Regularities of Martensitic Transformations of Fe–Ni Alloys Rapidly Quenched from Melt

V. Yu. Danilchenko, Ye. M. Dzevin, and R. M. Delidon

G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received 13.05.2021; final version — 31.01.2022 Download PDF logo PDF

Abstract
The regularities of formation of the grain structure of metastable iron–nickel alloys formed in conditions of high temperature gradients during the melt hardening (spinning) and its effect on the characteristics of martensitic transformations (MT) in local areas of thin ribbons are reviewed and studied. A comparison of the texture of the austenitic and martensitic phases on different sides of thin ribbons is carried out. The consequences of influence of relaxation processes in hardening of thin ribbons on regularities of formation of the grain structure are investigated. The proposed x-ray method of measuring the amount of martensite allows solving the problem of measuring the amount of martensite in the local areas of textured alloys. As established, the completeness of MT is different for the contact and free sides of the ribbon. The main factors, which determine the heterogeneous distribution of the martensitic phase in the local areas of the ribbon, are analysed. The size effects at MP, residual stresses, and changes in the chemical composition of the austenitic phase on the distribution of the martensitic phase in local sections of the ribbon are analysed. The influence of size effect on the direct γ–α- and reverse α–γ-MT in thin ribbons is studied. The role of ultradispersed component of austenitic grains in the stabilization of austenite of rapidly quenched alloys with cyclic γ–α–γ MT is revealed.

Keywords: martensitic transformations, Fe–Ni alloys, melt spinning, ribbon, grain structure, texture, stresses.

DOI: https://doi.org/10.15407/ufm.23.01.059

Citation: V. Yu. Danilchenko, Ye. M. Dzevin, and R. M. Delidon, Regularities of Martensitic Transformations of Fe–Ni Alloys Rapidly Quenched from Melt, Prog. Phys. Met., 23, No. 1: 59–89 (2022)


References  
  1. L.I. Lysak and B.I. Nikolin, Phizicheskie Osnovy Termicheskoi Obrabotki Stali [Physical Fundamentals of Thermal Treatment of Steel] (Kiev: Technika: 1975) (in Russian).
  2. G.V. Kurdyumov, Problems of Metal Science and Physics of Metals, No. 3: 9 (1952) (in Russian).
  3. A.L. Roitburd, On the thermodynamics of martensite nucleation, Mater. Sci. Eng. А, 127, No. 2: 229 (1990); https://doi.org/10.1016/0921-5093(90)90313-R
  4. V.A. Lobodyuk and E.I. Estrin, Martensitic Transformations (Cambridge International Science Publishing Ltd: 2014).
  5. A. Inoue, Y. Kojima, T. Minemura, and T. Masumoto, Microstructure and mechanical properties of ductile Ni3Al-type compound in Fe–(Ni, Mn)–Al–C systems rapidly quenched from melts, Metallurgical Trans., 12: 1245 (1981); https://doi.org/10.1007/BF02642338
  6. O.V. Letenkov, Formirovanie Structury i Funkcionalnykh Svoistv Tonkorazmernykh Lent iz Splavov na Osnove Medi, Poluchennykh Spiningovaniem Rasplava [Structure Formation and Functional Properties of Thin-Sized Ribbons from Copper-Based Alloys Obtained by Melt Spinning] (Thesis of Disser. for Cand. Phys.-Math. Sci. — Ph.D.) (Novgorod: 2006) (in Russian).
  7. S.G. Zaichenko and A.M. Glezer, Disclination mechanism of plastic deformation of nanocrystalline materials, Interface Sci., 7: 57 (1999); https://doi.org/10.1023/A:1008714612121
  8. A.M. Glezer, E.N. Blinova, V.A. Pozdnyakov, and A.V. Shelaykov, Martensite transformation in nanoparticles and nanomaterials, Journal of Nanoparticle Research, 5: 551 (2003); https://doi.org/10.1023/B:NANO.0000006094.08917.46
  9. K. Yamauchi and Y. Yoshihito, Structure and mechanical properties of liquid-quenched nanocrystals, Mater. Sci. Forum, 225–227: 781 (1996); https://doi.org/10.4028/www.scientific.net/MSF.225-227.781
  10. E.N. Blinova, A.M. Glezer, V.A. Diakonova, and V.A. Zorin, Izv. RAS. Physics, 65, No. 10: 1444 (2001) (in Russian).
  11. V.Y. Bondar, V.E. Danilchenko, V.F. Mazanko, O.V. Filatov, and V.E. Iakovlev, Effect of cyclic martensitic γ–ϵ–γ transformations on diffusion characteristics of carbon in an iron–manganese alloy, Prog. Phys. Met., 19, No. 1: 70 (2018); https://doi.org/10.15407/ufm.19.01.070
  12. V.Yu. Danilchenko, V.F. Mazanko, O.V. Filatov, and V.E. Iakovlev, Effect of cyclic martensitic γ–ϵ transformations on diffusion characteristics of cobalt in an iron–manganese alloy, Prog. Phys. Met., 20, No. 3: 426 (2019); https://doi.org/10.15407/ufm.20.03.426
  13. V.A. Tatarenko, S.M. Bokoch, V.M. Nadutov, T.M. Radchenko, and Y.B. Park, Semi-empirical parameterization of interatomic interactions and kinetics of the atomic ordering in Ni–Fe–C permalloys and elinvars, Defect Diffus. Forum, 280–281: 29 (2008); https://doi.org/10.4028/www.scientific.net/DDF.280-281.29
  14. V.A. Tatarenko and T.M. Radchenko, The application of radiation diffuse scattering to the calculation of phase diagrams of f.c.c. substitutional alloys, Intermetallics, 11, Nos. 11–12: 1319 (2003); https://doi.org/10.1016/S0966-9795(03)00174-2
  15. T.M. Radchenko and V.A. Tatarenko, Atomic-ordering kinetics and diffusivities in Ni–Fe permalloy, Defect Diffus. Forum, 273–276: 525 (2008); https://doi.org/10.4028/www.scientific.net/DDF.273-276.525
  16. T.M. Radchenko, V.A. Tatarenko, and S.M. Bokoch, Diffusivities and kinetics of short-range and long-range orderings in Ni–Fe permalloys, Metallofiz. Noveishie Tekhnol., 28, No. 12: 1699 (2006).
  17. T.M. Radchenko, O.S. Gatsenko, V.V. Lizunov, and V.A. Tatarenko, Martensitic α″-Fe16N2-type phase of non-stoichiometric composition: current status of research and microscopic statistical-thermodynamic model, Prog. Phys. Met., 21, No. 4: 580 (2020); https://doi.org/10.15407/ufm.21.04.580
  18. T.M. Radchenko, V.A. Tatarenko, H. Zapolsky, and D. Blavette, Statistical-thermodynamic description of the order–disorder transformation of D019-type phase in Ti–Al alloy, J. Alloys Compd., 452, No. 1: 122 (2008); https://doi.org/10.1016/j.jallcom.2006.12.149
  19. I.S. Miroshnichenko and I.V. Sally, Zavodskaya Laboratoriya, 25, No. 11: 1398 (1959) (in Russian).
  20. N.I. Komyak and U.G. Myasnikov, Rentgenovskie Metody i Oborudovanie dlia Opredeleniya Napriazeniy [X-Ray Methods and Equipment for the Stresses Determination] (Leningrad: Mashinostroenie: 1972) (in Russian).
  21. V.Yu. Danil’chenko, E.M. Dzevin, R.M. Delidon, and V.K. Nosenko, Metallofiz. Noveishie Tekhnol., 33, No. 4: 535 (2011).
  22. I.I. Kositsyna, V.V. Sagaradze, and V.E. Danil’chenko, Structure and properties of manganese austenitic steels quenched from the melt, Phys. Metals Metallogr., 109, No. 6: 643 (2010); https://doi.org/10.1134/S0031918X10060116
  23. V.E. Danil’chenko, R.N. Delidon, I.I. Kositsina, and V.V. Saragadze, Martensitic transformation in an iron-nickel melt-quenched alloy, Phys. Metals Metallogr., 111: 253 (2011); https://doi.org/10.1134/S0031918X11020050
  24. V.K. Nosenko, Issledovanie Protsessov Formirovaniya Structury i Svoistv Splavov Fe–Si, Poluchennykh v Razlichnykh Usloviyakh Sverkhbystroi Zakalki iz Rasplava [Investigation of the Processes of Structure Formation and Properties of Fe–Si Alloys Obtained in the Different Conditions of Super-Fast Quenching the Melt] (Thesis of Disser. for Cand. Phys.-Math. Sci. — Ph.D.) (Kiev: G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine: 1990) (in Russian).
  25. А.М. Glezer, I.V. Maleeva, and N.G. Novoselova, Effect of quenching from melt on the structure and properties of Fe–Cr–Al alloys, Fiz. Met. Metalloved., No. 1: 122 (1990) (in Russian).
  26. V.A. Lobodyuk, A size effect at the martensitic transformation, Fiz. Met. Metalloved., 99, No. 2: 29 (2005) (in Russian).
  27. V.J. Bondar, V.Yu. Danilchenko, R.M. Delidon and V.K. Nosenko, Nanosistemi, Nanomateriali, Nanotehnologii, 7, No. 1: 305 (2009) (in Ukrainian); https://www.imp.kiev.ua/nanosys/media/pdf/2009/1/nano_vol7_iss1_p0305p0314_2009.pdf
  28. V.K. Nosenko, Formirovanie Amorfnyh i Nanokristallicheskikh Sostoianiy v Splavakh na Osnove Fe i Al [Formation of Amorphous and Nanocrystalline States in the Fe- and Al-Based Alloys] (Thesis of Disser. for Dr. Phys.-Math. Sci.) (Kyiv: G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine: 2005) (in Russian).
  29. V.E. Danilchenko and R.М. Delidon, Physical and Chemical Bases of Formation and Modification of the Micro- and Nanostructures (Kharkiv: 2011), 2, p. 338 (in Ukrainian).
  30. V.E. Danilchenko, V.J. Bondar, and Ie.M. Dzevin, Sposib Termotsiklichnogo Obroblennia Stali z Obernenym Martensytnym Peretvorenniam [Thermal–Cyclic Method of Treatment of the Steel with Reversed Martensitic Transformation], Authors Certificate 94485 Ukraine (Published November 10, 2014) (in Ukrainian).
  31. G.V. Kurdyumov, L.M. Utevskiy, and R.I. Entin, Prevrashcheniya v Zheleze i Stali [Transformations in Iron and Steel] (Moskva: Nauka: 1977) (in Russian).
  32. L.I. Мirkin, Rentgenovskiy Analiz Polikristallov [X-Ray Analysis of Polycrystals] (Moskva: 1961) (in Russian).
  33. Yu.N. Kоval and V.V. Kokorin, Tetragonality of the carbon-free martensite, Fiz. Met. Metalloved., 39, No. 5: 1044 (1975) (in Russian).
  34. M.M. Hal, P.G. Winchell, and P. Guy, Tetragonality of Fe–Ni–Ti martensite, Acta Met., 25, No. 7: 735 (1977); https://doi.org/10.1016/0001-6160(77)90089-X
  35. V.E. Danilchenko and R.M. Delidon, Z. Kristallogr. Proc., X-ray studies of martensitic transformation in Fe–Ni alloys rapidly quenched from the melt, 1: 267 (2011); https://doi.org/10.1524/9783486991321-045
  36. V. Bondar, V. Danilchenko, and Ie. Dzevin, Gradient distribution of martensite phase in melt-spun ribbons of a Fe–Ni–Ti–Al alloy, Nanoscale Res. Lett., 11: 96 (2016); https://doi.org/10.1186/s11671-016-1313-0
  37. E.P. Pechkovskiy and V.I. Trefilov, Ukr. J. Phys., No. 16: 133 (1971) (in Russian).
  38. P.U. Volosevich, V.N. Gridnev, and Yu.N. Petrov, Metallofizika, No. 57: 28 (1975) (in Russian).
  39. P.U. Volosevich and Yu.N. Petrov, Metallofizika, No. 1: 20 (1975) (in Russian).
  40. K.A. Malyshev, V.V. Sagaradze, I.P. Sorokin, A.I. Uvarov, V.A. Teplov, and N.D. Zemtsova, Fazovyy Naklep Austenitnykh Splavov na Fe–Ni Osnove [Phase Cold Work Hardening of Fe–Ni-Based Austenite Alloys] (Moskva: Nauka: 1982) (in Russian).
  41. G.J. Thomas, R.W. Siegel, and J.A. Eastman, Grain boundaries in nanophase palladium: high resolution electron microscopy and image simulation, Scripta Metal. Mater., 24, No. 1: 201 (1990); https://doi.org/10.1016/0956-716X(90)90592-5
  42. S. Ranganathan, R. Divakar, and V.S. Raghunathan, Interface structures in nanocrystalline materials, Scripta Mater., 44, Nos. 8–9: 1169 (2001); https://doi.org/10.1016/S1359-6462(01)00678-9
  43. V.G. Gorbach, E.A. Izmailov, and I.S. Panpanza, Electron microscopic study of the transformation of martensite into austenite, Fiz. Met. Metalloved., 34, No. 6: 1238 (1972) (in Russian).
  44. V.I. Bondar, V.Ie. Danilchenko, and Ie.M. Dzevin, Structure fragmentation in Fe-based alloys by means of cyclic martensitic transformations of different types, Nanoscale Res. Lett., 9: 92 (2014); https://doi.org/10.1186/1556-276X-9-92
  45. V.V. Rybin, Bolshie Plasticheskie Deformatsii i Razrushenie Metallov [Big Plastic Deformations and Fracture of Metals] (Moskva: Меtallurgiya: 1986) (in Russian).
  46. I.I. Kоsitsina, S.V. Kositsin, and V.V. Sagaradze, Metal Science and Heat Treatment, No. 6: 21 (1992) (in Russian).
  47. V.I. Аrkharov, Kristallografiya Zakalennoy Stali [Crystallography of Hardened Steel] (Moskva: Мetallurgiya: 1951) (in Russian).
  48. V. Danilchenko, Ie. Dzevin, and V. Sagaradze, Effect of multiple martensitic transformations on structure of Fe–Ni alloys, J. Mater. Sci. Technol., 29, No. 3: 279 (2013); https://doi.org/10.1016/j.jmst.2012.12.016