State-of-the-Art and Analysis of Characteristics, Properties, Significance, and Application Prospects of Metallurgical Slags

G. E. Akhmetova$^1$, G. A. Ulyeva$^2$, A. I. Denissova$^1$, K. Tuyskhan$^1$, and A. B. Tulegenov$^1$

$^1$Karaganda Industrial University, 30 Republic Avenue, 101400 Temirtau, Kazakhstan
$^2$JSC “ArcelorMittal Temirtau”, 1 Republic Avenue, 101407 Temirtau, Kazakhstan

Received 04.12.2021; final version — 18.02.2022 Download PDF logo PDF

Abstract
The review article is concerned with the modern state, analysis of characteristics, properties, significance, and prospects of the slags’ application, which are wastes of ferrous and non-ferrous metallurgy. The material considers the structure of steelmaking slags, characteristics of steel slags, separation of slags by composition, as well as the world and Kazakhstan experiences of processing them, using environmental safety assessment. The article reviews and studies the methods of slag application in road construction, agriculture, casting technologies, manufacture of Portland cement, clay bricks, green concrete, etc. The article summarizes the practical experience of many scientists’ research in the fields of metallurgical slag applications. The scientific novelty consists in the study of both the world and Kazakhstan experiences in the using metallurgical production slags based on practical data of researchers around the world with the identification of positive and negative properties of various slags under certain conditions. This topic will be of interest of scientists and researchers in the field of metallurgy and materials science. As found based on the obtained data, the extraction of metal from slag significantly reduces the cost; slag is recyclable after recovery of useful metals from it; reduction of slag dumps makes it possible to improve the ecological situation, as well as to free valuable land areas. The issues of identifying the peculiarities of mining and metallurgical industries’ development and fundamentally new directions’ elaboration, as well as unconventional ways of existing production technologies’ improvement require further study.

Keywords: converter slag, blast furnace slag, ferroalloy slag, useful metals, production wastes, waste processing, recycling.

DOI: https://doi.org/10.15407/ufm.23.01.108

Citation: G. E. Akhmetova, G. A. Ulyeva, A. I. Denissova, K. Tuyskhan, and A. B. Tulegenov, State-of-the-Art and Analysis of Characteristics, Properties, Significance, and Application Prospects of Metallurgical Slags, Progress in Physics of Metals, 23, No. 1: 108–129 (2022)


References  
  1. A.A. Yusuphodjaev, S.R. Hudoyarov, H.R. Valiev, Sh.T. Hojiev, and I.K. Matmusaev, Vzaimodeistvie Komponentov Shikhty pri ikh Nagreve v metallurgicheskikh Oechakh [Interaction of Charge Components during Heating in Metallurgical Furnaces], Proceedings of the III International Scientific and Practical Conference “Modern Scientific Achievements and Their Practical Application” (October 27–28, 2016, Dubai, UAE) (Ajman: 2016), No. 11 (15), Vol. 1, p. 24 (in Russian).
  2. A. Koketaev, A. Meirmanova, R.Z. Khaktaeva, K. Artykbaev, and S. Tamabaeva, Promyshlennost’ Kazakhstana, No. 4 (55): 31 (2009) (in Russian).
  3. A.A. Yusuphodjaev, H.R.Valiev, and S.R. Hudoyarov, Pererabotka Vtorichnykh Tekhnogennykh Obrazovaniy v Chernoy Metallurgii [Processing of Secondary Technogenic Formations in Ferrous Metallurgy] (Toshkent Davlat texnika Universiteti) (in Russian).
  4. P.Y. Mahieux, J.E. Aubert, and G. Escadeillas, Construction and Building Materials, 23: 742 (2009).
  5. Y. Topkaya, N. Sevinç, and A. Günaydın, Int. J. Miner. Process, 74: 31 (2004).
  6. J. Diao, W. Zhou, Z. Ke, Y. Qiao, T. Zhang, X. Liu, and B. Xie, J. Clean. Prod., 125: 159 (2016).
  7. N. Ortiz, M.A. Pires, and J.C. Bressiani, Waste Manag., 21: 631 (2001).
  8. I. Ponsot and E. Bernardo, J. Clean. Prod., 59: 245 (2013).
  9. G.E. Akhmetova, G.A. Ulyeva, and K. Tuyskhan, On the issue of alloying and modification of alloys: using the waste products for creation of novel materials, Prog. Phys. Met., 22, No. 2: 271 (2021); https://doi.org/10.15407/ufm.22.02.271
  10. K. Tuyskhan, G.E. Akhmetova, G.A. Ulyeva, D.S. Saparov, and K.S. Tolubaev, Approval of production waste application as modifiers of aluminum alloys, Vestnik Satbayev University, 143, No. 1: 233 (2021); https://doi.org/10.51301/vest.su.2021.v143.i1.29
  11. A.A. Metelkin, O.Yu. Sheshukov, I.V. Nekrasov, and O.I. Shevchenko, Povyshenie Stoikosti Futerovki Agregatov Vnepechnoi Obrabotki Stali [Increasing the Lining Durability of Secondary Steel Treatment Units], (NTI: UrFU: 2015) (in Russian).
  12. L.L. Aksenova and L.V. Hlebenskih, Ispolzovanie Otkhodov Chernoi i Tsvetnoi Metallurgii v Stroitelnoi Industrii [Using Waste from Ferrous and Non-Ferrous Metallurgy in the Building Industry], Technical Sciences in Russia and Abroad: Materials of the III Int. Sci. Conf. (July, 2014, Moscow), v. 0: 106 (2014) (in Russian).
  13. B.B. Bobovich and V.V. Devyatkin, Pererabotka Othodov Proizvodstva i Potrebleniya [Recycling of Production and Consumption Waste] (Intermet engineering: 2000) (in Russian).
  14. Latest Trends in Soil Science, Vol. 2 (Ed. Sukul Singh Porte) (2021) https://doi.org/10.22271/int.book.57
  15. World Steel Association. Steel Statistical Yearbook 2020; https://www.worldsteel.org/steel-by-topic/statistics/steel-statistical-yearbook.html
  16. J. Guo, Y.Bao, and M. Wang, Waste Manag., 78: 318 (2018).
  17. Korea Iron & Steel Association. Production and Uses of Steel Slag in the Republic of Korea; https://www.kosa.or.kr/sub/eng/about/sub01.jsp
  18. Y. Topkaya, N. Sevinç, and A. Günaydın, Int. J. Miner. Process., 74: 31 (2004).
  19. J. Diao, W. Zhou, Z. Ke, Y. Qiao, T. Zhang, X. Liu, and B. Xie, J. Clean. Prod., 125: 159 (2016).
  20. V.J. Ferreira, A. Sáez-De-Guinoa Vilaplana, T. García-Armingol, A.T. Aranda-Usón, C. Lausín-González, A.M. López-Sabirón, and G. Ferreira, J. Clean. Prod., 130: 175 (2016); https://doi.org/10.1016/j.jclepro.2015.08.094
  21. N.A. Piatak, M.B. Parsons, and R.R. II Seal, Appl. Geochem., 57: 236 (2015).
  22. M. Luckman, V. Satish, and D. Venkateswaran, Cement and Concrete Research, 39: 102 (2009).
  23. D.H. Shen, C.-M. Wu, and J.-C. Du, Construction and Building Materials, 23: 453 (2009).
  24. J.J. Emery, Extending Aggregate Resources. American Society for Testing and Materials, 95 (1982).
  25. J.J. Emery, Steel Slag Utilization in Asphalt Mixes, Canadian Technical Asphalt Association Proceedings (1984); https://www.yumpu.com/en/document/view/11786444/steel-slag-utilization-in-asphalt-mixes-national-slag-association
  26. F. Nicolaas, H. Schrama, E.M. Beunder, R. Sue, T.N. Myakikure, B. Van den Berg, and Y.R. Yang, Ironmaking & Steelmaking, 44, No. 5: 333 (2017).
  27. N.A. Ali, De Bock, J.S.S. Chan, T. Papagiannakis, E.G. Theriault, and A.T. Bergan, American Society for Testing and Materials, 3: 19 (1992).
  28. P. Ahmedzade and B. Sengoz, Journal of Hazardous Materials, 165: 300 (2009).
  29. G.S. Merentsova and I.A. Goriunova, Polzunovsky Almanac, 2, No. 4: 124 (2017) (in Russian).
  30. B.A. Bondarev, I.A. Shtefan, M.A. Goncharova, and G.E. Shtefan, Slag Aggregate Asphalt Concrete (Lipetsk: LGTU: 2005) (in Russian).
  31. GOST 3344-83 Crushed Stone and Sand Slag for Road construction. Technical Conditions, No. 1, 1985-01-01 (Moscow: FSUE Standartinform: 2007).
  32. N.S. Kovalev, E.N. Otarova, V.V. Gladnev, E.A. Sadygov, P.V. Demidov, and E.V. Panin, Asphalt Concrete on the Basis of Converter Slags, 3rd Int. Symp. Engineering and Earth Sciences, IOP Conf. Series: Materials Science and Engineering (2020), p. 905.
  33. GOST 12801-98, Materials Based on Organic Binders for Road and Airfield Construction. Testmethods, 1999-01-01 (Moscow: Gosstroy of Russ.: 1999) (in Russian).
  34. N.S. Kovalev and I.A. Bykova, Bull. Volgograd State Univ. Architect. Civil Engineer. Ser. Construct. Architect, 11, No. 30: 81 (2008).
  35. S.I. Samodurov, S.M. Maslov, and N.S. Kovalev, On the Durability of Bitumen-Slag Coatings of Roads, Univ. News. Ser. Construct. Architect., No. 8: 147 (1976).
  36. K. Nakase, A. Matsui, N. Kikuchi, Y. Miki, Y. Kishimoto, I. Goto, and T. Nagasaka, J. Manuf. Sci. Prod., 13: 39 (2013).
  37. M. Schepper, P. Verli, I. Van Driessche, and N. De. Belie, J. Mater. Civ. Eng., 27, No. 5: 04014177 (2015).
  38. V. Hallet, R.I. Iacobescu, J. Denissen, and Y. Pontikes, The influence of slag chemistry on blended cements made with iron-rich slag, SynerCrete’18: Interdisciplinary Approaches for Cement-based Materials and Structural Concrete: Synergizing Expertise and Bridging Scales of Space and Time (Eds. M. Azenha, D. Schlicke, F. Benboudjema, and A. Jedrzejewska) (Funchal, Portugal: 2018).
  39. Vincent Hallet, Tobias Hertel, Nele de Belie, and Yiannis Portnikes, High-volume OPC replacement by iron-rich non-ferrous metallurgy slag (Confer. Paper, April 2019).
  40. A.Y. Nayana and S. Kavitha, Int. J. Advanced Engineering and Technology, 1, No. 2: 27 (2017).
  41. T. Vijaya Gowri, P. Sravana, and P. Srinivasa Rao, Studies on strength behaviour of high volumes of slag concrete, Int. J. Res. Eng. Technol., 3, No. 4: 227 (2014).
  42. L. Cunico, G. Dircetti, M. Dondi, G. Ercolani, G. Guarini, F. Mazzanti, M. Raimondo, A. Ruffini, and I. Venturi, Steel Slag Recycling in Clay Brick Production, 20, No. 2: 230 (2003).
  43. D.A. Asainova, V.V. Merkulov, G.E. Akhmetova, and G.A. Ulyeva, Inorg. Mater. Appl. Res., 12: 1066 (2021); https://doi.org/10.1134/S2075113321040031
  44. P. den Exter and C.G.M. Bol, Steel slag: from metallurgical slag to secondary raw material, Klei-Glass/Keramiek, 15: 79 (1994).
  45. D.E. Jones, Solid waste treatment in the steel industry — an industry perspective, Proc. Int. Ceram. Conf. Ceramics, Adding the Value’, (Melbourne, Australia), Vol. 2 (1992), p. 1000.
  46. B.F. Kislitsyn, Glass and Ceramics, 39: 116 (1982).
  47. M.L. Oveçoglu, Physical properties of glass-ceramics developed from Turkish blast furnace slags, Proc. 4th Eur. Ceram. Soc. Conf. (Riccione, Italy), Vol. 3 (1995), p. 323.
  48. K.V. Nikitina, A.V. Sokolova, V.I. Nikitina, and V.N. Dyachkova, Izv. VUZov. Tsvetnaya Metallurgiya (2018) (in Russian).
  49. I.O. Kon’ko and Yu.V. Kuris, East. Eur. J. Adv. Technol., 3, No. 11: 51 (2011).
  50. P.V. Drissen, A. Ehrenberg, M. Kühn, and D. Mudersbach, Metall, 80: 737 (2009).
  51. S.-Y. Pan, R. Adhikari, Y.-H. Chen, P. Li, and P.C. Chiang, J. Clean. Prod., 137: 617 (2016).
  52. X. Zhang, G. Ma, Z. Tong, and Z. Xue, J. Min. Metall. Sect. B Metall, 53: 139 (2017).
  53. L. Gómez-Nubla, J. Aramendia, S. Fdez-Ortiz de Vallejuelo, J.A.Carrero, and J.M. Madariaga, Microchem. J., 132: 268 (2017).
  54. P. Drissen, A. Ehrenberg, M. Kühn, and D. Mudersbach, Metall, 80: 737 (2009).
  55. A.L. Riley and W.M. Mayes, Environ. Monit. Assess., 187: 463 (2015).
  56. https://metallplace.ru
  57. https://openoblokah.ru
  58. M. Absalyamova, A. Kemalova, M. Nurmyrza, and W. Lee, Goldschmidt (2021); https://doi.org/10.7185/gold2021.5558