Mechanical Behaviour of Ti–15Mo Alloy Produced with Electron-Beam Cold Hearth Melting Depending on Deformation Rate and in Comparison with Other Titanium Alloys

P. E. Markovsky$^{1,2}$, J. Janiszewski$^2$, S. V. Akhonin$^3$, V. I. Bondarchuk$^1$, V. O. Berezos$^3$, K. Cieplak$^2$, O. P. Karasevska$^{1,4}$, and M. A. Skoryk$^1$

$^1$G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$General Jarosław Dąbrowski Military University of Technology, 2, General Sylwester Kaliski Str., PL-00-908 Warsaw, Poland
$^3$E. O. Paton Electric Welding Institute of the N.A.S. of Ukraine, 11 Kazimir Malevich Str., UA-03150 Kyiv, Ukraine
$^4$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine

Received 12.04.2022; final version — 20.06.2022 Download PDF logo PDF

Ti–15(wt.%)Mo alloy is produced with conventional cast and wrought approach using double electron-beam cold hearth melting, 3D hot pressing, and subsequent rolling. Three batches of specimens are subjected to microstructure study and quasi-static tensile testing in the following states: (1) as-rolled, (2) partially recrystallized via annealing at 800 ºC for 40 minutes, (3) annealed at 800 ºC for 3 hours followed by water quenching to fix the β-phase. The specimens in the second state (2) are chosen for more detailed study of mechanical behaviour upon both quasi-static and high strain-rate compressions. The obtained data on the mechanical behaviour are analysed from the standpoint of the effect of initial microstructure and crystallographic texture in three mutually perpendicular planes on the strain energy and the critical strain rate that results into fracture. A detailed microstructural study of the tested specimens reveals the influence of microstructure and texture on the deformation mechanisms at different strain rates. A strong effect of microstructural inhomogeneity and crystallographic texture formed during rolling is noted. The results are compared with those obtained earlier for other titanium alloys and some important structural materials tested under the same conditions. As shown, the Ti–15Mo alloy has a rather high mechanical characteristic. At high strain rates, this material corresponds to other single-phase titanium alloys in terms of strain energy; however, it is inferior to the two-phase alloys with a fine and homogeneous microstructure, e.g., Ti-6-4 or T110 (see list of acronyms in Appendix). Taking into account the specific weight of materials, the Ti–15Mo alloy is not inferior to such high-strength materials as the heat-hardened alloy B95, steels ARMOX 600T and Docol 1500M, and, in addition, is cheaper compared to other titanium β-alloys.

Keywords: titanium beta-alloy, microstructure, crystallographic texture, mechanical properties, strain rates of deformation, deformation mechanism.


Citation: P. E. Markovsky, J. Janiszewski, S. V. Akhonin, V. I. Bondarchuk, V. O. Berezos, K. Cieplak, O. P., Karasevska, and M. A. Skoryk, Mechanical Behaviour of Ti–15Mo Alloy Produced with Electron-Beam Cold Hearth Melting Depending on Deformation Rate and in Comparison with Other Titanium Alloys, Progress in Physics of Metals, 23, No. 3: 438–475 (2022)

  1. U. Zwicker, Titan und Titanlegierungen (Berlin: Springer: 1974);
  2. G. Lutjering and J.C. Williams, Titanium (Berlin: Springer: 2007);
  3. P.J. Bania, Beta titanium alloys and their role in the titanium industry, Beta Titanium Alloys in the 90’s (Warrendale, PA: TMS Publications: 1993), p. 3.
  4. R.R. Boyer and R.D. Briggs, J. Mater. Eng. Perform., 14: 681 (2005);
  5. O.M. Ivasishin, P.E. Markovsky, Yu.V. Matviychuk, S.L. Semiatin, C.H. Ward, and S.A. Fox, J. Alloys and Compounds, 457, Nos. 1–2: 296 (2008);
  6. K.B. Panda and K.S. Ravi Chandran, Metall. Mater. Trans. A, 34, No. 6: 1371 (2003);
  7. S. Li, K. Kondoh, H. Imai, B. Chen, L. Jia, J. Umeda, and Y. Fu, Materials & Design, 95: 127 (2016);
  8. M. Nutt, V. Jablokov, H. Freese, and M. Richelsoph, ASTM International STP 1471, ‘Titanium, Niobium, Zirconium, and Tantalum for Medical and Surgical Applications’ (December, 2005) (Ed. M.J. Kraay), p. 84;
  9. J.R.S. Martins Junior, R.A. Nogueira, R.O. de Araujo, T.A.G. Donato, V.E. Arana-Chavez, A.P.R.A. Claro, J.C.S. Moraes, M.A.R. Buzalaf, and C.R. Grandini, Mat. Res., 14, No. 1 (2011);
  10. Sh. Xu, Ch. Zhou, Y. Liu, B. Liu, and K. Li, J. Alloys and Compounds, 738: 188 (2018);
  11. S. Zherebtsov, M. Ozerov, E. Povolyaeva, V. Sokolovsky, N. Stepanov, D. Moskovskikh, and G. Salishchev, Metals, 10: 40 (2020);
  12. P.E. Markovsky, S.V. Akhonin, V.A. Berezos, O.O. Stasyuk, O.P. Karasevska, and I.M. Gavrysh, Metallogr. Microst. Anal., 9: 856 (2020);
  13. S.V. Akhonin, F.N. Pikulin, V.A. Berezos, D.V. Kovalchuk, and S.B. Tugai, Electrometallurgy Today, No. 3: 15 (2019);
  14. H. Kolsky, J. Sound and Vibration, 1, No. 1: 88 (1964);
  15. W. Chen and B. Song, Split Hopkinson (Kolsky) Bar: Design, Testing and Applications (Berlin: Springer: 2011);
  16. P.E. Markovsky, J. Janiszewski, V.I. Bondarchuk, O.O. Stasyuk, M.A. Skoryk, D.G. Savvakin, K. Cieplak, P. Dziewit, and S.V. Prikhodko, Metals, 10, No. 11: 1404 (2020);
  17. P.E. Markovsky, J. Janiszewski, O.O. Stasyuk, V.I. Bondarchuk, D.G. Savvakin, K. Cieplak, D. Goran, P. Soni, and S.V. Prikhodko, Materials, 14, No. 22: 6837 (2021);
  18. P.E. Markovsky, Yu.V. Matviychuk, and V.I. Bondarchuk, Mater. Sci. Eng. А, 559: 782 (2013);
  19. P.E. Markovsky, V.I. Bondarchuk, and O.M. Herasymchuk, Mater. Sci. Eng. А, 645: 150 (2015);
  20. P.E. Markovsky, V.I. Bondarchuk, O.V. Shepotinnyk, and I.M. Gavrysh, Metallofiz. Noveishie Tekhnol., 38, No. 7: 935 (2016);
  21. P.E. Markovsky and V.I. Bondarchuk, J. Mater. Eng. Perform., 26, No. 7: 3431 (2017);
  22. P.E. Markovsky, J. Janiszewski, O.O. Stasyuk, V.I. Bondarchuk, K. Cieplak, and O.P. Karasevska, Metallogr. Microstruct. Anal., 10: 839 (2021);
  23. K.M. Golasinski, J. Janiszewski, J. Sienkiewicz, T. Plocinski, M. Zubko, P. Swiec, and E.A. Pieczyska, Metal. Mater. Trans. A, 52: 4558 (2021);
  24. I. Weiss and S.L. Semiatin, Mater. Sci. Eng. A, 243: 46 (1998);
  25. O.P. Karasevska, O.M. Ivasishin, S.L. Semiatin, and Yu.V. Matviychuk, Mater. Sci. Eng. A, 354: 121 (2003);
  26. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena (Oxford: Pergamon: 2002);
  27. J.E. Burke and D. Turnbull, Recrystallization and grain growth, Progress in Metal Physics, vol. 3, p. 220 (1952);
  28. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena (Oxford: Pergamon: 2004);
  29. О.М. Іvasishin, P.E. Markovsky, D.G. Savvakin, O.О. Stasiuk, V.A. Golub, V.І. Mirnenko, S.H. Sedov, V.А. Kurban, and S.L. Antonyuk, Microstructure and properties of titanium-based materials promising for antiballistic protection, Prog. Phys. Met., 20, No. 2: 285 (2019);
  30. О.М. Ivasishin, P.E. Markovsky, D.G. Savvakin, О.О. Stasiuk, and S. Prikhodko, Proc. 14th World Conference on Ti (10–15 June, 2019, Nantes, France) (MATEC Web of Conferences), vol. 321, p. 11028 (2020);
  31. O.M. Ivasishin, P.E. Markovsky, D.G. Savvakin, O.O. Stasyuk, S.D. Sitzman, M. Norouzi Rad, and S. Prikhodko, J. Mater. Process. Technol., 269: 172 (2019);
  32. P.E. Markovsky, O.M. Ivasishin, D.G. Savvakin, V.I. Bondarchuk, and S. Prikhodko, J. Mater. Eng. Perform., 28, No. 9: 5772 (2019);
  33. J.M. Bennett, E.J. Pickering, J.S. Barnard, D. Rugg, H.J. Stone, and N.G. Jones, Mater. Characteriz., 142: 523 (2018);
  34. K. Bartha, J. Stráský, A. Veverková, J. Veselý, and M. Janeček, Mater. Lett., 309: 131276 (2022);
  35. G.K. Williamson and W.H. Hall, Acta Metall., 1: 22 (1953);
  36. M. Marciszko, Diffraction Study of Mechanical Properties and Residual Stresses Resulting from Surface Processing of Polycrystalline Materials (Ph.D. Thesis) (Ecole Nationale Supérieure d’Arts et Métiers, Paris; University of Science and Technology, Krakow: 2013);
  37. Z. Chen, Y. Yang, and H. Jiao, Some Applications of Electron Back Scattering Diffraction (EBSD) in Materials Research, Scanning Macroscopy (Ed. V. Kazmiruk) (Rijeka: INTECH: 2012), p. 55;
  38. B. Qian, M. Yang, L. Lilensten, P. Vermaut, F. Sun, and F. Prima, Mater. Res. Lett., 10, No. 2: 45 (2022);
  39. P.E. Markovsky, V.I. Bondarchuk, Yu.V. Matviychuk, and O.P. Karasevska, Trans. Nonferrous Met. Soc. China, 24, No. 5: 1365 (2014);
  40. Ozan, Yu. Li, J. Lin, Ya. Zhang, H. Jiang, and C. Wen, Mater. Sci. Eng. A, 719, No. 14: 112;
  41. I.S. Aliiev, I.G. Zhbankov, L.V. Tagan, and A.A. Shvets, Obrabotka Materialov Davleniem, No. 1 (34): 50 (2013) (in Russian);
  42. Y.-X. Du, X.-L. Yang, Z.-S. Li, F. Hao, Y.-C. Mao, S.-Q. Li, X.-H. Liu, Y. Feng, and Z.-M. Yan, Trans. Nonferrous Met. Soc. China, 31: 1641 (2021);
  43. Tensile Testing (Ed. J.R. Davis) (Materials Park, Ohio: ASM International: 2004).
  44. S.L. Semiatin, Metall. Mater. Trans. A, 51, No. 6: 2593 (2020);
  45. P.E. Markovsky, Mater. Sci. Forum, 941: 1384 (2018);
  46. Q.V. Viet, A.A. Gazder, A.A. Saleh, P.E. Markovsky, O.M. Ivasishin, and E.V. Pereloma, J. Alloys and Compounds, 585, No. 1: 245 (2014);