Features of Strain Hardening of Heterogeneous Aluminium Alloys to Enhance the Fatigue Durability

O. E. Zasimchuk$^1$, M. G. Chausov$^2$, B. M. Mordyuk$^1$, O. I. Baskova$^1$, V. I. Zasimchuk$^1$, T. V. Turchak$^1$, and O. S. Gatsenko$^1$

$^1$G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$National University of Life and Environmental Sciences of Ukraine, 15 Heroiv Oborony Str., UA-03041 Kyiv, Ukraine

Received 20.07.2021; final version — 08.11.2021 Download PDF logo PDF

Heterogeneous aluminium alloys are in demand in the aviation industry, where the ability of the material to withstand fatigue loads is important. The topic of the article is the search for the most experimentally available methods of deformation effect on such materials in order to increase fatigue life. Unfortunately, previous studies were ambiguous due to the large number of factors influencing the fatigue of metal materials under the same type of mechanical load; so, we chose a dynamic load with pulse loading. It turned out that for heterogeneous 2024-T351 and D16CzATW alloys, shock–vibration loading (SVL) applied during static straining prolongs their further fatigue life at a certain magnitude of the deformation during the action of the pulse. For example, for the 2024-T351 alloy at the maximum stress of alternating load σmax = 400 MPa, the longest fatigue life should be expected at deformations εimp = 2–4%; and at the maximum stress of alternating (fatigue) loading of 440 MPa, it is at εimp = 3–5%. In comparison with the average values of fatigue life of the D16CzAT alloy in the initial state, fatigue life after processing increases at σmax = 340 MPa alloy by 11.6%, at a stress of σmax = 370 MPa, by 18.4%, at a stress of σmax = 400 MPa, by 21.2%. The positive effect of long-term exposure after treatment on fatigue life was also noted. The influence of the strengthening phases, such as the nanosize Θ-Al2Cu and S-CuAl2Mg particles, on the separate stages of pre-treatment of alloys and the effects of their quantities on total fatigue durability is investigated by statistical methods of transmission electron microscopy. The great attention is paid to the mechanism of formation of fatigue fracture embryos in the near-surface areas of the samples, for which analytical calculations and the experimental method of ultrasonic impact treatment (UIT) are used. It is shown that the use of UIT after SVL does not affect the fatigue life of the 2024-T351 alloy at a fatigue load frequency of 15 Hz, while the single UIT increases fatigue life of the alloy. It is concluded that the use of complex deformation loads accelerates the relaxation processes, which shorten fatigue life.

Keywords: fatigue life, plastic deformation, pulse loading, transmission electron microscopy, heterogeneous aluminium alloys.

DOI: https://doi.org/10.15407/ufm.22.04.619

Citation: O. E. Zasimchuk, M. G. Chausov, B. M. Mordyuk, O. I. Baskova, V. I. Zasimchuk, T. V. Turchak, and O. S. Gatsenko, Features of Strain Hardening of Heterogeneous Aluminium Alloys to Enhance the Fatigue Durability, Prog. Phys. Met., 22, No. 4: 619–642 (2021)

  1. C. Froustey, J.L. Lataillade, Int. J. Fatigue, 30, No. 5: 908 (2008); https://doi.org/10.1016/j.ijfatigue.2007.06.011
  2. P. Ohnistova, M. Pisko, M. Petrenec, J. Dluhos, J. Hornikova, P. Sanders, Materials, 12, No. 21: 3605 (2019); https://doi.org/10.3390/ma12213605
  3. M.S. Rana, T. Yamanaka, C. Makabe, J. Solid Mech. Mater. Eng., 3, No. 7: 968 (2009); https://doi.org/10.1299/jmmp.3.968
  4. Md.Sh. Ferdous, C. Makabe, M.S. Rana, T. Miyazaki, Eng. Fail. Anal., 18, No. 1: 968 (2011); https://doi.org/10.1016/j.engfailanal.2010.08.007
  5. E. Chabouk, M. Shariati, M. Kadkhodayan, J. Mater. Eng. Perform., 30, No. 4: 2864 (2021); https://doi.org/10.1007/s11665-021-05613-7
  6. P. Xia, Z. Liu, S. Bai, J. Mater. Eng. Perform. 30: 2669 (2021) https://doi.org/10.1007/s11665-021-05626-2
  7. T. Soiichiro, S. Moe, F. Riccardo, MATEC Web of Conferences, 165,14012 (2018); https://doi.org/10.1051/matecconf/201816514012
  8. E. Janteccchia, A.M.S. Hamonda, F. Masharavati, E. Zalnechad, M. Cabibbo, M. El Mehtedi and S. Spigarelli, Adv. Mater. Sci. Eng., 2016: 9573524; https://doi.org/10.1155/2016/9573524
  9. Q. Zhang, Y. Zhu, X. Gao, Y. Wu, C. Hutchinson, Nat. Commun., 11: 19071 (2020); https://doi.org/10.1038/s41467-020-19071-7
  10. N.R. Gates, A. Fatemi, Procedia Eng., 101:159 (2015); https://doi.org/10.1016/j.proeng.2015.02.021
  11. W.P. Mason, Journ. Acoust. Soc. Am., 28, No. 6: 1207; https://doi.org/10.1121/1.1908595
  12. E. Willertz, Int. Met. Rev., 25, No. 1:65 (1980); https://doi.org/10.1179/imtr.1980.25.1.65
  13. G. Schoeck, Int. J. Mater. Res., 73, No. 9: 576 (1982); https://doi.org/10.1515/ijmr-1982-730907
  14. H. Mayer, Int. J. Fatigue, 28, No. 11: 1446 (2006); https://doi.org/10.1016/j.ijfatigue.2005.05.020
  15. B. Mordyuk, G. Prokopenko, J. Sound Vib, 308, No. 3: 855 (2007); https://doi.org/10.1016/j.jsv.2007.03.054
  16. B. Mordyuk, G. Prokopenko, Y. Milman, M. Iefimov, A. Sameljuk, Mater. Sci. Eng. A., 563: 138, (2013). https://doi.org/10.1016/j.msea.2012.11.061
  17. A. Berg-Pollack, F.- J. Voellmecke, C.M. Sonsino, Int. J. Fatigue, 33, No. 4: 513 (2011); https://doi.org/10.1016/j.ijfatigue.2010.09.017
  18. L. Wagner, Mater. Sci. Eng. A, 263, No. 2: 210 (1999) https://doi.org/10.1016/S0921-5093(98)01168-X
  19. E. Zasimchuk, L. Markashova, A. Baskova, T. Turchak, N. Chausov, V. Hut-saylyuk, V. Berezin, J. Mater. Eng. Perform., 22: 3421 (2013); https://doi.org/10.1007/s11665-013-0630-z.
  20. E. Zasimchuk, T. Turchak, A. Baskova, N. Chausov, V. Hutsaylyuk, J. Mater. Eng. Perform., 26, No.3: 1293 (2017); https://doi.org/10.1007/s11665-017-2564-3.
  21. E. Zasimchuk, O. Baskova, O. Gatsenko, T. Turchak, J. Mater. Eng. Perform., 27, No. 8: 4183 (2018); https://doi.org/10.1007/s11665-018-3515-3
  22. E.E. Zasimchuk, V.I. Zasimchuk, T.V. Turchak, Usp. Fiz. Met., 14 , No. 3: 275 (2013); https://doi.org/10.15407/ufm.14.03.275 (in Russian).
  23. E. Zasimchuk, T. Turchak , N. Chausov, Results in Materials , 6: 100090 (2020); https://doi.org/10.1016/j.rinma.2020.100090
  24. M. Chausov, E. Zasimchuk, P. Maruschak, O. Khyzhum, A. Pylypenko, O. Prentkovskis, J. Brezinova, Iran. J. Sci. Technol. Trans. Mech. Eng. (2021); https://doi.org/10.1007/s40997-021-00443-3
  25. M. Chausov, J. Brezinova, E. Zasimchuk, P. Maruschak, O. Khyzhum, A. Pylypenko, P. Bazarnik, J. Brezina, J. Mater. Eng. Perform., 30: 6235 (2021); https://doi.org/10.1007/s11665-021-05868-0
  26. M.G. Chausov, V.F. Yiroshenko, A.P. Pilipenko, Patent 61760 A GO1N3/08 Ukraine, 15, 11, 2005; https://uapatents.com/4-61760-ustanovka-z-regulovanoyu-zhorstkistyu-navantazhuvalno-sistemi.html
  27. S.S. Hassan, M.N. Hamzah, R.M. Abed, Q. J. Eng. Sci., 10, No. 2: 171,(2017); https://qu.edu.iq/journaleng/index.php/JQES/article/view/198
  28. Hussain J. M. Alalkawi, Aseel A. Alhamdany, Marib R. Abdul Hassan, Al-Nahrain J. Engineering Sciences, 21, No. 1: 141 (2018); http://doi.org/10.29194/NJES21010141
  29. X. Ye, Y. Zhu, D. Zhang, Adv. Mater. Res., 189–193: 897 (2011); https://doi.org/10.4028/www.scientific.net/AMR.189-193.897
  30. G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems (Wiley-Interscience: New York: 1977).
  31. P. Glansdorff and I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley: New York: 1971).
  32. H. Haken, Synergetics (Springer-Verlag Berlin Heidelberg: 1983); https://doi.org/10.1007/978-3-662-10184-1
  33. V. Ebeling, The Formation of Structures in Irreversible Processes (Mir: Moscow: 1979) (in Russian).
  34. V. Harchenko, I. Lisenko, A. Schokotova, A. Bashtova, D. Harchenko, E. Ovcharenko, S.Kohan, X. Wu, B. Wen, L. Wu, W. Zhang, Prog. Phys. Met , 18, No. 4: 295 (2017); https://doi.org/10.15407/ufm.18.04.295
  35. O. Oliinyk, V. Tatarenko, Dopov. Nac. Akad. Nauk Ukr., 3: 55 (2019); https://doi.org/10.15407/dopovidi2019.03.055
  36. T.M. Radchenko, O.S. Gatsenko, V.V. Lizunov, V.A. Tatarenko, Prog. Phys. Met., 21, No. 4: 580 (2020); https://doi.org/10.15407/ufm.21.04.580
  37. T.M. Radchenko, V.A. Tatarenko, H. Zapolsky, D. Blavette, J. Alloys and Compounds, 452, No. 1: 122 (2008); https://doi.org/10.1016/j.jallcom.2006.12.149