.-N. Kwon, and S. Suresh, Scr. Mater., 49, No. 7: 675 (2003); https://doi.org/10.1016/S1359-6462(03)00393-2
  11. A. Latapie and D. Farkas, Phys. Rev. B, 69, No. 13: 134110 (2004); https://doi.org/10.1103/PhysRevB.69.134110
  12. I.A. Ovid’ko and A.G. Sheinerman, Acta Mater., 52, No. 5: 1201 (2004); https://doi.org/10.1016/j.actamat.2003.11.004
  13. I.A. Ovid’ko and A.G. Sheinerman, Phys. Rev. B, 77, No. 5: 054109 (2008); https://doi.org/10.1103/PhysRevB.77.054109
  14. J.N. Aslanov, V.T. Mamedov, and G.A. Mamedov, J. Appl. Mech. Tech. Phys., 61: 286 (2020); https://doi.org/10.1134/S0021894420020157
  15. I.A. Ovid’ko and A.G. Sheinerman, Phys. Solid State, 50: 1044 (2008); https://doi.org/10.1134/S1063783408060085
  16. I.A. Ovid’ko and A.G. Sheinerman, Acta Mater., 57, No. 7: 2217 (2009); https://doi.org/10.1016/j.actamat.2009.01.030
  17. D. Farkas, S. Petegem, P.M. Derlet, and H. Van Swygenhoven, Acta Mater., 53, No. 11: 3115 (2005); https://doi.org/10.1016/J.ACTAMAT.2005.02.012
  18. D. Wolf, V. Yamakov, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter, Acta Mater., 53, No. 1: 1 (2005); https://doi.org/10.1016/j.actamat.2004.08.045
  19. M.A. Vasylyev, S.M. Voloshko, V.I. Zakiev, A.P. Burmak, Ya.I. Matvienko, and A.D. Rud, Metallofiz. Noveishie Tekhnol., 43, No. 11: 1455 (2021); https://doi.org/10.15407/mfint.43.11.1455
  20. N.A. Gurbanov, M.Y. Askin, M.B. Babanli, and Y. Turen, Funct. Mater., 29, No. 1: 172 (2022); https://doi.org/10.15407/fm29.01.172
  21. A. Afrouzian, H.M. Aleni, G.H. Liaghat, and H. Ahmadi, J. Reinforced Plastics and Composites, 36, No. 12: 900 (2017); https://doi.org/10.1177/0731684417694753
  22. K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, and P. Wang, Acta Mater., 51, No. 2: 387 (2003); https://doi.org/10.1016/S1359-6454(02)00421-4
  23. K.S. Kumar, H. Van Swygenhoven, and S. Suresh, Acta Mater., 51, No. 19: 5743 (2003); https://doi.org/10.1016/j.actamat.2003.08.032
  24. S.V. Bobylev, A.K. Mukherjee, I.A. Ovid’ko, and A.G. Sheinerman, Int. J. Plasticity, 26, No. 11: 1629 (2010); https://doi.org/10.1016/j.ijplas.2010.03.001
  25. I.A. Ovid’ko and A.G. Sheinerman, J. Phys. D: Appl. Phys., 46, No. 34: 345305 (2013); https://doi.org/10.1088/0022-3727/46/34/345305
  26. S.P. Repetsky, E.G. Len, and V.V. Lizunov, Metallofiz. Noveishie Tekhnol., 28, No. 8: 989 (2006).
  27. T. Mura, Micromechanics of Defects in Solids (Dordrecht: Springer–Kluwer Academic Publishers: 1987); https://doi.org/10.1007/978-94-009-3489-4
  28. Z. Zhuang, Z. Liu, and Y. Cui, Dislocation Mechanism-Based Crystal Plasticity: Theory and Computation at the Micron and Submicron Scale (Academic Press: 2019).
  29. L.L. Fischer and G.E. Beltz, J. Mech. Phys. Solids, 49, No. 3: 635 (2001); https://doi.org/10.1016/S0022-5096(00)00042-9
  30. G.E. Beltz, D.M. Lipkin, and L.L. Fischer, Phys. Rev. Lett., 82, No. 22: 4468 (1999); https://doi.org/10.1103/PhysRevLett.82.4468
  31. I.A. Ovid’ko and A.G. Sheinerman, Acta Mater., 58, No. 16: 5286 (2010); https://doi.org/10.1016/j.actamat.2010.05.058
  32. M.Yu. Gutkin and I.A. Ovid’ko, Plastic Deformation in Nanocrystalline Materials (Springer: 2004).
  33. R.K. Mehtiyev, Рroc. 7th International Conf. Control and Optimization with Industrial Applications Pace (August 26–28, 2020, Baku, Azerbaijan) (COIA: 2020), p. 269.
  34. R.K. Mehtiyev, Рroc. 6th International Conf. Control and Optimization with Industrial Applications Pace (July 11–13, 2018, Baku, Azerbaijan) (COIA: 2020), p. 223.
  35. D.M. Hulbert, D. Jiang, J.D. Kuntz, Y. Kodera, and A.K. Mukherjee, Scr. Mater., 56, No. 12: 1103 (2007); https://doi.org/10.1016/j.scriptamat.2007.02.003
  36. I.A. Ovid’ko and A.G. Sheinerman, Acta Mater., 53, No. 5: 1347 (2005); https://doi.org/10.1016/j.actamat.2004.11.026
  37. J. Wan, R.-G. Duan, M.J. Gasch and A.K. Mukherjee, J. Amer. Ceram. Soc., 89, No. 1: 274 (2006); https://doi.org/10.1111/j.1551-2916.2005.00702.x
  38. T.G. Jabbarov, O.A. Dyshin, M.B. Babanli, and I.I. Abbasov, Mathematical modelling of the sintering process of iron-based metal-glass materials, Prog. Phys. Met., 20, No. 4: 584 (2019); https://doi.org/10.15407/ufm.20.04.584
  39. X. Mao, L. Qiao, and X. Li, Scr. Mater., 39, Nos. 4–5: 519 (1998); https://doi.org/10.1016/s1359-6462(98)00191-2
  40. X. Li and X. Jiang, Eng. Fract. Mech., 211: 258 (2019); https://doi.org/10.1016/j.engfracmech.2019.03.038
  41. E. Zolgharnein and V.M. Mirsalimov, Acta Polytechnica Hungarica, 9, No. 2: 169 (2012).
  42. G.-D. Zhan, J.D. Kuntz, J. Wan, and A.K. Mukherjee, Nature Mater., 2: 38 (2003); https://doi.org/10.1038/nmat793
  43. A.G. Solomenko, R.M. Balabai, T.M. Radchenko, and V.A. Tatarenko, Functionalization of quasi-two-dimensional materials: chemical and strain-induced modifications, Prog. Phys. Met., 23, No. 2: 147 (2022); https://doi.org/10.15407/ufm.23.02.147
  44. V.V. Girzhon and O.V. Smolyakov, Modelling of lattices of two-dimensional quasi-crystals, Prog. Phys. Met., 20, No. 4: 551 (2019); https://doi.org/10.15407/ufm.20.04.551
  45. V.M. Mirsalimov and Sh.G. Hasanov, Int. J. Damage Mech., 23, No. 3: 430 (2014); https://doi.org/10.1177/1056789513519459
  46. N.J.M. Carvalho, B.J. Kooi, and J.Th.M. De Hosson, Surface Treatment VI: Computer Methods and Experimental Measurements for Surface Treatment Effects. (Southampton, NY: WIT Press: 2002), p. 233.