Functionalization of Quasi-Two-Dimensional Materials: Chemical and Strain-Induced Modifications

A. G. Solomenko$^1$, R. M. Balabai$^2$, T. M. Radchenko$^1$, and V. A. Tatarenko$^1$

$^1$G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$Kryvyi Rih State Pedagogical University, 54 Gagarina Ave., UA-50086 Kryvyi Rih, Ukraine

Received 02.02.2022; final version — 29.04.2022 Download PDF logo PDF

Abstract
Among the family of currently known promising quasi-two-dimensional (2D) materials, the authors of this survey concentrate on the problem of functionalization of the graphene- and phosphorene-based structures. In most cases, the modification of their properties occurs through the covalent or noncovalent surface functionalization and mechanical affects. The atomic structures and some physicochemical features of 2D materials possessing novel properties as compared to their bulk counterparts are analysed. Their main advantages are the thickness of one or more atoms, the absence of surface-broken bonds, high mobility of charge carriers, the flexibility, the ability to be combined artificially into coplanar (lateral) or lamellar heterostructures, as well as the possibility to manipulate widely the band-gap changing from the semi-conducting state even into the semi-metallic one (or vice versa) when needed. In order to reveal new factors affecting the electronic properties of 2D materials by means of the computational experiment using the author’s (self-constructed) software code, a series of studies are carried out. They are the calculations of the spatial distribution of valence electrons’ density, the electron densities of states, the band-gap widths, Coulomb potentials along selected directions, the charge values in regions of different-size material, the dielectric matrices, the macroscopic relative permittivities, and absorption spectra. A series of recent studies, which the authors carried out modelling the electronic and transport properties of single- or multilayer graphene films subjected to deformation or/and magnetic fields and containing different-type (point- or/and linear-acting) defects is reviewed. Analysing the obtained results and revealed effects, it is claimed that the uniaxial tensile deformations or shear deformations along with their combinations as well as the structural imperfections (mainly, the mutually configured defects) can be useful for achieving the new level of functionalization of graphene. So, for modification of its electrotransport properties through tuning the band-gap value as much as it is enough to achieve the graphene transformation from the zero-band-gap semi-metallic state into the semi-conducting state and even reach the gap values, which are substantially higher than that for some materials (including silicon) currently used widely in the nanoelectronic devices. The strain- and defect-induced electron–hole asymmetry and anisotropy of conductivity and its nonmonotony as a function of deformation suggest a confidence in manipulating the electrotransport properties of graphene-like and beyond quasi-2D materials through a variety of both strains and defects. The use of reviewed and analysed results serves as a significant step in improving the properties of the considered materials in order to implement the multifunctional applications of them in the immediate prospect.

Keywords: two-dimensional materials, point and line defects, graphene, phosphorene, electronic structure, electronic transport, density functional theory, pseudo-potential from the first principles, straintronics, band gap.

Citation: A. G. Solomenko, R. M. Balabai, T. M. Radchenko, and V. A. Tatarenko, Functionalization of Quasi-Two-Dimensional Materials: Chemical and Strain-Induced Modifications, Progress in Physics of Metals, 23, No. 2: 147–238 (2022)


References  
  1. R.W. Siegel, Nanostructured materials -mind over matter-, Nanostructured Mater., 3, Nos. 1–6: 1 (1993); https://doi.org/10.1016/0965-9773(93)90058-J
  2. L.E. Murr, Classifications and structures of nanomaterials, Handbook of Materials Structures, Properties, Processing and Performance (Cham: Springer: 2015), p. 719; https://doi.org/10.1007/978-3-319-01815-7_45
  3. J.N. Tiwari, R.N. Tiwari, and K.S.Kim, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices, Prog. Mater. Sci., 57, No. 4: 724 (2012); https://doi.org/10.1016/j.pmatsci.2011.08.003
  4. J. He, L. Tao, H. Zhang, B. Zhou, and J. Li, Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers, Nanoscale, 11, No. 6: 2577 (2019); https://doi.org/10.1039/C8NR09368G
  5. U. Alli, S.J. Hettiarachchi, and S. Kellici, Chemical functionalisation of 2D materials by batch and continuous hydrothermal flow synthesis, Chem. Eur. J., 26, 29: 6447 (2020); https://doi.org/10.1002/chem.202000383
  6. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306: 666 (2004); https://doi.org/10.1126/science.1102896
  7. N.R. Glavin, R. Rao, V. Varshney, E. Bianco, A. Apte, A. Roy, E. Ringe, and P.M. Ajayan, Emerging applications of elemental 2D materials, Adv. Mater., 32, No. 7: 1904302 (2020); https://doi.org/10.1002/adma.201904302
  8. R.M. Balabai, A.V. Zdeschyts, and A.G. Lubenets, Spectral and barrier properties of heterocomposites based on poly (para-phenylene) disposed between the silicon films, Molecular Crystals and Liquid Crystals, 639, No. 1: 39 (2016); https://doi.org/10.1080/15421406.2016.1254513
  9. R.M. Balabaі and A.G. Lubenets, Lateral junctions based on graphene with different doping regions, J. Nano- Electron. Phys., 9, No. 5: 05017 (2017); https://doi.org/10.21272/jnep.9(5).05017
  10. R.M. Balabaі, O.A. Konoval, and A.G. Solomenko, Photonic and electronic properties of lateral heterostructures based on functionalized graphene under action of static pressure, Sensor Electron. Microsystem Technol., 15, No. 3: 58 (2018); https://doi.org/10.18524/1815-7459.2018.3.140397
  11. R. Balabai, A. Solomenko, and D. Kravtsova, Electronic and photonic properties of lateral heterostructures based on functionalized graphene depending on the degree of fluorination, Mol. Cryst. Liquid Cryst., 673, No. 1: 125 (2018); https://doi.org/10.1080/15421406.2019.1578502
  12. R. Balabai and A. Solomenko, Flexible 2D layered material junctions, Appl. Nanosci., 9: 1011 (2019); https://doi.org/10.1007/s13204-018-0709-9
  13. R.M. Balabaі and A.G. Solomenko, Use of the adsorbed organic molecules as dopants for creation of the built-in lateral p-n junctions in a sheet of black phosphorene, J. Nano- Electron. Phys., 11, No. 5: 05033 (2019); https://doi.org/10.21272/jnep.11(5).05033
  14. T.M. Radchenko, V.A. Tatarenko, and G. Cuniberti, Effects of external mechanical or magnetic fields and defects on electronic and transport properties of graphene, Mater. Today: Proc., 35, Pt. 4: 523 (2021); https://doi.org/10.1016/j.matpr.2019.10.014
  15. I.Yu. Sahalianov, T.M. Radchenko, V.A. Tatarenko, G. Cuniberti, and Yu.I. Prylutskyy, Straintronics in graphene: extra large electronic band gap induced by tensile and shear strains, J. Appl. Phys., 126, No. 5: 054302 (2019); https://doi.org/10.1063/1.5095600
  16. I.Yu. Sahalianov, T.M. Radchenko, V.A. Tatarenko, G. Cuniberti, Sensitivity to strains and defects for manipulating the conductivity of graphene, EPL, 132, No. 4: 48002 (2020); https://doi.org/10.1209/0295-5075/132/48002
  17. W.A. Harrison, Solid State Theory (New York: Dover Publications Inc.: 1980).
  18. Theory of the Inhomogeneous Electron Gas (Eds. S. Lundqvist and N.H. March (New York: Springer Science + Business Media, LLC: 1983).
  19. P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. B, 136: 864 (1964); https://doi.org/10.1103/PhysRev.136.B864
  20. W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140: A1133 (1965); https://doi.org/10.1103/PhysRev.140.A1133
  21. L.Y. Yastrebov and A.A. Katsnelson, Osnovy Odnoehlektronnoy Teorii Tverdogo Tela [Fundamentals of the Single-Electron Theory of Solids] (Moscow: Nauka: 1981) (in Russian).
  22. N.W. Ashcroft and N.D. Mermin, Solid State Physics: Revised Edition (Cengage Learning: 2016).
  23. D.R. Hamann, M. Schlüter, and C. Chiang, Norm-conserving pseudopotential, Phys. Rev. Lett., 43, No. 20: 1494 (1979); https://doi.org/10.1103/PhysRevLett.43.1494
  24. G.B. Bachelet, D.R. Hamann, and M. Schlüter, Pseudopotentials that work: from H to Pu, Phys. Rev. B, 26, No. 8: 4199 (1982); https://doi.org/10.1103/PhysRevB.26.4199
  25. M.V. Ryzhkov, Novyi Metod Vychisleniya Ehffektivnykh Zaryadov na Atomakh v Molekulakh, Klasterakh i Tverdykh Telakh [A New Method for Calculating Effective Charges on Atoms in Molecules, Clusters, and Solids] Zhurnal Strukturnoy Khimii, 39, No. 6: 1134 (1998) (in Russian).
  26. Y.S. Dmitriev and S.H. Semenov, Kvantovaya Khimiya  Yeyo Proshloe i Nastoiashchee [Quantum Chemistry  Its Past and Present] (Moscow: Atomyzdat: 1980) (in Russian).
  27. R.M. Aminova, Osnovy Sovremennoy Kvantovoy Khimii [Fundamentals of Modern Quantum Chemistry] (Kazan: KazGU: 2004) (in Russian).
  28. J. Ihm, A. Zunger, and M.L. Cohen, Momentum-space formalism for the total energy of solids, J. Phys. C: Solid State Phys., 12, No. 21: 4409 (1979); https://doi.org/10.1088/0022-3719/12/21/009
  29. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev. Mod. Phys., 64, No. 4: 1045 (1992); https://doi.org/10.1103/RevModPhys.64.1045
  30. G. Makov, R. Shah, and M.C. Payne, Periodic boundary conditions in ab initio calculations. II. Brillouin-zone sampling for aperiodic systems, Phys. Rev. B, 53, No. 23: 15513 (1996); https://doi.org/10.1103/PhysRevB.53.15513
  31. D.J. Chadi and M.L. Cohen, Special points in the Brillouin zone, Phys. Rev. B, 8, No. 12: 5747 (1973); https://doi.org/10.1103/PhysRevB.8.5747
  32. J.D. Joannopoulos and M.L. Cohen, Electronic properties of complex crystalline and amorphous phases of Ge and Si. I. Density of states and band structures, Phys. Rev. B, 7, No. 6: 2644 (1973); https://doi.org/10.1103/PhysRevB.7.2644
  33. H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, No. 12: 5188 (1976); https://doi.org/10.1103/PhysRevB.13.5188
  34. R.A. Evarestov and V.P. Smirnov, Special points of the Brillouin zone and their use in the solid state theory, Phys. Status Solidi B, 119, No. 1: 9 (1983); https://doi.org/10.1002/pssb.2221190102
  35. D.H. Knorre, L.F. Krylova, and V.S. Muzykantov, Fizicheskaya Khimiya [Physical Chemistry] (Moscow: Vysshaya Shkola: 1990) (in Russian).
  36. H. Sahin, O. Leenaerts, S.K. Singh, and F.M. Peeters, GraphAne: from synthesis to applications (2015); https://doi.org/10.48550/arXiv.1502.05804
  37. C. Zhou, J. Lou, J. Wang, Q. Yang, C. Liu, D. Huang, and T. Zhu, Graphene’s cousin: the present and future of graphane, Nanoscale Res. Lett., 9: 26 (2014); https://doi.org/10.1186/1556-276X-9-26
  38. J.J. Rosas, R.E. Escobedo-Morales, and E. C. Anota, First principles calculations of the electronic and chemical properties of graphene, graphane, and graphene oxide, J. Mol. Model., 17: 1133 (2011); https://doi.org/10.1007/s00894-010-0818-1
  39. F. Karlicky and M. Otyepka, Band gaps and optical spectra of chlorographene, fluorographene and graphane from G0W0, GW0 and GW calculations on top of PBE and HSE06 orbitals, J. Chem. Theory Comp., 9, No. 9: 4155 (2013); https://doi.org/10.1021/ct400476r
  40. D.K. Samarakoon, Z. Chen, C. Nicolas, and X.Q. Wang, Structural and electronic properties of fluorographene, Small, 7, No. 7: 965 (2011); https://doi.org/10.1002/smll.201002058
  41. O. Leenaerts, H. Peelaers, A.D. Hernandez-Nieves, B. Partoens, and F.M. Peeters, First-principles investigation of graphene fluoride and graphene, Phys. Rev. B, 82: 195436 (2010); https://doi.org/10.1103/PhysRevB.82.195436
  42. H. Sahin, M. Topsakal, and S. Ciraci, Structures of fluorinated graphene and their signatures, Phys. Rev. B, 83: 115432 (2011); https://doi.org/10.1103/PhysRevB.83.115432
  43. H. Sahin and S. Ciraci, Chlorine adsorption on graphene: chlorographene, J. Phys. Chem., 116: 24075 (2012); https://doi.org/10.1021/jp307006c
  44. B. Li, L. Zhou, D. Wu, H. Peng, K. Yan, Y. Zhou, and Z. Liu, Photochemical chlorination of graphene, ACS Nano, 5, No. 7: 5957 (2011); https://doi.org/10.1021/nn201731t
  45. J.T. Robinson, J.S. Burgess, C.E. Junkermeier, S.C. Badescu, T.L. Reinecke, F.K. Perkins, M.K. Zalalutdniov, J.W. Baldwin, J.C. Culbertson, P.E. Sheehan, and E.S. Snow, Properties of fluorinated graphene films, Nano Lett., 10: 3001 (2010); https://doi.org/10.1021/nl101437p
  46. M.Y. Li, C-H. Chen, Y. Shi, and L-J. Li, Heterostructures based on two-dimensional layered materials and their potential applications, Mater. Today, 19, No. 6: 322 (2015); https://doi.org/10.1016/j.mattod.2015.11.003
  47. R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T.G. Pedersen, P. Hofmann, and L. Hornekær, Bandgap opening in graphene induced by patterned hydrogen adsorption, Nature Mater., 9: 315 (2010); https://doi.org/10.1038/nmat2710
  48. Ab initio calculation: http://sites.google.com/a/kdpu.edu.ua/calculationphysics
  49. S. Das, R. Gulotty, A. Sumant, and A. Roelofs, All two-dimensional, flexible, transparent, and thinnest thin film transistor, Nano Lett., 14, No. 5: 2861 (2014); https://doi.org/10.1021/nl5009037
  50. T. Das and J-H. Ahn, Development of electronic devices based on two-dimensional materials, Flat Chem., 3: 43 (2017); https://doi.org/10.1016/j.flatc.2017.05.001
  51. D. Akinwande, N. Petrone, and J. Hone, Two-dimensional flexible nanoelectronics, Nat. Commun., 5: 5678 (2014); https://doi.org/10.1038/ncomms6678
  52. I. Papadakis, Z. Bouza, and S. Couris, Hydrogenated fluorographene: a 2D counterpart of graphane with enhanced nonlinear optical properties, J. Phys. Chem., 121: 22567 (2017); https://doi.org/10.1021/acs.jpcc.7b08470
  53. X. Yu, Sh. Zhang, H. Zeng, and Q.J. Wang, Lateral black phosphorene p–n junctions formed via chemical doping for high performance near-infrared photodetector, Nano Energy, 25: 34 (2016); https://doi.org/10.1016/j.nanoen.2016.04.030
  54. R. Frisenda, A.J. Molina-Mendoza, T. Mueller, A. Castellanos-Gomez, and S.J. Herre van der Zant, Atomically thin p–n junctions based on two-dimensional materials, Chem. Soc. Rev., 47: 3339 (2018); https://doi.org/10.1039/C7CS00880E
  55. J.-H. Yang and B.I. Yakobson, Dimensionality-suppressed chemical doping in 2D semiconductors: the cases of phosphorene, MoS2, and ReS2 from first-principles (2017); https://doi.org/10.48550/arXiv.1711.05094
  56. G. Qu, W. Liu, Y. Zhao, J. Gao, T. Xia, J. Shi, L. Hu, W. Zhou, J. Gao, H. Wang, Q. Luo, Q. Zhou, S. Liu, X.F. Yu, and G. Jiang, Improved biocompatibility of black phosphorus nanosheets by chemical modification, Angew. Chem. Int. Ed., 56: 14488 (2017); https://doi.org/10.1002%2Fanie.201706228
  57. W. Lei, G. Liu, J. Zhang, and M. Liu, Black phosphorus nanostructures: recent advances in hybridization, doping and functionalization, Chem. Soc. Rev., 46: 3492 (2017); https://doi.org/10.1039/C7CS00021A
  58. S. Feng, Z. Lin, X. Gan, R. Lv, and M. Terrones, Doping two-dimensional materials: ultra-sensitive sensors, band gap tuning and ferromagnetic monolayers, Nanoscale Horiz., 2: 72 (2017); https://doi.org/10.1039/C6NH00192K
  59. X. Han, C. Liu, J. Sun, A.D. Sendek, and W. Yang, Density functional theory calculations for evaluation of phosphorene as a potential anode material for magnesium batteries, RSC Adv., 8: 7196 (2018); https://doi.org/10.1039/C7RA12400G
  60. Y. Yi, X.-F. Yu, W. Zhou, J. Wang, and P.K. Chu, Two-dimensional black phosphorus: synthesis, modification, properties, and applications, Mater. Sci. Eng. R, 120: 1 (2017); https://doi.org/10.1016/j.mser.2017.08.001
  61. D.W. Boukhvalov, A.N. Rudenko, D.A. Prishchenko, V.G. Mazurenko, and M.I. Katsnelson, Chemical modifications and stability of phosphorene with impurities: a First principles study, Phys. Chem. Chem. Phys., 17: 15209 (2015); https://doi.org/10.1039/C5CP01901J
  62. H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, and P.D. Ye, Phosphorene: an unexplored 2D semiconductor with a high hole mobility, ACS Nano, 8, No. 4: 4033 (2014); https://doi.org/10.1021/nn501226z
  63. K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, and A.K. Geim, Room-temperature quantum Hall effect in graphene, Science, 315: 1379 (2007); https://doi.org/10.1126/science.1137201
  64. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, The electronic properties of graphene, Rev. Mod. Phys., 81: 109 (2009); https://doi.org/10.1103/RevModPhys.81.109
  65. R.G. Bai, N. Ninan, K. Muthoosamy, and S. Manickam, Graphene: a versatile platform for nanotheranostics and tissue engineering, Prog. Mat. Sci., 91: 24 (2018); https://doi.org/10.1016/j.pmatsci.2017.08.004
  66. M. Han, B. Ozyilmaz, Y. Zhang, and Ph. Kim, Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett., 98: 206805 (2007); https://doi.org/10.1103/PhysRevLett.98.206805
  67. J. Bai, X. Zhong, S. Jiang, Yu. Huang, and X. Duan, Graphene nanomesh, Nature Nanotechnol., 5: 190 (2010); https://doi.org/10.1038/nnano.2010.8
  68. E.V. Castro, K.S. Novoselov, S.V. Morozov, N.M.R. Peres, J.M.B. Lopes dos Santos, J. Nilsson, F. Guinea, A.K. Geim, and A.H. Castro Neto, Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect, Phys. Rev. Lett., 99: 216802 (2007); https://doi.org/10.1103/PhysRevLett.99.216802
  69. D. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, and K.S. Novoselov, Control of graphene’s properties by reversible hydrogenation: evidence for graphane, Science, 323: 610 (2009); https://doi.org/10.1126/science.1167130
  70. F. Ouyang, S. Peng, Z. Liu, Z. Liu, and Z. Liu, Bandgap opening in graphene antidot lattices: the missing half, ACS Nano, 5: 4023 (2011); https://doi.org/10.1021/nn200580w
  71. S.Y. Zhou, G.-H. Gweon, A.V. Fedorov, P.N. First, W.A. de Heer, D.-H. Lee, F. Guinea, A.H. Castro Neto, and A. Lanzara, Substrate-induced bandgap opening in epitaxial graphene, Nature Mater., 6: 770 (2007); https://doi.org/10.1038/nmat2003
  72. G. Giovannetti, P.A. Khomyakov, G. Brocks, P.J. Kelly, and J. van den Brink, Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations, Phys. Rev. B, 76: 079902 (2007); https://doi.org/10.1103/PhysRevB.76.073103
  73. T.M. Radchenko and V.A. Tatarenko, Statistical thermodynamics and kinetics of long-range order in metal-doped graphene, Solid State Phenom., 150: 43 (2009); https://doi.org/10.4028/www.scientific.net/SSP.150.43
  74. I.Yu. Sagalyanov, I.Yu. Prylutskyy, T.M. Radchenko, and V.A. Tatarenko, Graphene systems: methods of fabrication and treatment, structure formation, and functional properties, Usp. Fiz. Met., 11, No. 1: 95 (2010); https://doi.org/10.15407/ufm.11.01.095
  75. T.M. Radchenko and V.A. Tatarenko, A statistical-thermodynamic analysis of stably ordered substitutional structures in graphene, Physica E: Low-Dimensional Systems and Nanostructures, 42, No. 8: 2047 (2010); https://doi.org/10.1016/j.physe.2010.03.024
  76. T.M. Radchenko and V.A. Tatarenko, Kinetics of atomic ordering in metal-doped graphene, Solid State Sci., 12, No. 2: 204 (2010); https://doi.org/10.1016/j.solidstatesciences.2009.05.027
  77. T.M. Radchenko and V.A. Tatarenko, Stable superstructures in a binary honeycomb-lattice gas, Int. J. Hydrogen Energy, 36, No. 1: 1338 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.112
  78. T.M. Radchenko and V.A. Tatarenko, Ordering kinetics of dopant atoms in graphene lattice with stoichiometric compositions of 1/3 and 1/6, Materialwiss. Werkstofftech., 44, Nos. 2–3: 231 (2013); https://doi.org/10.1002/mawe.201300094
  79. T.M. Radchenko, V.A. Tatarenko, I.Yu. Sagalianov, and Yu.I. Prylutskyy, Effects of nitrogen-doping configurations with vacancies on conductivity in graphene, Phys. Lett. A, 378, Nos. 30–31: 2270 (2014); https://doi.org/10.1016/j.physleta.2014.05.022
  80. І.Yu. Sagalianov, Yu.І. Prylutskyy, Т.М. Radchenko, and V.А. Tatarenko, Energies of graphene-based substitutional structures with impurities of nitrogen or boron atoms, Metallofiz. Noveishie Tekhnol., 33, No. 12: 1569 (2011).
  81. I.Y. Sagalianov, Y.I. Prylutskyy, V.A. Tatarenko, T.M. Radchenko, O.O. Sudakov, U. Ritter, P. Scharff, and F. Le Normand, Influence of impurity defects on vibrational and electronic structure of graphene, Materialwiss. Werkstofftech., 44, Nos. 2–3: 183 (2013); https://doi.org/10.1002/mawe.201300086
  82. S.P. Repetsky, I.G. Vyshyvana, S.P. Kruchinin, and S. Bellucci, Influence of the ordering of impurities on the appearance of an energy gap and on the electrical conductance of graphene, Sci. Rep., 8, No. 1: 9123 (2018); https://doi.org/10.1038/s41598-018-26925-0
  83. S.P. Repetsky, I.G. Vyshyvana, S.P. Kruchinin, B. Vlahovic, and S. Bellucci, Effects of impurities ordering in the electron spectrum and conductivity ofgraphene, Phys. Lett. A, 384, No. 19: 126401 (2020); https://doi.org/10.1016/j.physleta.2020.126401
  84. Z.H. Ni, T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng, and Z.X. Shen, Uniaxial strain on graphene: raman spectroscopy study and band-gap opening, ACS Nano, 2: 2301 (2008); https://doi.org/10.1021/nn800459e
  85. Z.H. Ni, T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng, and Z.X. Shen, Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening, ACS Nano, 3: 483 (2009); https://doi.org/10.1021/nn8008323
  86. R.M. Ribeiro, V.M. Pereira, N.M.R. Peres, P.R. Briddon, and A.H. Castro Neto, Strained graphene: tight-binding and density functional calculations, New J. Phys., 11: 115002 (2009); https://doi.org/10.1088/1367-2630/11/11/115002
  87. V.M. Pereira, A.H. Castro Neto, and N.M.R. Peres, Tight-binding approach to uniaxial strain in graphene, Phys. Rev. B, 80: 045401 (2009); https://doi.org/10.1103/PhysRevB.80.045401
  88. V.M. Pereira and A.H. Castro Neto, Strain engineering of graphene’s electronic structure, Phys. Rev. Lett., 103: 046801 (2009); https://doi.org/10.1103/PhysRevLett.103.046801
  89. X. He, L. Gao, N. Tang, J. Duan, F. Mei, Hu Meng, F. Lu, F. Xu, X. Wang, X. Yang, W. Ge, and Bo Shen, Electronic properties of polycrystalline graphene under large local strain. Appl. Phys. Lett., 104: 243108 (2014); https://doi.org/10.1063/1.4883866
  90. X. He, L. Gao, N. Tang, J. Duan, F. Xu, X. Wang, X. Yang, W. Ge, and B. Shen, Shear strain induced modulation to the transport properties of graphene, Appl. Phys. Lett.: 105: 083108 (2014); https://doi.org/10.1063/1.4894082
  91. G. Cocco, E. Cadelano, and L. Colombo, Gap opening in graphene by shear strain, Phys. Rev. B, 81: 241412 (2010); https://doi.org/10.1103/PhysRevB.81.241412
  92. C. Lee, X. Wei, J.W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321: 385 (2008); https://doi.org/10.1126/science.1157996
  93. G. Lopez-Polin, C. Gomez-Navarro, V. Parente, F. Guinea, M. I. Katsnelson, F. Perez-Murano, and J. Gomez-Herrero, Increasing the elastic modulus of graphene by controlled defect creation, Nature Phys., 11: 26 (2015); https://doi.org/10.1038/nphys3183
  94. F. Liu, P. Ming, and J. Li, Ab initio calculation of ideal strength and phonon instability of graphene under tension, Phys. Rev. B, 76: 064120 (2007); https://doi.org/10.1103/PhysRevB.76.064120
  95. E. Cadelano, P. L. Palla, S. Giordano, and L. Colombo, Nonlinear elasticity of monolayer graphene, Phys. Rev. Lett., 102: 235502 (2009); https://doi.org/10.1103/PhysRevLett.102.235502
  96. B. Amorim, A. Cortijo, F. de Juan, A.G. Grushin, F. Guinea, A. Gutierrez-Rubio, H. Ochoa, V. Parente, R. Roldan, P. San-Jose, J. Schiefele, M. Sturla, and M.A.H. Vozmediano, Novel effects of strains in graphene and other two dimensional materials, Phys. Rep., 617: 1 (2016); https://doi.org/10.1016/j.physrep.2015.12.006
  97. C. Si, Z. Sun, and F. Liu, Strain engineering of graphene: a review, Nanoscale, 8: 3207 (2016); https://doi.org/10.1039/C5NR07755A
  98. K.S. Novoselov and A.H. Castro Neto, Two-dimensional crystals-based heterostructures: materials with tailored properties, Phys. Scr., 146: 014006 (2012); https://doi.org/10.1088/0031-8949/2012/T146/014006
  99. G. Gui, J. Li, and J. Zhong, Band structure engineering of graphene by strain: first-principles calculations, Phys. Rev. B, 78: 075435 (2008); https://doi.org/10.1103/PhysRevB.78.075435
  100. I.I. Naumov and A.M. Bratkovsky, Gap opening in graphene by simple periodic inhomogeneous strain, Phys. Rev. B, 84: 245444 (2011); https://doi.org/10.1103/PhysRevB.84.245444
  101. N. Kerszberg and P. Suryanarayana, Ab initio strain engineering of graphene: opening bandgaps up to 1 eV, RSC Adv., 5: 43810 (2015); https://doi.org/10.1039/C5RA03422A
  102. F. Guinea, M.I. Katsnelson, and A.K. Geim, Nature Phys., 6: 30 (2010); https://doi.org/10.1038/nphys1420
  103. T. Low, F. Guinea, and M.I. Katsnelson, Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering, Phys. Rev. B, 83: 195436 (2011); https://doi.org/10.1103/PhysRevB.83.195436
  104. I.Yu. Sagalianov, T.M. Radchenko, Yu.I. Prylutskyy, V.A. Tatarenko, and P. Szroeder, Mutual influence of uniaxial tensile strain and point defect pattern on electronic states in graphene, Eur. Phys. J. B, 90, No. 6: 112 (2017); https://doi.org/10.1140/epjb/e2017-80091-x
  105. T.M. Radchenko, I.Yu. Sahalianov, V.A. Tatarenko, Yu.I. Prylutskyy, P. Szroeder, M. Kempiński, and W. Kempiński, Strain- and adsorption-dependent electronic states and transport or localization in graphene, Springer Proceedings in Physics: Nanooptics, Nanophotonics, Nanostructures, and Their Applications (Eds. O. Fesenko and L. Yatsenko) (Cham, Switzerland: Springer: 2018), Vol. 210, Ch. 3, p. 25; https://doi.org/10.1007/978-3-319-91083-3_3
  106. T.M. Radchenko, V.A. Tatarenko, V.V. Lizunov, V.B. Molodkin, I.E. Golentus, I.Yu. Sahalianov, and Yu.I. Prylutskyy, Defect-pattern-induced fingerprints in the electron density of states of strained graphene layers: diffraction and simulation methods, Phys. Status Solidi B, 256, No. 5: 1800406 (2019); https://doi.org/10.1002/pssb.201800406
  107. A. Lugo-Solis and I. Vasiliev, Ab initio study of K adsorption on graphene and carbon nanotubes: role of long-range ionic forces, Phys. Rev. B, 76: 235431 (2007); https://doi.org/10.1103/PhysRevB.76.235431
  108. K.T. Chan, J.B. Neaton, and M.L. Cohen, First-principles study of metal adatom adsorption on graphene, Phys. Rev. B, 77: 235430 (2008); https://doi.org/10.1103/PhysRevB.77.235430
  109. M. Wu, E.-Z. Liu, M.Y. Ge, and J.Z. Jiang, Stability, electronic, and magnetic behaviors of Cu adsorbed graphene: a first-principles study, Appl. Phys. Lett., 94: 102505 (2009); https://doi.org/10.1063/1.3097013
  110. C. Cao, M. Wu, K. Jiang, and H.-P. Cheng, Transition metal adatom and dimer adsorbed on graphene: Induced magnetization and electronic structures, Phys. Rev. B, 81: 205424 (2010); https://doi.org/10.1103/PhysRevB.81.205424
  111. K. Nakada and A. Ishii, Migration of adatom adsorption on graphene using DFT calculation, Solid State Commun., 151, No. 1: 13 (2010); https://doi.org/10.1016/j.ssc.2010.10.036
  112. T.M. Radchenko, V.A. Tatarenko, I.Yu. Sagalianov, Yu.I. Prylutskyy, P. Szroeder, and S. Biniak, On adatomic-configuration-mediated correlation between electrotransport and electrochemical properties of graphene, Carbon, 101: 37 (2016); https://doi.org/10.1016/j.carbon.2016.01.067
  113. T.M. Radchenko, I.Yu. Sahalianov, V.A. Tatarenko, Yu.I. Prylutskyy, P. Szroeder, M. Kempiński, and W. Kempiński, The impact of uniaxial strain and defect pattern on magnetoelectronic and transport properties of graphene, Handbook of Graphene: Growth, Synthesis, and Functionalization (Eds. E. Celasco and A. Chaika) (Beverly, MA: Scrivener Publishing LLC: 2019), Vol. 1, Ch. 14, p. 451; https://doi.org/10.1002/9781119468455.ch14
  114. F. Banhart, J. Kotakoski, and A.V. Krasheninnikov, Structural defects in graphene, ACS Nano, 5: 26 (2011); https://doi.org/10.1021/nn102598m
  115. N. Blanc, F. Jean, A.V. Krasheninnikov, G. Renaud, and J. Coraux, Strains induced by point defects in graphene on a metal, Phys. Rev. Lett., 111: 085501 (2013); https://doi.org/10.1103/PhysRevLett.111.085501
  116. Y. Ren and G. Cao, Effect of geometrical defects on the tensile properties of graphene, Carbon, 103: 125 (2016); https://doi.org/10.1016/j.carbon.2016.03.017
  117. X. He, Q.S. Bai, and J.X. Bai, Molecular dynamics study of the tensile mechanical properties of polycrystalline graphene, Acta Phys. Sinica, 65, No. 11: 116101 (2016); https://doi.org/10.7498/aps.65.116101
  118. M.A.H. Vozmediano, M.I. Katsnelson, and F. Guinea, Gauge fields in graphene, Phys. Rep., 496, Nos: 4–5: 109 (2010); https://doi.org/10.1016/j.physrep.2010.07.003
  119. D.O. Rybalka, E.V. Gorbar, and V.P. Gusynin, Gap generation and phase diagram in strained graphene in a magnetic field, Phys. Rev. B, 91: 115132 (2015); https://doi.org/10.1103/PhysRevB.91.115132
  120. V.O. Shubnyi and S.G. Sharapov, Density of states of Dirac–Landau levels in a gapped graphene monolayer under strain gradient, Low Temp. Phys., 43: 1202 (2017); https://doi.org/10.1063/1.5008413
  121. Y.V. Skrypnyk and V.M. Loktev, Electronic properties of graphene with point defects, Low Temp. Phys., 44, No. 11: 1112 (2018); https://doi.org/10.1063/1.5060964
  122. Y.V. Skrypnyk and V.M. Loktev, Electronic properties of graphene with point defects (review article), Low Temp. Phys., 45, No. 12: 1310 (2019); https://doi.org/10.1063/10.0000565
  123. S. Bellucci, S. Kruchinin, S.P. Repetsky, I.G. Vyshyvana, and R. Melnyk, Behaviour of the energy spectrum and electric conduction of doped graphene, Materials, 13, No. 7: 1718 (2020); https://doi.org/10.3390/ma13071718
  124. S.P. Repetsky, I.G. Vyshyvana, S.P. Kruchinin, R.M. Melnyk, and A.P. Polishchuk, The energy spectrum and the electrical conductivity of graphene with substitution impurity, Condens. Matter Phys., 23, No. 1: 13704 (2020); https://doi.org/10.5488/CMP.23.13704
  125. S.P. Repetsky, I.G. Vyshyvana, S.P. Kruchinin, V.B. Molodkin, and V.V. Lizunov, Influence of the adsorbed atoms of potassium on an energy spectrum of graphene, Metallofiz. Noveishie Tekhnol., 39, No. 8: 1017 (2017); https://doi.org/10.15407/mfint.39.08.1017
  126. A. Mishra and V.A. Singh, Universal features of point defect spectrum in graphene, Phys. Let. A, 430: 127971 (2022); https://doi.org/10.1016/j.physleta.2022.127971
  127. M.V. Kondrin, Y.B. Leded, and V.V. Brazhkin, Extended defects in graphene and their contribution to the excess specific heat at high temperatures Phys. Rev. Lett., 126: 165501 (2021); https://doi.org/10.1103/PhysRevLett.126.165501
  128. J. Lahiri, Y. Lin, P. Bozkurt, I.I. Oleynik, and M. Batzill, An extended defect in graphene as a metallic wire, Nature Nanotechnol., 5: 326 (2010); https://doi.org/10.1038/NNANO.2010.53
  129. L.A. Jauregui, H. Cao, W. Wu, Q. Yu, Y.P. Chen, Electronic properties of grains and grain boundaries in graphene grown by chemical vapor deposition, Solid State Commun., 151: 1100 (2011); https://doi.org/10.1016/j.ssc.2011.05.023
  130. A.W. Tsen, L. Brown, M.P. Levendorf, F. Ghahari, P.Y. Huang, R.W. Havener, C.S. Ruiz-Vargas, D.A. Muller, P. Kim, and J. Park, Tailoring electrical transport across grain boundaries in polycrystalline graphene, Science, 336: 1143(2012); https://doi.org/10.1126/science.1220527
  131. T.M. Radchenko, V.A. Tatarenko, I.Yu. Sagalianov, and Yu.I. Prylutskyy, Configurations of structural defects in graphene and their effects on its transport properties, Graphene: Mechanical Properties, Potential Applications and Electrochemical Performance (Ed. B.T. Edwards) (New York: Nova Science Publishers: 2014), Ch. 7, p. 219; https://novapublishers.com/shop/graphene-mechanical-properties-potential-applications-and-electrochemical-performance
  132. M.I. Katsnelson, Graphene: Carbon in Two Dimensions (New York: Cambridge University Press: 2012); https://doi.org/10.1017/CBO9781139031080
  133. P. Szroeder, I.Yu. Sagalianov, T.M. Radchenko, V.A. Tatarenko, Yu.I. Prylutskyy, and W. Strupiński, Effect of uniaxial stress on the electrochemical properties of graphene with point defects, Appl. Surf. Sci., 442: 185 (2018); https://doi.org/10.1016/j.apsusc.2018.02.150
  134. P. Szroeder, I. Sahalianov, T. Radchenko, V. Tatarenko, and Yu. Prylutskyy, The strain- and impurity-dependent electron states and catalytic activity of graphene in a static magnetic field, Optical Mater., 96: 109284 (2019); https://doi.org/10.1016/j.optmat.2019.109284
  135. P. Szroeder, I. Sahalianov, and T. Radchenko, Tuning the electron band structure of graphene for optoelectronics, IEEE 2019 Int. Conf. on Transparent Optical Networks (ICTON-2019), p. 8840470; https://doi.org/10.1109/ICTON.2019.8840470
  136. A.H. Castro Neto, V.N. Kotov, J. Nilsson, V.M. Pereira, N.M.R. Peres, and B. Uchoa, Adatoms in graphene, Solid State Commun., 149, Nos. 27–28: 1094 (2009); https://doi.org/10.1016/j.ssc.2009.02.040
  137. J. Yan and M.S. Fuhrer, Correlated charged impurity scattering in graphene, Phys. Rev. Lett., 107: 206601 (2011); https://doi.org/10.1103/PhysRevLett.107.206601
  138. V.V. Cheianov, O. Syljuåsen, B.L. Altshuler, and V.I. Fal’ko, Sublattice ordering in a dilute ensemble of monovalent adatoms on graphene, EPL, 89, No. 5: 56003 (2010); https://doi.org/10.1209/0295-5075/89/56003
  139. V.V. Cheianov, O. Syljuasen, B.L. Altshuler, and V.I. Fal’ko, Ordered states of adatoms on graphene, Phys. Rev. B, 80: 233409 (2009); https://doi.org/10.1103/PhysRevB.80.233409
  140. V.V. Cheianov, V.I. Fal’ko, O. Syljuasen, and B.L. Altshuler, Hidden Kekulé ordering of adatoms on graphene, Solid State Commun., 149, Nos. 37–38: 1499 (2009); https://doi.org/10.1016/j.ssc.2009.07.008
  141. C.A. Howard, M.P. M. Dean, and F. Withers, Phonons in potassium-doped graphene: the effects of electron-phonon interactions, dimensionality, and adatom ordering, Phys. Rev. B, 84: 241404 (2011); https://doi.org/10.1103/PhysRevB.84.241404
  142. C.-L. Song, B. Sun, Y.-L. Wang, Y.-P. Jiang, L. Wang, K. He, X. Chen, P. Zhang, X.-C. Ma, and Q.-K. Xue, Charge-transfer-induced cesium superlattices on graphene, Phys. Rev. Lett., 108: 156803 (2012); https://doi.org/10.1103/PhysRevLett.108.156803
  143. D.M. Eigler and E.K. Schweizer, Positioning single atoms with a scanning tunnelling microscope, Nature, 344: 524 (1990); https://doi.org/10.1038/344524a0
  144. J.C. Meyer, C.O. Girit, M.F. Crommie, and A. Zettl, Imaging and dynamics of light atoms and molecules on graphene, Nature, 454: 319 (2008); https://doi.org/10.1038/nature07094
  145. C. Lin, Y. Feng, Y. Xiao, M. Dürr, X. Huang, X. Xu, R. Zhao, E. Wang, X.-Z. Li, and Z. Hu, Direct observation of ordered configurations of hydrogen adatoms on graphene, Nano Lett., 15: 903 (2015); https://doi.org/10.1021/nl503635x
  146. O. Madelung, Introduction to Solid-State Theory (Derlin: Springer: 1996).
  147. S. Roche, N. Leconte, F. Ortmann, A. Lherbier, D. Soriano, and J.-Ch. Charlier, Quantum transport in disordered graphene: a theoretical perspective, Solid State Commun., 153, No. 15: 1404 (2012); https://doi.org/10.1016/j.ssc.2012.04.030
  148. A.R. Botello-Méndez, A. Lherbier, and J.-C. Charlier, Modeling electronic properties and quantum transport in doped and defective graphene, Solid State Commun., 175–176: 90 (2013); https://doi.org/10.1016/j.ssc.2013.08.029
  149. S. Yuan, H. De Raedt, and M.I. Katsnelson, Modeling electronic structure and transport properties of graphene with resonant scattering centers, Phys. Rev. B, 82: 115448 (2010); https://doi.org/10.1103/PhysRevB.82.115448
  150. S. Yuan, H. De Raedt, and M.I. Katsnelson, Electronic transport in disordered bilayer and trilayer graphene, Phys. Rev. B, 82: 235409 (2010); https://doi.org/10.1103/PhysRevB.82.235409
  151. M.S. Dresselhaus and G. Dresselhaus, Intercalation compounds of graphite, Adv. Phys., 30, No. 2: 139 (1981); https://doi.org/10.1080/00018738100101367
  152. J.W. McClure, Band structure of graphite and de Haas-van Alphen effect, Phys. Rev., 108: 612 (1957); https://doi.org/10.1103/PhysRev.108.612
  153. J.C. Slonczewski and P.R. Weiss, Band structure of graphite, Phys. Rev., 109: 272 (1958); https://doi.org/10.1103/PhysRev.109.272
  154. N. Leconte, A. Lherbier, F. Varchon, P. Ordejon, S. Roche, and J.-C. Charlier, Quantum transport in chemically modified two-dimensional graphene: from minimal conductivity to Anderson localization, Phys. Rev. B, 84: 235420 (2011); https://doi.org/10.1103/PhysRevB.84.235420
  155. A. Lherbier, Simon M.-M. Dubois, X. Declerck, Y.-M. Niquet, S. Roche, and J.-Ch. Charlier, Transport properties of graphene containing structural defects, Phys. Rev. B, 86: 075402 (2012); https://doi.org/10.1103/PhysRevB.86.075402
  156. T.M. Radchenko, A.A. Shylau, and I.V. Zozoulenko, Influence of correlated impurities on conductivity of graphene sheets: time-dependent real-space Kubo approach, Phys. Rev. B, 86, No. 3: 035418 (2012); https://doi.org/10.1103/PhysRevB.86.035418
  157. B. Burgos, J. Warnes, L.R.F. Leandro Lima, and C. Lewenkopf, Effects of a random gauge field on the conductivity of graphene sheets with disordered ripples, Phys. Rev. B, 91: 115403 (2015); https://doi.org/10.1103/PhysRevB.91.115403
  158. N. Leconte, A. Ferreira, and J. Jung, Efficient multiscale lattice simulations of strained and disordered graphene, Semiconduct. Semimet., 95: 35 (2015); https://doi.org/10.1016/bs.semsem.2016.04.002
  159. A.H. Castro Neto and F. Guinea, Electron-phonon coupling and Raman spectroscopy in graphene, Phys. Rev. B, 75: 045404 (2007); https://doi.org/10.1103/PhysRevB.75.045404
  160. L. Blakslee, D.G. Proctor, E.J. Seldin, G.B. Stence, and T. Wen, Elastic constants of compression-annealed pyrolytic graphite, J. Appl. Phys., 41,No. 8: 3373 (1970); https://doi.org/10.1063/1.1659428
  161. M. Farjam and H. Rafii-Tabar, Comments on ‘Band structure engineering of graphene by strain: first-principle calculations’, Phys. Rev. B, 80: 167401 (2009); https://doi.org/10.1103/PhysRevB.80.167401
  162. L.M. Sandonas, R. Gutierrez, A. Pecchia, A. Dianat, and G. Cuniberti, Thermoelectric properties of functionalized graphene grain boundaries, J. Self-Assembly Molecular Electron., 3: 1 (2015); https://doi.org/10.13052/jsame2245-4551.2015007
  163. P.-L. Zhao, S. Yuan, M.I. Katsnelson, and H. De Raedt, Fingerprints of disorder source in graphene, Phys. Rev. B, 92: 045437 (2015); https://doi.org/10.1103/PhysRevB.92.045437
  164. J.P. Robinson, H. Schomerus, L. Oroszlány, and V.I. Fal’ko, Adsorbate-limited conductivity of graphene, Phys. Rev. Lett., 101: 196803 (2008); https://doi.org/10.1103/PhysRevLett.101.196803
  165. T.O. Wehling, S. Yuan, A.I. Lichtenstein, A.K. Geim, and M.I. Katsnelson, Resonant scattering by realistic impurities in graphene, Phys. Rev. Lett., 105: 056802 (2010); https://doi.org/10.1103/PhysRevLett.105.056802
  166. S. Ihnatsenka and G. Kirczenow, Nonlinear conductance quantization in graphene ribbons, Phys. Rev. B, 83: 245442 (2011); https://doi.org/10.1103/PhysRevB.83.245431
  167. A. Ferreira, J. Viana-Gomes, J. Nilsson, E.R. Mucciolo, N.M.R. Peres, and A.H. Castro Neto, Unified description of the dc conductivity of monolayer and bilayer graphene at a finite densities based on resonant scatterers, Phys. Rev. B, 83: 165402 (2011); https://doi.org/10.1103/PhysRevB.83.165402
  168. N.M.R. Peres, A.H. Castro Neto, and F. Guinea, Conductance quantization in mesoscopic graphene, Phys. Rev. B, 73: 195411 (2006); https://doi.org/10.1103/PhysRevB.73.195411
  169. X.F. Fan, W.T. Zheng, V. Chihaia, Z.X. Shen, and J.-L. Kuo, Interaction between graphene and the surface of SiO2, J. Phys.: Condens. Matter., 24, No. 30: 305004 (2002); https://doi.org/10.1088/0953-8984/24/30/305004
  170. A. Dianat, Z. Liao, M. Gall, T. Zhang, R. Gutierrez, E. Zschech, and G. Cuniberti, Doping of graphene induced by boron/silicon substrate, Nanotechnology, 28, No. 21: 215701 (2017); https://doi.org/10.1088/1361-6528/aa6ce9
  171. H. Kuramochi, S. Odaka, K. Morita, S. Tanaka, H. Miyazaki, M.V. Lee, S.-L. Li, H. Hiura, and K. Tsukagoshi, Role of atomic terraces and steps in the electron transport properties of epitaxial graphene grown on SiC, AIP Adv., 2: 012115 (2012); https://doi.org/10.1063/1.3679400
  172. S. Günther, S. Dänhardt, B. Wang, M.-L. Bocquet, S. Schmitt, and J. Wintterlin, Single terrace growth of graphene on a metal surface, Nano Lett., 11: 1895 (2011); https://doi.org/10.1021/nl103947x
  173. F. Gargiulo and O.V. Yazyev, Topological aspects of charge-carrier transmission across grain boundaries in graphene, Nano Lett., 14: 250 (2014); https://doi.org/10.1021/nl403852a
  174. H. Zhang, G. Lee, C. Gong, L. Colombo, and K. Cho, Grain boundary effect on electrical transport properties of graphene, J. Phys. Chem. C, 118: 2338 (2014); https://doi.org/10.1021/jp411464w
  175. O.V. Yazyev and S.G. Louie, Electronic transport in polycrystalline graphene, Nat. Mater., 9: 806 (2010); https://doi.org/10.1038/nmat2830
  176. G.-X. Ni, Y. Zheng, S. Bae, H.R. Kim, A. Pachoud, Y.S. Kim, Ch.-L. Tan, D. Im, J.-H. Ahn, B.H. Hong, and B. Özyilmaz, Quasi-periodic nanoripples in graphene grown by chemical vapor deposition and its impact on charge transport, ACS Nano, 6: 1158 (2012); https://doi.org/10.1021/nn203775x
  177. D. Zhang, Z. Jin, J. Shi, P. Ma, S. Peng, X. Liu, and T. Ye, The anisotropy of field effect mobility of CVD graphene grown on copper foil, Small, 10: 1761 (2014); https://doi.org/10.1002/smll.201303195
  178. A. Ferreira, X. Xu, C.-L. Tan, S.-K. Bae, N.M.R. Peres, B.-H. Hong, B. Ozyilmaz, and A.H. Castro, Transport properties of graphene with one-dimensional charge defects, EPL, 94, No. 2: 28003 (2011); https://doi.org/10.1209/0295-5075/94/28003
  179. T.M. Radchenko, A.A. Shylau, I.V. Zozoulenko, and A. Ferreira, Effect of charged line defects on conductivity in graphene: numerical Kubo and analytical Boltzmann approaches, Phys. Rev. B, 87, No. 19: 195448 (2013); https://doi.org/10.1103/PhysRevB.87.195448
  180. T.M. Radchenko, A.A. Shylau, and I.V. Zozoulenko, Conductivity of epitaxial and CVD graphene with correlated line defects, Solid State Commun., 195: 88 (2014); https://doi.org/10.1016/j.ssc.2014.07.012
  181. Ch. Held, T. Seyller, and R. Bennewitz, Quantitative multichannel NC-AFM data analysis of graphene growth on SiC(0001), Beilstein J. Nanotechnol., 3: 179 (2012); https://doi.org/10.3762/bjnano.3.19
  182. S.-H. Ji, J.B. Hannon, R.M. Tromp, V. Perebeinos, J. Tersoff, and F.M. Ross, Atomic-scale transport in epitaxial graphene, Nature Mater., 11: 114 (2012); https://doi.org/10.1038/nmat3170
  183. W. Wang, K. Munakata, M. Rozler, and M.R. Beasley, Local transport measurements at mesoscopic length scales using scanning tunneling potentiometry, Phys. Rev. Lett., 110: 236802 (2013); https://doi.org/10.1103/PhysRevLett.110.236802
  184. Ch. Adessi, S. Roche, and X. Blase, Reduced backscattering in potassium-doped nanotubes: ab initio and semiempirical simulations, Phys. Rev. B, 73: 125414 (2006); https://doi.org/10.1103/PhysRevB.73.125414
  185. Q. Li, E.H. Hwang, E. Rossi, and S. Das Sarma, Theory of 2D transport in graphene for correlated disorder, Phys. Rev. Lett., 107, No. 15: 156601 (2011); https://doi.org/10.1103/PhysRevLett.107.156601
  186. Q. Li, E.H. Hwang, and E. Rossi, Theory of 2D transport in graphene for correlated disorder, Solid State Commun., 152: 1390 (2012); https://doi.org/10.1016/j.ssc.2012.04.053
  187. G. Gui, D. Morgan, J. Booske, J. Zhong, and Z. Ma, Local strain effect on the band gap engineering of graphene by a first-principles study, Appl. Phys. Lett., 106: 053113 (2015); https://doi.org/10.1063/1.4907410
  188. I.Yu. Sagalianov, Yu.I. Prylutskyy, T.M. Radchenko, and V.A. Tatarenko, Effect of weak impurities on conductivity of uniaxially strained graphene, IEEE 2017 Int. Young Scientists Forum on Applied Physics and Engineering (YSF-2017), p. 8126607-151; https://doi.org/10.1109/YSF.2017.8126607
  189. A. Lherbier, A.R. Botello-Mendez, and J.C. Charlier, Electronic and transport properties of unbalanced sublattice N-doping in graphene, Nano Lett., 13: 1446 (2013); https://doi.org/10.1021/nl304351z
  190. D.M.A. Mackenzie, M. Galbiati, X.D. de Cerio, I.Y. Sahalianov, T.M. Radchenko, J.Sun, D. Peña, L. Gammelgaard, B.S. Jessen, J.D. Thomsen, P. Bøggild, A. Garcia-Lekue, L. Camilli, and J.M. Caridad, Unraveling the electronic properties of graphene with substitutional oxygen, 2D Mater., 8, No. 4: 045035 (2021); https://doi.org/10.1088/2053-1583/ac28ab
  191. J.-H. Chen, C. Jang, S. Adam, M.S. Fuhrer, E.D. Williams, and M. Ishigami, Charged-impurity scattering in graphene, Nature Phys., 4: 377 (2008); https://doi.org/10.1038/nphys935
  192. N.M.R. Peres, The transport properties of graphene: an introduction, Rev. Mod. Phys., 82: 2673 (2010); https://doi.org/10.1103/RevModPhys.82.2673
  193. S. Souma, Y. Ohmi, and M. Ogawa, Effect of lateral strain on gate induced control of electrical conduction in single layer graphene device, J. Comput. Electron., 12: 170 (2013); https://doi.org/10.1007/s10825-013-0451-1
  194. Y. Hasegawa, R. Konno, H. Nakano, and M. Kohmoto, Zero modes of tight-binding electrons on the honeycomb lattice, Phys. Rev. B, 74: 033413 (2006); https://doi.org/10.1103/PhysRevB.74.033413
  195. O. V. Yazyev and Y. P. Chen, Polycrystalline graphene and other two-dimensional materials, Nature Nanotechnol., 9: 755 (2014); https://doi.org/10.1038/nnano.2014.166
  196. D.S.L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty, Properties of graphene: a theoretical perspective, Adv. Phys., 59: 261 (2010); https://doi.org/10.1080/00018732.2010.487978
  197. M. Orlita, W. Escoffier, P. Plochocka, B. Raquet, and U. Zeitler, Graphene in high magnetic fields, C. R. Physique, 14: 78 (2013); https://doi.org/10.1016/j.crhy.2012.11.003
  198. F. Chiappini, S. Wiedmann, M. Titov, A.K. Geim, R.V. Gorbachev, E. Khestanova, A. Mishchenko, K.S. Novoselov, J.C. Maan, and U. Zeitler, Magnetotransport in single-layer graphene in a large parallel magnetic field, Phys. Rev. B, 94: 085302 (2016); https://doi.org/10.1103/PhysRevB.94.085302
  199. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438: 197 (2005) ; https://doi.org/10.1038/nature04233
  200. Y. Zhang, Y.-W. Tan, H.L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature, 438: 201 (2005); https://doi.org/10.1038/nature04235
  201. Y. Betancur-Ocampo, M.E. Cifuentes-Quintal, G. Cordourier-Maruri, and R. de Coss, Landau levels in uniaxially strained graphene: a geometrical approach, Ann. Phys., 359: 243 (2015); https://doi.org/10.1016/j.aop.2015.04.026
  202. S.V. Vonsovsky and M.I. Katsnelson, Quantum Solid State Physics (Berlin: Springer: 1989); https://doi.org/10.1007/978-3-642-50164-7
  203. M.O. Goerbig, Electronic properties of graphene in a strong magnetic field, Rev. Mod. Phys., 83: 1193 (2011); https://doi.org/10.1103/RevModPhys.83.1193
  204. V.P. Gusynin and S.G. Sharapov, Magnetic oscillations in planar systems with the Dirac-like spectrum of quasiparticle excitations. II. Transport properties, Phys. Rev. B, 71: 125124 (2005); https://doi.org/10.1103/PhysRevB.71.125124
  205. M.I. Katsnelson, Graphene: carbon in two dimensions, Mater. Today, 10: 20 (2007); https://doi.org/10.1016/S1369-7021(06)71788-6
  206. N. Leconte, F. Ortmann, A. Cresti, J.-Ch. Charlier, and S. Roche, 2D Mater., 1: 021001 (2014); https://doi.org/10.1088/2053-1583/1/2/021001
  207. L.-J. Yin, K.-K. Bai, W.-X. Wang, Y. Zhang, and L. He, Landau quantization of Dirac fermions in graphene and its multilayers, Front. Phys., 12: 127208 (2017); https://doi.org/10.1007/s11467-017-0655-0
  208. J.W. McClure, Diamagnetism of graphite, Phys. Rev., 104: 666 (1956); https://doi.org/10.1103/PhysRev.104.666
  209. J.W. McClure, Theory of diamagnetism of graphite, Phys. Rev., 119: 606 (1960); https://doi.org/10.1103/PhysRev.119.606
  210. D.L. Miller, K.D. Kubista, G.M. Rutter, M. Ruan, W.A. de Heer, Ph.N. First, and J.A. Stroscio, Observing the quantization of zero mass carriers in graphene, Science, 324: 924 (2009); https://doi.org/10.1126/science.1171810
  211. L.D. Landau and E.M. Lifschitz, Quantum Mechanics: Non-Relativistic Theory (London: Pergamon Press: 1977).
  212. I.Yu. Sahalianov, T.M. Radchenko, V.A. Tatarenko, and Yu.I. Prylutskyy, Magnetic field-, strain-, and disorder-induced responses in an energy spectrum of graphene, Ann. Phys., 398: 80 (2018); https://doi.org/10.1016/j.aop.2018.09.004
  213. Y. Zhang, Z. Jiang, J.P. Small, M.S. Purewal, Y.-W. Tan, M. Fazlollahi, J.D. Chudow, J.A. Jaszczak, H.L. Stormer, and P. Kim, Landau-level splitting in graphene in high magnetic fields, Phys. Rev. Lett., 96: 136806 (2006); https://doi.org/10.1103/PhysRevLett.96.136806
  214. A.L.C. Pereira and P.A. Schulz, Additional levels between Landau bands due to vacancies in graphene: Towards defect engineering, Phys. Rev. B, 78: 125402 (2008); https://doi.org/10.1103/PhysRevB.78.125402
  215. L. Schweitzer and P. Markos, Disorder-driven splitting of the conductance peak at the Dirac point in graphene, Phys. Rev. B, 78, No. 20: 205419 (2008); https://doi.org/10.1103/PhysRevB.78.205419
  216. I.M. Dubrovskyi, The new theory of electron gas in a magnetic field and tasks for theory and experiment, Usp. Fiz. Met., 17, No. 1: 53 (2016); https://doi.org/10.15407/ufm.17.01.053