Microstructure of Co–Cr Dental Alloys Manufactured by Casting and 3D Selective Laser Melting

M. O. Vasylyev$^1$, B. M. Mordyuk$^{1,2}$, S. M. Voloshko$^2$, and P. O. Gurin$^3$

$^1$G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine
$^3$P. L. Shupyk National Healthcare University of Ukraine, 9 Dorogozhytska Str., UA-04112 Kyiv, Ukraine

Received 25.03.2022; final version — 15.04.2022 Download PDF logo PDF

Abstract
The review analyses the microstructure of the commercial Co–Cr–(Mo, W) dental alloys fabricated by 3D digital selective laser melting (SLM), which is the most promising technique among the emerging additive fabrication technologies used for metal products manufacturing in dentistry. In this regard, the main goal is to compare the microstructures of the metal dental products produced by two currently used technologies, namely, conventional casting and SLM. We consider the latest research published from 2013 to 2022. The microstructures are evaluated using optical microscopy (OM), scanning electron microscopy with energy-dispersive x-ray spectroscopy (SEM–EDS), x-ray diffractometry (XRD), electron backscatter diffraction (EBSD) pattern analysis, and atomic force microscopy (AFM). The microstructure analysis allows concluding whether the SLM fabrication process is suitable for dental applications. As shown, the microstructure of the Co–Cr dental alloys depends on both the chemical composition of the samples and the parameters of the manufacturing technique used. Experimental results have proven that, in contrast to the conventional casting, the SLM-fabricated specimens display superior microstructure due to complete local melting and rapid solidification. Additionally, the SLM process minimizes residual flaws and porosity. As a result, SLM allows producing the dense material comprising homogeneous fine-grain microstructure.

Keywords: additive manufacturing technologies, 3D laser melting, microstructure, Co–Cr alloys, dentistry.

Citation: M. O. Vasylyev, B. M. Mordyuk, S. M. Voloshko, and P. O. Gurin, Microstructure of Co–Cr Dental Alloys Manufactured by Casting and 3D Selective Laser Melting, Progress in Physics of Metals, 23, No. 2: 337–359 (2022)


References  
  1. W. Riaz, A. Ayesha, and S. Aziz, Professional Med. J., 25: 1261 (2018); https://doi.org/10.29309/TPMJ/18.4488
  2. М.O. Vasylyev, I.M. Makeeva, and P.O. Gurin, Prog. Phys. Met., 20, No. 2: 310 (2019); https://doi.org/10.15407/ufm.20.02.310
  3. M.O. Vasylyev, V. S. Filatova, I. M. Makeeva, and P.O. Gurin, Metallofiz. Noveishie Tekhnol., 43, No. 9: 1139 (2021); https://doi.org/10.15407/mfint.43.09.1139
  4. E. Haynes, Metal Alloy, U.S.P. Office, Washington, DC, USA, 1907.
  5. A.K. Mishra, M.A. Hamby, and W.B. Kaiser, Metallurgy, Microstructure, Chemistry and Mechanical Properties of a New Grade of Cobalt–Chromium Alloy before and after Porous-Coating (West Conshohocken, PA, USA: ASTM: 1999).
  6. A. Marti, Injury, 31, Suppl. 4: D18 (2000); https://doi.org/10.1016/S0020-1383(00)80018-2
  7. Youssef S. Al Jabbari, J. Adv. Prosthodont., 6, No. 2: 138 (2014); https://doi.org/10.4047/jap.2014.6.2.138
  8. A. Vaicelyte, C. Janssen, M. Le Borgne, and B. Grosgogeat, Crystals, 10, No. 12: 1151 (2020); https://doi.org/10.3390/cryst10121151
  9. M. Podrrez-Radziszewska, K. Haimann, W. Dudzinski, and M. Morawska-Soltysik, Arch. Foundry Eng., 10: 59 (2010).
  10. P. Gupta, J. Phase Equilibria and Diffusion, 26: 87 (2005); https://doi.org/10.1361/15477030522608
  11. Yu.N. Petrov, G.I. Prokopenko, B.N. Mordyuk, M.A. Vasylyev, S.M. Voloshko, V.S. Skorodzievski, and V.S. Filatova, Mater. Sci. Eng. C, 58: 1024 (2016); https://doi.org/10.1016/j.msec.2015.09.004
  12. R. Liu, X.Y. Li, X. Hu, and H.S. Dong, Surf. Coat. Technol., 232: 906 (2013); https://doi.org/10.1016/j.surfcoat.2013.06.122
  13. H. Nesse, D.M.A. Ulstein, M.M. Vaage, and M. Filo, J. Prosthet. Dent., 114: 686 (2015); https://doi.org/10.1016/j.prosdent.2015.05.007
  14. E.-H. Kim, D.-H. Lee, S.-M. Kwon, and T.-Y. Kwon, J. Prosthet. Dent., 117: 393 (2016); https://doi.org/10.1016/j.prosdent.2016.08.002
  15. R. Van Noort and M. Barbour, Introduction to Dental Materials (Elsevier Health Sciences: 2014).
  16. B. Berman, Business Horizons, 55: 155 (2012); https://doi.org/10.1016/j.bushor.2011.11.003
  17. P. Wu, J. Wang, and X. Wang, Automat. Constr., 68: 21 (2016); https://doi.org/10.1016/j.autcon.2016.04.005
  18. B. Bhushan and M. Caspers, Microsyst. Technol., 23: 1117 (2017); https://doi.org/10.1007/s00542-017-3342-8
  19. D. Ngo Tuan, A. Kashani, G. Imbalzano, T.Q. Nguyen Kate, and D. Hui, Composites, Part B, 143: 172 (2018); https://doi.org/10.1016/j.compositesb.2018.02.012
  20. D.L. Rakov and R.Y. Sukhorukov, J. Mach. Manuf. Reliab., 50: 616 (2021); https://doi.org/10.3103/S1052618821070116
  21. M. Srivastava, S. Rathee, S. Maheshwari, and T. K. Kundra, Additive Manufacturing: Fundamentals and Advancements (Taylor & Francis Group: 2019).
  22. B. Dylan, F. Jeffrey, S. Gregory, and A. Ehssan, The Future of Additive Manufacturing in the U.S. Military (A Research Report Submitted to the Faculty in Partial Fulfillment of the Graduation Requirements Advisor: Dr. Paul J. Springer 17 Mar 2017).
  23. H. Kodama, Rev. Sci. Instrum., 52: 1770 (1981); https://doi.org/10.1063/1.1136492
  24. P. Ciraud, Verfahren und Vorrichtung zur Herstellung Beliebiger Gegenstande aus Beliebigem Schmelzbarem Material [Process and Device for the Manufacture of Any Object from Any Fusible Material]: German Patent DE 2263777, priority filed December 28, 1971, published July 5, 1973.
  25. R. Housholder, Molding Process, US Patent 4247508, filed December 3, 1979, published January 27, 1981.
  26. P.M. Pragana, R.F.V. Sampaio, I.M.F. Bragança, C.M.A. Silva, and P.A.F. Martins, Adv. Industrial Manuf. Eng., 2: 100032 (2021); https://doi.org/10.1016/j.aime.2021.100032
  27. J.D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, and J. Bultmann, Phys. Procedia, 12: 271 (2011); https://doi.org/10.1016/j.phpro.2011.03.035
  28. E. Costa Santos, M. Shiomi, K. Osakada, and T. Laoui, Int. J. Machine Tools & Manufacture, 46: 1459 (2006); https://doi.org/10.1016/j.ijmachtools.2005.09.005
  29. M. Gupta, Metals, 7: 403 (2017); https://doi.org/10.3390/met7100403
  30. C. Buchanan, V.-P. Matilainen, A. Salminen, and L. Gardner, J. Construct. Steel Res., 136: 35 (2017); http://dx.doi.org/10.1016/j.jcsr.2017.05.002
  31. B. Vandenbroucke and J. P. Kruth, Rapid Prototyping J., 13: 196 (2007); https://doi.org/10.1108/13552540710776142
  32. L. Ardelean, L. Reclaru, C. Bortun, B. Ghiban, and L.C. Rusu, Metalurgia Int., 15: 31 (2010).
  33. W.-F. Lee, J.-C. Wang, C.-Y. Hsu, and P.-W. Peng, J. Prosthetic Dentistry, 127: 115 (2022); https://doi.org/10.1016/j.prosdent.2020.06.038
  34. R. Van Noort, Dent. Mater., 28: 3 (2012); https://doi.org/10.1016/j.dental.2011.10.014
  35. W. Wei, Y. Zhou, W. Liu, N. Li, I. Yan, and H. Li, J. Mater. Eng. Perform., 27: 5312 (2018); https://doi.org/10.1007/s11665-018-3520-6
  36. Y. Zhou, N. Li, J. Yan, and Q. Zeng, J. Prosthetic Dentistry, 120: 617 (2018); https://doi.org/10.1016/j.prosdent.2017.11.015
  37. M. Kassapidou, L. Hjalmarsson, C.B. Johansson, P.H. Johansson, E. Morisbak, A. Wennerberg, and V. F. Stenport, Dental Mater., 36, No. 11: e35236 (2020). https://doi.org/10.1016/j.dental.2020.08.012
  38. H.T. Im, D.H. Kim, Y.D. Kim, J.O. Fadonougbo, C. Bin, J.-Y. Park, K.B. Park, J.-W. Kang, H.-S. Kang, and H.-K. Park, Mater. Characterization, 186: 111767 (2022); https://doi.org/10.1016/j.matchar.2022.111767
  39. T. Barbin, D.V. Velôso, L. Del Rio Silva, G.A. Borges, A.G.C. Presotto, V.A.R. Barão, and M.F. Mesquita, 108: 103821 (2020); https://doi.org/10.1016/j.jmbbm.2020.103821
  40. E.D. Rekow, Dental Mater., 36: 9 (2020); https://doi.org/10.1016/j.dental.2019.08.10
  41. T. Koutsoukis, S. Zinelis, G. Eliades, K. Al-Wazzan, and M.A. Rifaiy, Y.S. Al Jabbari, J. Prosthodont., 24, No. 4: 303 (2015); https://doi.org/10.1111/jopr.12268
  42. K.P. Krug, A.W. Knauber, and F.P. Nothdurft, Clin. Oral Investig., 19: 401 (2015); https://doi.org/10.1007/s00784-014-1233-2
  43. M. Revilla-León and M. Özcan Curr. Oral Health Rep., 4: 201 (2017); https://doi.org/10.1007/s40496-017-0152-0
  44. F.Y. Liao, G. Chen, C.X. Gao, and P.Z. Zhu, Adv. Eng. Mater., 4: 1801013 (2019); https://doi.org/10.1002/adem.201801013
  45. https://www.bego.com
  46. A. Takaichi, Suyalatu, T. Nakamoto, N. Joko, N. Nomura, Y. Tsutsumi, S. Migita, H. Doi, S. Kurosu, A. Chiba, N. Wakabayashi, Y. Igarashi, and T. Hanawa, J. Mech. Behavior Biomed. Mater., 21: 67 (2013); https://doi.org/10.1016/j.jmbbm.2013.01.021
  47. A. Simchi, Mater. Sci. Eng. A, 428: 148 (2006); https://doi.org/10.1016/j.msea.2006.04.117
  48. P. Huang and H. F. Lopez, Mater. Lett., 39: 249 (1999); https://doi.org/10.1016/S0167-577X(99)00022-1
  49. X.-Z. Xin, J. Chen, N. Xiang, and B. Wei, Cell Biochem. Biophys., 67: 983 (2013); https://doi.org/10.1007/s12013-013-9593-9
  50. H.R. Kim, S.-H. Jang, Y.K. Kim, J.S. Son, B.K. Min, K.-H. Kim, and T.-Y. Kwon, Mater., 9: 596 (2016); https://doi.org/10.3390/ma9070596
  51. C.E. Savencu, L. Porojan, M. Bîrdeanu, A. Boloș, S. Porojan, A. Antoniac, and S. Gradinaru, Defect Diffus. Forum, 376: 1 (2017); https://doi.org/10.4028/www.scientific.net/DDF.376.1
  52. X. Dong, Y. Zhou, Q. Sun, Y.T. Qu, H.J. Shi, W.B. Liu, H.B. Peng, B. Zhang, S. Xu, J. Yan, and N. Li, Mater. Sci. Eng. A, 795: 140000 (2020); https://doi.org/10.1016/j.msea.2020.140000
  53. X. Xing, Q. Hu, Y. Liu, Y.H. Wang, and H. Cheng, J. Prosthetic Dentistry, 127: 497 (2022); https://doi.org/10.1016/j.prosdent.2021.11.019
  54. G.B. Bang, J.H. Park, W.R. Kim, S.-K. Hyun, H.-K. Park, T. W. Lee, and H.G. Kim, Mater. Sci. Eng. A, 841: 143020 (2022); https://doi.org/10.1016/j.msea.2022.143020