Computer Modelling of Metal Nanoparticles Adsorbed on Graphene

O. V. Khomenko, A. A. Biesiedina, K. P. Khomenko, and R. R. Chernushchenko

Sumy State University, 2 Rymsky-Korsakov Str., UA-40007 Sumy, Ukraine

Received 03.03.2022; final version — 11.04.2022 Download PDF logo PDF

Abstract
The influence of deposited Al, Pd, Co, Au, Ni atoms on a single-layer graphene substrate is investigated using computer simulations. The computer modelling of spraying nanoparticles on the basis of molecular dynamics method is implemented using the NVIDIA®CUDATM technique. According to the results of model calculations, the general behaviour of the system is investigated. The experiments are performed to study the sputtering of atoms of different metals under different initial conditions of the system. Based on these sprays, the behaviour at the beginning of the interaction of the deposited atoms with the substrate is analysed. The time dependences of the lateral position of nanoparticles’ centre of mass and the substrate force throughout the experiment for different sprayed materials are compared. The behaviour of total and potential energies, temperature and momentum of the system is studied. As shown, there is a jump in total energy and temperature as well as a change in the behaviour of the momentum and the substrate force when carbon atoms of graphene are reached for all depositions.

Keywords: computer model, molecular dynamics, sputtering, graphene, nanoparticle, atomic force microscopy.

Citation: O. V. Khomenko, A. A. Biesiedina, K. P. Khomenko, and R. R. Chernushchenko, Computer Modelling of Metal Nanoparticles Adsorbed on Graphene, Progress in Physics of Metals, 23, No. 2: 239–267 (2022)


References  
  1. Fundamentals of Friction and Wear on the Nanoscale (Eds. E. Gnecco and E. Meyer) (Cham: Springer: 2015); https://doi.org/10.1007/978-3-319-10560-4
  2. A.V. Khomenko, N.V. Prodanov, K.P. Khomenko, and D.S. Troshchenko, Tribological properties of nanodimensional systems containing carbon surfaces, J. Nano- Electron. Phys., 6, No. 1: 01012 (2014).
  3. A. Khomenko, M. Zakharov, and B.N.J. Persson, Frictional anisotropy of Al, Pt, and Pd Nanoparticles on a graphene substrate, Tribol. Lett., 67, No. 4: 113 (2019); https://doi.org/10.1007/s11249-019-1226-z
  4. O. Mazur and L. Stefanovich, Pressure effect on the formation kinetics of ferroelectric domain structure under first order phase transitions, Physica D, 424: 132942 (2021); https://doi.org/10.1016/j.physd.2021.132942
  5. O.V. Fedchenko, A.I. Saltykova, and S.I. Protsenko, Influence of substrate on magnetoresistive and magneto-optical properties of Co/Fe film system, J. Nano- Electron. Phys., 4, No. 3: 03016 (2012).
  6. A.D. Pogrebnjak, A.G. Ponomarev, A.P. Shpak, and Yu.A. Kunitskii, Application of micro- and nanoprobes to the analysis of small-sized 3D materials, nanosystems, and nanoobjects, Phys.-Usp., 55, No. 3: 270 (2012); https://doi.org/10.3367/UFNE.0182.201203D.0287
  7. G. Binnig and Н. Rohrer, Scanning tunnelling microscopy, Helvetica Phys. Acta, 55: 726 (1982); https://doi.org/10.5169/seals-115309
  8. J.P. Spatz, S. Sheiko, M. Moller, R.G. Winkler, P. Reineker, and O. Marti, Nanotechnology, 6: 40 (1995); https://doi.org/10.1088/0957-4484/6/2/002
  9. R. Lüthi, E. Meyer, L. Howald, H. Haefke, D. Anselmetti, M. Dreier, M. Ruetschi, Т. Bonner, R.M. Overney, J. Frommer, and H.-J. Güntherodt, Progress in nanocontact dynamic force microscopy, J. Vac. Sci. Technol., 12, No. 3: 1673 (1994); https://doi.org/10.1116/1.587260
  10. Springer Handbook of Nanotechnology (Ed. B. Bhushan) (Berlin–Heidelberg: Springer-Verlag: 2010); https://doi.org/10.1007/978-3-642-02525-9
  11. I. Simon, A. Savitsky, R. Mülhaupt, V. Pankov, and C. Janiak, Nickel nanoparticle-decorated reduced graphene oxideWO3 nanocomposite — a promising candidate for gas sensing, Beilstein J. Nanotechnol, 12, No. 28: 343 (2021); https://doi.org/10.3762/bjnano.12.28
  12. T.M. Radchenko, I.Yu. Sahalianov, V.A. Tatarenko, Yu.I. Prylutskyy, P. Szroeder, M. Kempiński, and W. Kempiński, The impact of uniaxial strain and defect pattern on magnetoelectronic and transport properties of graphene, Handbook of Graphene: Growth, Synthesis, and Functionalization (Eds. E. Celasco and A. Chaika) (Beverly, MA: Scrivener Publishing LLC: 2019), Vol. 1, Ch. 14, p. 451; https://doi.org/10.1002/9781119468455.ch14
  13. T.M. Radchenko, V.A. Tatarenko, and G. Cuniberti, Effects of external mechanical or magnetic fields and defects on electronic and transport properties of graphene, Mater. Today: Proc., 35, Pt. 4: 523 (2021); https://doi.org/10.1016/j.matpr.2019.10.014
  14. T.M. Radchenko, I.Yu. Sahalianov, V.A. Tatarenko, Yu.I. Prylutskyy, P. Szroeder, M. Kempiński, and W. Kempiński, Strain- and adsorption-dependent electronic states and transport or localization in graphene, Springer Proceedings in Physics: Nanooptics, Nanophotonics, Nanostructures, and Their Applications (Eds. O. Fesenko and L. Yatsenko) (Cham, Switzerland: Springer: 2018), Vol. 210, Ch. 3, p. 25; https://doi.org/10.1007/978-3-319-91083-3_3
  15. P. Szroeder, I.Yu. Sagalianov, T.M. Radchenko, V.A. Tatarenko, Yu.I. Prylutskyy, and W. Strupiński, Effect of uniaxial stress on the electrochemical properties of graphene with point defects, Appl. Surf. Sci., 442: 185 (2018); https://doi.org/10.1016/j.apsusc.2018.02.150
  16. P. Szroeder, I. Sahalianov, T. Radchenko, V. Tatarenko, and Yu. Prylutskyy, The strain- and impurity-dependent electron states and catalytic activity of graphene in a static magnetic field, Optical Mater., 96: 109284 (2019); https://doi.org/10.1016/j.optmat.2019.109284
  17. X. Li, L. Tao, Z. Chen, H. Fang, X. Li, X. Wang, J.-B. Xu, and H. Zhu, Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics, Appl. Phys. Lett., 4: 021306 (2017); https://doi.org/10.1063/1.4983646
  18. K.S. Novoselov and A.H. Castro Neto, Two-dimensional crystals-based heterostructures: materials with tailored properties, Phys. Scr., 146: 014006 (2012); https://doi.org/10.1088/0031-8949/2012/T146/014006
  19. G.R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M.S. Strano, V.R. Cooper, L. Liang, S.G. Louie, E. Ringe, W. Zhou, S.S. Kim, R.R. Naik, B.G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J.A. Schuller, R.E. Schaak, M. Terrones, and J.A. Robinson, Recent advances in two-dimensional materials beyond graphene, ACS Nano, 9, No. 12: 11509 (2015); https://doi.org10.1021/acsnano.5b05556
  20. V.B. Mohan, K.-T. Lau, D. Hui, and D. Bhattacharyya, Graphene-based materials and their composites: a review on production, applications and product limitations, Composites Part B, 142: 200 (2018); https://doi.org/10.1016/j.compositesb.2018.01.013
  21. T.M. Radchenko, V.A. Tatarenko, I.Yu. Sagalianov, and Yu.I. Prylutskyy, Configurations of structural defects in graphene and their effects on its transport properties, Graphene: Mechanical Properties, Potential Applications and Electrochemical Performance (Ed. Bruce T. Edwards) (New York: Nova Science Publishers, Inc.: 2014), Ch. 7, p. 219; https://novapublishers.com/shop/graphene-mechanical-properties-potential-applications-and-electrochemical-performance
  22. A.G. Solomenko, R.M. Balabai, T.M. Radchenko, and V.A. Tatarenko, Functionalization of quasi-two-dimensional materials: chemical and strain-induced modifications, Prog. Phys. Met., 23, No. 2: 147 (2022); https://doi.org/10.15407/ufm.23.02.147
  23. M. Neek-Amal, R. Asgari, and M. Tabar, The formation of atomic nanoclusters on graphene sheets, Nanotechnology, 20, No. 13: 135602 (2009); https://doi.org/10.1088/0957-4484/20/13/135602
  24. V.H. Crespi, Soggy origami, Nature, 462: 858 (2009); https://doi.org/10.1038/462858a
  25. N. Prodanov, SurfaceGrowth: User Guide; https://github.com/prodk/SurfaceGrowthConsole/blob/master/SurfaceGrowthConsole/SurfaceGrowthProto.h
  26. M. Griebel, S. Knapek, and G. Zumbusch, Numerical Simulation in Molecular Dynamics (Berlin–Heidelberg: Springer-Verlag: 2007); https://doi.org/10.1007/978-3-540-68095-6
  27. X.W. Zhou, H.N.G. Wadley, R.A. Johnson, D.J. Larson, N. Tabat, A. Cerezo, A.K. Petford-Long, G.D.W. Smith, P.H. Clifton, R.L. Martens, and T.F. Kelly, Atomistic scale structure of sputtered metal multilayers, Acta Mater., 49, No. 19: 4005 (2001); https://doi.org/10.1016/S1359-6454(01)00287-7
  28. ASM Handbook, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (Metals Park, Ohio: ASM International: 1992), Vol. 2.
  29. N. Sasaki, K. Kobayashi, and M. Tsukada, Atomic-scale friction image of graphite in atomic-force microscopy, Phys. Rev. B, 54: 2138 (1996); https://doi.org/10.1103/PhysRevB.54.2138
  30. H. Berendsen, J. Postma, W. van Gunsteren, A. DiNola, and J. Haak, Molecular dynamics with coupling to an external bath, J. Chem. Phys., 81, No. 8: 3684 (1984); https://doi.org/10.1063/1.448118
  31. A.V. Khomenko, N.V. Prodanov, and B.N.J. Persson, Atomistic modelling of friction of Cu and Al nanoparticles adsorbed on graphene, Condens. Matter Phys., 16, No. 3: 33401 (2013); https://doi.org/10.5488/CMP.16.33401
  32. A.V. Khomenko, I.A. Lyashenko, and V.N. Borisyuk, Self-similar phase dynamics of boundary friction, Ukr. J. Phys., 5, No. 11: 1139 (2009).
  33. W. Tian, X. Liu, and W. Yu, Research progress of gas sensor based on graphene and its derivatives: a review, Appl. Sci., 8, No. 7: 1118 (2018); https://doi.org/10.3390/app8071118
  34. M. Vasilopoulou, L.C. Palilis, D.G. Georgiadou, A.M. Douvas, P. Argitis, S. Kennou, L. Sygellou, G. Papadimitropoulos, I. Kostis, N.A. Stathopoulos, and D. Davazoglou, Reduction of tungsten oxide: a path towards dual functionality utilization for efficient anode and cathode interfacial layers in organic light-emitting diodes, Adv. Funct. Mater., 21: 1489 (2011); https://doi.org/10.1002/adfm.201002171
  35. Q. Li, W. Liu, G. Cao, X. Li, and X. Wang, A study of gas sensing behaviour of metal-graphene contact with transfer length method, Appl. Phys. Lett., 108, No. 22: 221604 (2016); https://doi.org/10.1063/1.4952619
  36. P.T. Yin, S. Shah, M. Chhowalla, and K. Lee, Design, synthesis, and characterization of graphene–nanoparticle hybrid materials for bioapplications, Chem. Rev., 115, No. 7: 2483 (2015); https://doi.org/10.1021/cr500537t
  37. A. Mirzaei, S.S. Kim, and H.W. Kim, Resistance-based He2S gas sensors using metal oxide nanostructures: a review of recent advances, J. Hazard. Mater., 357: 314 (2018); https://doi.org/10.1016/j.jhazmat.2018.06.015
  38. S. Ghosal and P. Bhattacharyya, A review on the sensing performances for three different ternary hybrid (Pd/RGO/TiO2-NFs, Pd/RGO/MnO2-NFs and Pd/RGO/WO3-NFs) gas sensor device structure, CSI Trans, 8: 117 (2020); https://doi.org/10.1007/s40012-020-00299-z
  39. W. Humphrey, A. Dalke, and K. Schulten, VMD: visual molecular dynamics, J. Mol. Graphics, 14, No. 1: 33 (1996); https://doi.org/10.1016/0263-7855(96)00018-5
  40. A.V. Khomenko and I.A. Lyashenko, A stochastic model of stick-slip boundary friction with account for the deformation effect of the shear modulus of the lubricant, J. Frict. Wear, 31: 308 (2010); https://doi.org/10.3103/S1068366610040100
  41. O.V. Yushchenko and A.Yu. Badalyan, Magnetic first-order phase transition in nano-cluster systems with the framework of Landau approximation, J. Nano- Electron. Phys., 9, No. 4: 04022 (2017); https://doi.org/10.21272/jnep.9(4).04022
  42. A.A. Goncharov, A.N. Yunda, H. Komsta, and P. Rogalski, Effect of structure on physicmechanical properties of transition metal diboride films, Acta Phys. Pol. A, 132, No. 2: 270 (2017); https://doi.org/10.12693/APhysPolA.132.270
  43. A.V. Khomenko and I.A. Lyashenko, Temperature dependence effect of viscosity on ultrathin lubricant film melting, Condens. Matter Phys., 9, No. 4: 695 (2006); https://doi.org/10.5488/CMP.9.4.695
  44. A.V. Khomenko and I.A. Lyashenko, Hysteresis phenomena at ultrathin lubricant film melting in the gas of first-order phase transition, Phys. Lett. A, 366, Nos. 1–2: 165 (2007); https://doi.org/10.1016/j.physleta.2007.02.010
  45. A.V. Khomenko, D.S. Troshchenko, L.S. Metlov, and P.E. Trofimenko, Features of the phase-kinetics of metals’ fragmentation at the severe plastic deformation, Nanosistemi, Nanomateriali, Nanotehnologii, 15, No. 2: 203 (2017); https://doi.org/10.15407/nnn.15.02.0203