The Role of Stress–Strain State of Gas Turbine Engine Metal Parts in Predicting Their Safe Life

Z. A. Duriagina$^{1,2}$, V. V. Kulyk$^1$, O. S. Filimonov$^1$, A. M. Trostianchyn$^1$, and N. B. Sokulska$^3$

$^1$Lviv Polytechnic National University, 12 Stepan Bandera Str., UA-79013 Lviv, Ukraine
$^2$The John Paul II Catholic University of Lublin, 14 Al. Racławickie, PL-20950 Lublin, Poland
$^3$Hetman Petro Sahaidachnyi National Army Academy, 32 Heroes of Maidan Str., UA-79012 Lviv, Ukraine

Received 14.06.2021; final version — 15.11.2021 Download PDF logo PDF

Abstract
The influence of various factors on the workability of critical metallic parts of a gas turbine engine (GTE) is analysed and systematized. As shown, compressor blades fail as a result of foreign-objects’ damage, gas corrosion, and erosion. Compressor blade roots in most cases fail due to fretting wear caused by vibrations, while the fir-tree rim of turbine discs fails due to low-cycle fatigue (LCF) damage and creep. An increase in the radial gaps between the rotor and stator of the turbine reduces the thrust force and causes changes in the gas-dynamic loading of the engine components. Additional oxidation of metal parts is observed under the action of hot gases from the combustion chamber. The principles of material selection for manufacturing turbine blades and disks, concepts of alloying heat-resistant alloys, and modern methods of surface engineering due to applying protective oxidation-resistant coatings, in particular, chemical vapour deposition (CDV), physical vapour deposition (PVD), air plasma spraying (APS), etc., are also described. To predict the lifetime of turbine disks, it is proposed to use the modified Walker model and the Miner’s rule. To specify the time before failure of metal blades of the turbine, it is proposed to use the finite element method. To monitor the working-surfaces’ deformations of the gas turbine engine, it is recommended to use optical-digital methods.

Keywords: gas turbine materials, fatigue, durability, damageability, coatings, finite element method.

DOI: https://doi.org/10.15407/ufm.22.04.643

Citation: Z. A. Duriagina, V. V. Kulyk, O. S. Filimonov, A. M. Trostianchyn, and N. B. Sokulska, The Role of Stress–Strain State of Gas Turbine Engine Metal Parts in Predicting Their Safe Life, Progress in Physics of Metals, 22, No. 4: 643–677 (2021)


References  
  1. T. Nada, Propul. Pow. Res., 3, No. 3: 121 (2014); https://doi.org/10.1016/j.jppr.2014.07.005
  2. W. Obrocki, A. Setkowicz, M. Masłyk, and J. Sieniawski, Adv. Manuf. Sci. Tech., 3, No. 2: 43 (2017); http://advancesmst.prz.edu.pl/pdfy/10264-Volume41-Issue2-paper_04.pdf.
  3. W. Obrocki, A. Setkowicz, M. Masłyk, and J. Sieniawski, Adv. Manuf. Sci. Tech., 41, No. 3: 47 (2017); http://advancesmst.prz.edu.pl/pdfy/10264-Volume41-Issue3-paper_05.pdf .
  4. Yu. Molkov, Ya. Ivanyts’kyi, T. Lenkovs’kyi , A. Trostianchyn, V. Kulyk, and R. Shyshkovskyy, Ukr. Jour. Mech. Eng. Mat. Sci., 5, No. 1: 39 (2019) 5/1 (2019); https://doi.org/10.23939/ujmems2019.01.039
  5. S.I. Ryabtsev, V.А. Polonskyy, and О.V. Sukhova, Powder Metall. Met. Ceram., 58, Nos. 9–10: 567 (2020); https://doi.org/10.1007/s11106-020-00111-2
  6. О.V. Sukhova, V.А. Polonskyy, and K.V. Ustinоvа, Mater. Sci., 55, No. 2: 285 (2019); https://doi.org/10.1007/s11003-019-00302-2
  7. H.V. Krechkovs’ka, O.Z. Student, and H.M. Nykyforchyn, Mater. Sci., 55, No. 5: 627 (2019); https://doi.org/10.1007/s11003-019-00227-w
  8. R.G. Wing, Surf. Eng. Cas., 8: 155 (1996); https://doi.org/10.1533/9780857092960.155
  9. K. Peng, D. Fan, F. Yang, Q. Fu, and Y. Li, Chin. Jour. Aero., 25, No. 5: 1147 (2013); https://doi.org/10.1016/j.cja.2013.07.005
  10. C. Fei and G. Bai, Mec. Sys. Sig. Proc., 49, No. 1-2: 196 (2014); https://doi.org/10.1016/j.ymssp.2014.04.013
  11. Analysis of the Status of Flight Safety in the Civil Aviation of the Russian Federation in 2008 (Electronic resource) Access mode: http://spbguga.ru/files/Analiz_BP_2008.pdf (in Russian).
  12. I. Gurrappa, J. Alloys Compd., 389, No. 1-2: 190 (2005); https://doi.org/10.1016/j.jallcom.2004.05.079
  13. W. Shtiller, Arrhenius Equation and Non-Equilibrium Kinetics: 100 Years, p. 176.
  14. Yu.N. Nechaev, R.M. Fedorov, and L.N. Kamanin, Teoriya Aviatsionnykh Dvigatelei [Theory of Aircraft Engines] (Moscow: Voenizdat: 1980), p. 415 (in Russian).
  15. L. Han, D. Huang, X. Yan, C. Chen, X. Zhang, and M. Qi, Int. Jour. Fat., 127: 120 (2019); https://doi.org/10.1016/j.ijfatigue.2019.05.022
  16. L. Witek, Fat. Air. Struct., 1, No. 4: 114 (2012); https://doi.org/10.2478/v10164-012-0063-4
  17. G. F. Harrison and W. J. Evans, J. of the Engineering Integrity Society (2000).
  18. L. Witek, Eng. Fail. Anal., 13, No. 1: 9 (2006); https://doi.org/10.1016/j.engfailanal.2004.12.028
  19. S. A. Meguid, P. S. Kanth, and A. Czekanski, Finite Elem. Anal. Des., 35, No. 4: 35 (2000); https://doi.org/10.1016/S0168-874X(99)00072-4
  20. R. Kumar, V. Ranjan, B. Kumar, and S. K. Ghoshal, Eng. Fail. Anal., 90: 425 (2000); https://doi.org/10.1016/j.engfailanal.2017.12.014
  21. N. E. Dowling, FFEMS, 32, No. 12 (2009); https://doi.org/10.1111/j.1460-2695.2009.01404.x
  22. J. Goodman, Mechanics Applied to Engineering (London, UK: Longmans, Green and Co.: 1919).
  23. J.Morrow, Fatigue Design Handbook, Fatigue properties of metals, section 3.2, No. 4 (Warrendale, Pa, USA: Society of Automotive Engineers: 1968).
  24. K. N. Smith, P. Watson, and T. H. Topper, J. of Mat., 5, No. 4: 767 (1970).
  25. Z.Lv, H.Huang, and H. Gao, Jour. Mat. Sci. Tech., 29, No. 10: 4143 (2015); https://doi.org/10.1007/s12206-015-0908-1
  26. K. Walker, The Effects of Stress Ratio During Crack Propagation and Fatigue for 2024-t3 and 7075-t6 Aluminum, Effect of Environment and Complex Load History on Fatigue Life, ASTM STP 462, p. 1 (American Society of Testing and Materials 1970).
  27. V.N. Shlyannikov and I. S. Ishtyryakov, T. A. F. Mec., 103: 102313 (2019); https://doi.org/10.1016/j.tafmec.2019.102313
  28. M. A. Miner, J. of Applied Mechanics, 12, No.3 (1945) 159-164.
  29. S.P. Zhu, H.Z. Huang, and Y.F. Li, Int. Jour. of Dam. Mec., 21, No.7: 1076 (2012); https://doi.org/10.1177/1056789511432789
  30. B. Salehnasab, S. Hooshmand, and A. M. Hedayat, Failure analysis of second row compressor blades, Conference: The Bi-Annual International Conference on Experimental Solid Mechanics and Dynamics (School of Mechanical Engineering, Iran University of Science and Technology, 2014); https://www.researchgate.net/publication/259229006_Failure_analysis_of_second_row_compressor_blades
  31. P. Rygiel, W. Obrocki, and J. Sieniawski, Adv. in Man. Sci. and Tech., 41, No. 1: 43 (2017); https://doi.org/10.2478/amst-2017-0004
  32. P. Govind, P. Rohit, and K. Anil, J. of Emer. Tech. Inn. Res., 3, No. 8: 18 (2016); http://www.jetir.org/papers/JETIR1608006.pdf
  33. I. Shatskyi, L. Ropyak, and A. Velychkovych, Eng. Solid Mechan., 8, No. 4: 301 (2020); https://doi.org/10.5267/j.esm.2020.4.002
  34. A.S.Velichkovich and T.M. Dalyak, Chem. Petrol. Eng., 51: 188 (2015); https://doi.org/10.1007/s10556-015-0022-3
  35. A. Velychkovych, I. Petryk, and L. Ropyak, Shock and Vibration, Article ID 3292713 (2020); https://doi.org/10.1155/2020/3292713
  36. M.S. Leong, J. of Sys. Des. Dyn., 2, No.1: 1 (2008); https://doi.org/10.1299/jsdd.2.24
  37. A. Kermanpur, H. Sepehri Amin, S. Ziaei-Rad, N. Nourbakhshnia, and M. Mosaddeghfar, Eng. Fail. Anal., 15, No. 8: 52 (2008); 10.1016/j.engfailanal.2007.11.018
  38. T.M. Radchenko, V.A. Tatarenko, H. Zapolsky, and D. Blavette, Journal of Alloys and Compounds, 452, No. 1: 122 (2008); https://doi.org/10.1016/j.jallcom.2006.12.149
  39. L. Witek, Eng. Fail. Anal., 18, No. 4: 1223 (2011); 10.1016/j.engfailanal.2011.03.003
  40. P. Matheron, G. Aiello, C. Caes, P. Lamagnere, A. Martin, and M. Sauzay, Nucl. Eng. Des., 284: 207 (2015); https://doi.org/10.1016/j.nucengdes.2014.12.018
  41. H.R. Tahmasbi and G.R. Fayaz, Optik – Int. J. for Li. El. Opt., 126, No. 22: 3382 (2015); https://doi.org/10.1016/j.ijleo.2015.07.002
  42. H.-J. Kwon and D. Lee, Eng. Fail. Anal., 124 (2021); https://doi.org/10.1016/j.engfailanal.2021.105386
  43. M. Sujata and S. K. Bhaumik, J. of Fail. Anal. Prev., 15: 45 (2015); https://doi.org/10.1007/s11668-015-9961-4
  44. E. Feulvarch, R. Lacroix, and H. Deschanels, Comp. Meth. in App. Mech. Eng., 361, No. 1 (2020); https://doi.org/10.1016/j.cma.2019.112805
  45. I.P. Shatskii, Mater. Sci., 25, No. 2, 160 (1989); https://doi.org/10.1007/BF00780501
  46. I.P. Shats’kyi and V.V. Perepichka, Materials Science, 40, No. 2, 240 (2004); https://doi.org/10.1007/s11003-005-0009-x
  47. I.P. Shats’kyi, Mater. Sci., 41, No. 2: 186 (2005); https://doi.org/10.1007/s11003-005-0149-z
  48. B. Pan, K.M. Qian, H.M. Xie, and A. Asundi, Meas. Sci. Technol., 20, No. 6: 062001 (2009).
  49. Yu.V. Mol’kov, Otsiniuvannia Opirnosti Ruinuvanniu Yemnostei pid Tyskom iz Vykorystanniam Enerhetychnoho Pidkhodu [Evaluation of Pressure Vessels Fracture Resistance Using Energy Approach], Ph.D. dissertation, Karpenko Physico-mechanical institute of the NAS of Ukraine, Lviv, Ukraine, 2014 (in Ukrainian).
  50. T.M. Lenkovs'kyi, Yu.V. Mol’kov, M.М. Student, Kh.R. Zadorozhna, and Yu.Yu. Varyvoda, Mater. Sci., 55, No. 2-3:396 (2019); https://doi.org/10.1007/s11003-019-00316-w
  51. Ya.L. Ivanyts’kyi, Yu.V. Mol’kov, P.S. Kun, T.M. Lenkovs’kyi, and M. Wójtowicz, Mater. Sci., 50, No. 4: 488 (2015; https://doi.org/10.1007/s11003-015-9746-7
  52. Yu. Du, Yu.V. Mol’kov, T.M. Lenkovs’kyi, and R.A. Koval’chuk, Mater. Sci., 53, No.1: 86 (2017); https://doi.org/10.1007/s11003-017-0047-1
  53. Ya.L. Ivanyts’kyi, P.S. Kun, T.М. Lenkovs’kyi, Yu.V. Mol’kov, and S.Т. Shtayura, Mater. Sci., 53, No. 6: 849 (2018). https://doi.org/10.1007/s11003-018-0144-9
  54. Z.A. Duriagina, Stainless Steels and Alloys (London: IntechOpen, 2019).
  55. T.M. Radchenko and V.A. Tatarenko, Defect and Diffusion Forum, 273–276: 525 (2008); https://doi.org/10.4028/www.scientific.net/ddf.273-276.525
  56. V.A. Tatarenko, S.M. Bokoch, V.M. Nadutov, T.M. Radchenko, and Y.B. Park, Defect and Diffusion Forum, 280–281: 29 (2008); https://doi.org/10.4028/www.scientific.net/DDF.280-281.29
  57. T.M. Radchenko, O.S. Gatsenko, V.V. Lizunov, and V.A. Tatarenko, Progress in Physics of Metals, 21, No. 4: 580 (2020); https://doi.org/10.15407/ufm.21.04.580
  58. A. Logunov, S. Zavodov, and D. Danilov, Mat. Tod.: Proceedings., 11, No. 1: 459 (2019); https://doi.org/10.1016/j.matpr.2019.01.013
  59. E.N. Kablov, I.L. Svetlov, and N.V. Petrushin, Nikelevyye Zharoprochnyye Splavy Dlya Lit'ya Lopatok s Napravlennoy i Monokristallicheskoy Strukturoy (Chast' 1) [Nickel Heat-Resistant Alloys for Casting Blades with Directional and Single-Crystal Structure (Part 1)] (Materialovedenie, No. 4: 32) (1997) (in Russian).
  60. V.A. Tatarenko and T.M. Radchenko, Intermetallics, 11, Nos. 11–12: 1319 (2003); https://doi.org/10.1016/S0966-9795(03)00174-2
  61. Z.A. Duryagina, Physics and Chemistry of the Surface, Lviv Polytechnic National University, Lviv, 2009, p. 208 (in Ukrainian).
  62. Y.-J. Yang, L.Yang, H.-K. Wang, and S.-P. Zhu, Inter. J. Turbo Jet Eng., 33, No. 4: 367 (2015); https://doi.org/10.1515/tjj-2015-0043
  63. Z.A. Duriagina, R.O. Tkachenko, A.M. Trostianchyn, I.A. Lemishka, A.M. Kovalchuk, V.V. Kulyk, and T.M Kovbasyuk, J. Achievement in Mater. and Manuf. Eng., 87, No. 1: 25 (2018); https://doi.org/10.5604/01.3001.0012.0736
  64. T.L. Tepla, I.V. Izonin, Z.A. Duriagina, R.O. Tkachenko, A.M. Trostianchyn, I.A. Lemishka, V.V. Kulyk, and T.M. Kovbasyuk, Arch. Mater. Sci. Eng., 1, No. 93: 32 (2018); https://doi.org/10.5604/01.3001.0012.6944
  65. T.Yonezawa, Comp. Nuc. Mater. (Sec. Ed.), 7: 319 (2020); https://doi.org/10.1016/B978-0-12-803581-8.00676-7
  66. V.N. Bugaev, A.A. Smirnov, and V.A. Tatarenko, Int. J. Hydrogen Energy, 13, Iss. 10: 605 (1988); https://doi.org/10.1016/0360-3199(88)90009-2
  67. S.H. Kim, J.-H. Cha, and C.Jang, Cor. Sci., 174 (2020); https://doi.org/10.1016/j.corsci.2020.108843
  68. E.N. Kabolov, A.V. Logunov, and V.V. Sidorov, Osobennosti Legirovaniya I Termoobrabotki Litykh Zharoprochnykh Nikelevykh Splavov (Chast’ 1) [Features Of Alloying And Heat Treatment Of Cast Heat-Resistant Nickel Alloys (Part 1)] (Materialovedenie, No. 4: 32 (2001) (in Russian)
  69. I.M. Spiridonova, O.V. Sukhova, and A.P. Vashchenko, Metallofiz. Noveishie Tekhnol., 21, No. 2: 122 (1999) (in Russian).
  70. J. Yan, Y. Gu, F. Sun, Y. Xu, Y. Yuan, J. Lu, Z. Yang, and Y. Dang, Mater. Sci. and Eng.: A, 675: 289 (2016); https://doi.org/10.1016/j.msea.2016.08.085
  71. О.V. Sukhova and K.V. Ustinоvа, Funct. Mater., 26, No. 3: 495 (2019); https://doi.org/10.15407/fm26.03.495
  72. P. Song, M. Liu, X. Jiang, Y. Feng, J. Wu, G. Zhang, D.Wang, J.Dong, X.-Q. Chen, and L.Lou, Mater. & Des., 197, No. 1 (2021); https://doi.org/10.1016/j.matdes.2020.109197
  73. A.A. Glotka and S. V. Gaiduk, J.of App. Spect., 87, No. 21: 812 (2020); https://doi.org/10.1007/s10812-020-01075-2
  74. K.L. Wang, Q.B. Zhang, M.L. Sun, X.G. Wei, and Y.M. Zhu, App. Surf. Sci., 174, No. 3-4: 191 (2001); https://doi.org/10.1016/S0169-4332(01)00017-4
  75. I. Grammenos and P.T sakiropoulos, Intermetallics, 19, No. 10: 1612 (2011); https://doi.org/10.1016/j.intermet.2011.06.008
  76. Y.-J. Wang and C.-Y. Wang, Scr. Mater., 61, No. 2: 197 (2009); https://doi.org/10.1016/j.scriptamat.2009.03.042
  77. V.G. Efremenko, Yu.G. Chabak, K. Shimizu, A.G. Lekatou, V.I. Zurnadzhy, A.E. Karantzalis, H. Halfa, V.A. Mazur, and B.V. Efremenko, Mater. Des., 126, 278–290 (2017), https://doi.org/10.1016/j.matdes.2017.04.022
  78. Q.Wang, G. Cui, and H. Chen, J. Alloys Compd., 868 (2021); https://doi.org/10.1016/j.jallcom.2021.159106
  79. Jeanine T. DeMasi-Marcin and Dinesh K. Gupta, Protective coatings in the gas turbine engine, Surf. Coat. Technol., 68–69: 1 (1994); https://doi.org/10.1016/0257-8972(94)90129-5
  80. I. Gurrappa, Surf. Coat. Technol., 139, No. 2-3: 272 (2001); https://doi.org/10.1016/S0257-8972(00)01156-7
  81. R. Rajendran, Eng. Fail. Anal., 26: 335 (2012); https://doi.org/10.1016/j.engfailanal.2012.07.007
  82. L. S. Saakiyan, A. P. Efremov, L. Ya. Ropyak, and A. V. Gorbatskii, Soviet Materials Science, 23, No. 3: 267 (1987); https://doi.org/10.1007/BF00720884
  83. L. S. Saakiyan, A. P. Efremov, and L Ya. Ropyak, Zashchita Metallov, 25, No. 2: 185 (1989) (in Russian)
  84. Q. An, J. Chen, and Z.Tao, Int. J. Refract. Met. Hard Mater., 86 (2019); https://doi.org/10.1016/j.ijrmhm.2019.105091
  85. M. Aliofkhazraei and N. Ali, Comp. Mat Proc., 7: 49 (2014); https://doi.org/10.1016/B978-0-08-096532-1.00705-6
  86. V. Pidkova, I. Brodnikovska, Z. Duriagina, and V. Petrovskyy, Func. Mater., 22, No. 1: 34 (2015); https://doi.org/10.15407/fm22.01.034
  87. Z.A. Duryagina, S.A. Bespalov, V.Ya. Pidkova, and D.Yu. Polockyj, Metallofiz. Noveishie Tekhnol., 33, Spec. Iss.: 393 (2011).
  88. A.A. Siddiqui and A.K. Dubey, Mater. Today: Proc., 44, No. 1: 1108 (2021); https://doi.org/10.1016/j.matpr.2020.11.186
  89. Z. Duriagina, V. Kulyk, T. Kovbasiuk, B. Vasyliv, and A. Kostryzhev, Metals, 11, No. 3: 1 (2021); https://doi.org/10.3390/met11030434
  90. M.I. Pashechko, V.V. Shyrokov, Z.A. Duryahina, and Kh.B. Vasyliv, Mater. Sci., 39, No. 1: 108 (2003); https://doi.org/10.1023/A:1026134714719
  91. V.V. Shyrokov, K.B. Vasyliv, Z.A. Duryahina, H.V. Laz’ko, and N.B. Rats’ka, Mater. Sci, 45, No. 4: 473 (2009); https://doi.org/10.1007/s11003-010-9204-5
  92. L.Ya. Ropyak, I.P. Shatskyi, and M.V. Makoviichuk, Metallofiz. Noveishie Tekhnol., 41, No.5: 647 (2019); https://doi.org/10.15407/mfint.41.05.0647
  93. Z.A. Duryagina, S.A. Bespalov, A.K. Borysyuk, and V.Ya. Pidkova, Metallofiz. Noveishie Tekhnol., 33, No. 5: 615 (2011).
  94. R.M. Tatsiy, O.Y. Pazen, S.Y. Vovk, L.Y. Ropyak, and T.O. Pryhorovska, J. of Serb. Soc. Comp. Mech., 13, No. 2: 36 (2019); https://doi.org/10.24874/JSSCM.2019.13.02.04
  95. V.M. Posuvailo, V.V. Kulyk, Z.A. Duriagina, I.V. Koval’chuck, M.M. Student, and B.D. Vasyliv, Archives of Mater. Sci. and Eng., 105, No.2: 49 (2020); https://doi.org/10.5604/01.3001.0014.5761
  96. L.Ya. Ropyak, I.P. Shatskyi, and M.V. Makoviichuk, Metallofiz. Noveishie Tekhnol., 39, No. 4: 517 (2017); https://doi.org/10.15407/mfint.39.04.0517
  97. Z.A. Duryahina, T.M. Kovbasyuk, S.A. Bespalov, and V.Y. Pidkova, Mater. Sci., 52, No. 1: 50 (2016); https://doi.org/10.1007/s11003-016-9925-1
  98. I.P. Shatskyi, L.Ya. Ropyak, and M.V. Makoviichuk, Strength of Materials, 48, No. 5: 726 (2016); https://doi.org/10.1007/s11223-016-9817-5
  99. I.P. Shatskyi, V.V. Perepichka, and L.Ya. Ropyak, Metallofizika i Noveishie Tekhnologii, 42, No. 1: 69 (2020); https://doi.org/10.15407/mfint.42.01.0069
  100. O. Ivanov, P. Prysyazhnyuk, D. Lutsak, O. Matviienkiv, and V. Aulin, Management Systems in Production Engineering, 28, No. 3: 178 (2020); https://doi.org/10.2478/mspe-2020-0026
  101. M. Hetmanczyk, L. Swadzba, and B. Mendala, J. of Ach. Mater. Manuf. Engin., 24, No.1: 372 (2007); https://www.researchgate.net/publication/40804836_Advanced_materials_and_protective_coatings_in_aero-engines_application
  102. X. Cao, Development Of New Thermal Barrier Coating Material For Gas Turbines, Berichte des forschungszentrums julich (PhD thesis ISSN 0944-2942) (Denmark: 2004).
  103. S. Paul, Pore Architecture In Ceramic Thermal Barrier Coatings (PhD thesis) (UK: Cambridge University: 2007).
  104. S. Tsipas, Thermophysical Properties of Plasma Sprayed Thermal Barrier Coatings (PhD thesis) (UK: Cambridge University: 2005).
  105. R. Rajendran, V. Raja, R. Sivakumar, and R. Srinivasa, Surf. Coat. Technol., 73, No.3: 198 (1995); https://doi.org/10.1016/0257-8972(94)02368-9
  106. Y. Cao, X. Ning, and Q. Wang, Surf. Coat. Technol., 409 (2021); https://doi.org/10.1016/j.surfcoat.2021.126842
  107. O.M. Romaniv and B.D. Vasyliv, Mater. Sci., 34, No. 2: 149 (1998); https://doi.org/10.1007/BF02355530
  108. O.M. Romaniv and B.D. Vasyliv, Mater. Sci., 31, No. 6: 750 (2001); https://doi.org/10.1007/BF00558596
  109. A.D. Ivasyshyn and B.D. Vasyliv, Mater. Sci., 37, No. 6: 1002 (2001); https://doi.org/10.1023/A:1015669913601
  110. O.M. Romaniv, I.V. Zalite, V.M Simin’kovych, O.N. Tkach, and B.D. Vasyliv, Mater. Sci., 31, No. 5: 588 (1996); https://doi.org/10.1007/BF00558793
  111. Yu.G. Chabak, V.I. Fedun, T.V. Pastukhova, V.I. Zurnadzhi, V.G. Efremenko, and S.P. Berezhnyj, Prob. of Atomic Sceince and Technology, 110, No. 4: 97 (2017) ; https://vant.kipt.kharkov.ua/ARTICLE/VANT_2017_4/article_2017_4_97.pdf
  112. W. Fan, Y. Bai, Y.F. Liu, Y.X. Kang, Y. Wang, Z.Z. Wang, and W.Z. Tao, Ceram. Int., 12, No. 5: 15763 (2019); https://doi.org/10.1016/j.ceramint.2019.05.063
  113. O.Z. Student, H.V. Krechkovska, H.M. Nykyforchyn, and O.I. Zvirko, The Operated Steel Degradation Peculiarities Of The Different Elements Of Power Steam Pipelines (14th International Conference on Fracture: 2017), p. 249.
  114. H.V. Krechkovs’ka , Mater. Sci., 51, No. 4: 509 (2016); https://doi.org/10.1007/s11003-016-9869-5
  115. L. Swadzba, B. Formanek, H.M. Gabriel, P. Liberski, and P. Podolski, Surf. Coat. Technol., 62, No. 1-3: 486 (1993); https://doi.org/10.1016/0257-8972(93)90288-Y
  116. K. Bobzin, T. Brogelmann, and C. Kalscheuer, Surf. Coat. Technol, 38 (2020); https://doi.org/10.1016/j.surfcoat.2019.125046
  117. V.G. Efremenko, Yu.G. Chabak, A. Lekatou, A.E. Karantzalis, K. Shimizu, V.I. Fedun, A.Yu. Azarkhov, and A.V. Efremenk, Surf. Coat. Technol., 304 (2020); https://doi.org/10.1016/j.surfcoat.2016.07.016
  118. M.Z.B. Abdullah, A.N.B. Abdullah, M.H.B. Othman, M.A.B. Ahmad, and P. Hussain, Mater. Tod.: Proceed., 16, No. 4: 2067 (2019); https://doi.org/10.1016/j.matpr.2019.06.093
  119. P. Prysyazhnyuk, D. Lutsak, L. Shlapak, V. Aulin, L. Lutsak, L. Borushchak, and T.A. Shihab, Eastern-European Journal of Enterprise Technologies, 6, No. (12-96): 43 (2018); https://doi.org/10.15587/1729-4061.2018.150807
  120. N. G. Shul’zhenko, P. P. Gontarovskii, and I. I. Melezhik, Str. Mater., 40, No. 5: 566 (2008); https://doi.org/10.1007/s11223-008-9069-0
  121. T. М. Lenkovs’kyi, Mater. Sci., 53, No. 2: 200 (2017); https://doi.org/10.1007/s11003-017-0063-1
  122. G. Lesiuk, M. Smolnicki, D. Rozumek, H. Krechkovska, O. Student, J. Correia, R. Mech, and A. De Jesus, Materials, 13, No. 1: 160 (2020); https://doi.org/10.3390/ma13010160
  123. O.P Ostash, V.V. Kulyk, T.M. Lenkovskiy, Z.A. Duriagina, V.V. Vira, and T.L. Tepla, Archives of Mater. Sci. and Eng., 90, No. 2: 49 (2018); https://doi.org/10.5604/01.3001.0012.0662
  124. T.M. Lenkovskiy, V.V. Kulyk, Z.A. Duriagina, R.A. Kovalchuk, V.H. Topilnytskyy, V.V. Vira, and T.L. Tepla, Archives of Mater. Sci. and Eng., 84, No. 1: 34 (2017); https://doi.org/10.5604/01.3001.0010.3029
  125. V.V.Kulyk, T.M. Lenkovs’kyi, and O.P. Ostash, Strength Mater., 49, No. 2: 256 (2017); https://doi.org/10.1007/s11223-017-9865-5
  126. T.M. Lenkovs’kyi, Mater. Sci., 50, No. 3: 340 (2014); https://doi.org/10.1007/s11003-014-9725-4
  127. DSTU 8601:2015. Strength Analyses and Tests, A Method for the Determination of the Characteristics of Cyclic Crack Resistance of Metals under Transverse Shear and at Room Temperature (Valid since 01.01. 2017) (in Ukrainian)
  128. O.P. Datsyshyn and V.V. Panasyuk, Mater. Sci., 52, No. 4: 447 (2017); https://doi.org/10.1007/s11003-017-9977-x
  129. Y.L. Ivanytskyj, T.M. Lenkovskiy, Y.V. Molkov, V.V. Kulyk, and Z.A. Duriagina, Archives of Mater. Sci. and Eng., 82, No. 2: 49 (2016); https://doi.org/10.5604/01.3001.0009.7103
  130. O.P. Datsyshyn, T.M. Lenkovskyi, and A.Yu. Glazov, Mater. Sci, 55, No. 4: 492 (2020); https://doi.org/10.1007/s11003-020-00330-3
  131. T.M. Lenkovskiy, V.V. Kulyk, Z.A. Duriagina, R.A. Kovalchuk, V.G. Topilnytskyy, V.V. Vira, T.L. Tepla, O.V. Bilash, and K.I. Lishchynska, Archives of Mater. Sci. and Eng., 82, No.2: 56 (2017); https://doi.org/10.5604/01.3001.0010.7446
  132. T.М. Lenkovs’kyi, P.S. Kun’, W. Dudda, and E.V. Kharchenko, Mater. Sci., 54, No. 3: 361 (2018); https://doi.org/10.1007/s11003-018-0193-0