Microstructure Evolution of the Carbon Steels during Surface Severe Plastic Deformation

M. O. Vasylyev$^1$, B. M. Mordyuk$^{2,1}$, S. M. Voloshko$^2$, and D. A. Lesyk$^2$

$^1$G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Prosp. Peremohy, UA-03056 Kyiv, Ukraine

Received 19.06.2021; final version — 11.11.2021 Download PDF logo PDF

Abstract
The review is devoted to the state-of-the-art views on the microstructure evolution in structural and tool carbon steels during the surface severe plastic deformation (SPD). The main focus is on the effects of the nanocrystallization in the near-surface area of the low-carbon steel (C 0.05–0.2%), medium-carbon steel (C 0.35–0.65%), and high-carbon steel (C 1.0–1.5%). It is reviewed the following advanced surface SPD methods for the metal surfaces in recent years: an ultrasonic impact peening (UIP), high-frequency impact peening (HFIP), air blast shot peening (ABSP), surface mechanical attrition treatment (SMAT), and laser shock peening (LSP). Microstructure evolution before and after SPD is studied by an optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The effects of the SPD parameters on the nanocrystalline modification of such main phase components of the carbon steels as ferrite, pearlite and cementite are analysed. The atomic mechanism of the nanocrystallization is presented. The strain-hardening effect induced by SPD is demonstrated by the data of the near-surface microhardness profiles.

Keywords: carbon steels, mechanical surface treatments, severe plastic deformation, microstructure, nanocrystallization, microhardness.

DOI: https://doi.org/10.15407/ufm.22.04.562

Citation: M. O. Vasylyev, B. M. Mordyuk, S. M. Voloshko, and D. A. Lesyk, Microstructure Evolution of the Carbon Steels during Surface Severe Plastic Deformation, Progress in Physics of Metals, 22, No. 4: 562–618 (2021)


References  
  1. D. Llewellyn, R. Hudd, Steels: Metallurgy and Applications. Elsevier: Butterworth-Heinemann: 1998.
  2. T Islam, H. M.M.A. Rashed, Classification and Application of Plain Carbon Steels, Reference Module in Mater. Sci. Mater. Eng., Elsevier, 2019, https://doi.org/10.1016/B978-0-12-803581-8.10268-1
  3. A. Rosochowski, L. Olejnik, Severe plastic deformation for grain refinement and enhancement of properties (Eds. J. Lin, D. Balint, and M. Pietrzyk), Woodhead Publishing Series in Metals and Surface Engineering, Microstructure Evolution in Metal Forming Processes, Woodhead Publishing, 2012, pp. 114–141, https://doi.org/10.1533/9780857096340.1.114.
  4. R.Z. Valiev and I.V. Aleksandrov, Nanostructured Mater., 12: 35 (1999); https://doi.org/10.1016/S0965-9773(99)00061-6
  5. C.E. Carlton and P.J. Ferreira, Acta Mater., 55: 3749 (2007); https://doi.org/10.1016/j.actamat.2007.02.021
  6. M.A. Vasylyev, G.I. Prokopenko, and V.S. Filatova, Usp. Fiz. Met., 5: 345 (2004) (in Ukrainian); https://doi.org/10.15407/ufm.05.03.345
  7. V.Е. Panin, А.V. Panin, Physical Mezomechanics, 8: 7 (2005) (in Russian); https://doi.org/10.24411/1683-805X-2005-00092
  8. V.P. Аlеkhin, О.V. Аlekhin, Deform. & Fracture Mater. No. 9: 32 (2008) (in Russian).
  9. M.O. Vasylyev, V.K. Nosenko, I.V. Zagorulko, and S.M. Voloshko, Prog. Phys. Met., 21: 319 (2020); https://doi.org/10.15407/ufm.21.03.319
  10. C.S.Montross, T.Wei, L.Ye, G.Clark, Y.-W. Mai, Int. J. Fatigue 24: 1021 (2002); https://doi.org/10.1016/S0142-1123(02)00022-1
  11. T.O. Olugbade, J. Lu, Nano Mater. Sci. 2:3 (2020); 10.1016/j.nanoms.2020.04.002
  12. V.A. Klimenov, O.N. Nekhoroshkov, P.V. Uvarkin, Zh.G. Kovalevskaya, and Yu.F. Ivanov, Phys. Mesomechanics, 9: 173 (2006)) (in Russian); https://doi.org/10.24411/1683-805X-2006-00074
  13. Ya.N. Otteniy and A.M. Lavrentiev, Izvestiya VSTU, 9: 50 (2017) (in Russian).
  14. C.-M. Suha, G.-H. Song, M.-S. Suh, and Y.-S. Pyoun, Mater. Sci. Eng. A, 443: 101 (2007); https://doi.org/10.1016/j.msea.2006.08.066
  15. W. Ting, W. Dongpo, L. Gang, G. Baoming, and S. Ningxi, Appl. Surf. Sci., 255: 1824 (2008); https://doi.org/10.1016/j.apsusc.2008.06.034
  16. Z. Ren, R. Chiang, H. Qin, V.K. Vasudevan, G.L. Doll, Y. Dong, and C. Ye, Wear, 458-459: 203398 (2020); https://doi.org/10.1016/j.wear.2020.203398
  17. X.J. Caoa, Y.S. Pyounb, and R. Murakamia, Appl. Surf. Sci., 256: 6297 (2010); https://doi.org/10.1016/j.apsusc.2010.04.007
  18. A.V. Panin, O.B. Perevalova, E.A. Sinyakova,Y.I. Pochivalov, M.V. Leontyeva-Smirnova, V.M. Chernov, V.E. Panin, Fiz. Khim. Obrab. Mater. 4: 83 (2011) (in Russian).
  19. Zh. G. Kovalevskaya, Yu. F. Ivanov, O. B. Perevalova, V. A. Klimenov, and P. V. Uvarkin, Phys. Met. Metallogr., 114 (1): 41 (2013); https://doi.org/10.1134/S0031918X12110105
  20. B. Wu, J. Zhang, L. Zhang, Y.-S. Pyoun, and R. Murakami, Appl. Surf. Sci., 321: 318 (2014); https://doi.org/10.1016/j.apsusc.2014.09.068
  21. W. Zhao, D. Liu, R. Chiang, H. Qin, X.H. Zhang, H. Zhang, J. Liu, Z. Ren, R. Zhang, G.L. Doll, V.K. Vasudevan, Y. Dong, and C. Ye, J. Mater. Process. Technol., 285: 116767 (2020); https://doi.org/10.1016/j.jmatprotec.2020.116767
  22. B.N. Mordyuk, G.I. Prokopenko, P.Yu. Volosevych, L.E. Matokhnyuk, A.V. Byalonovich, and T.V. Popova, Mater. Sci. Eng. A, 659: 119 (2016); https://doi.org/10.1016/j.msea.2016.02.036
  23. D.A. Lesyk, S. Martinez, B.N.Mordyuk, V.V. Dzhemelinskyi, А. Lamikiz, G.I. Prokopenko, Yu.V. Milman, and K.E. Grinkevych, Surf. Coat. Technol., 328: 344 (2017); http://dx.doi.org/10.1016/j.surfcoat.2017.08.045
  24. D.A. Lesyk, B.N. Mordyuk, S. Martinez, M.O. Iefimov, V.V. Dzhemelinskyi, and А. Lamikiz, Surf. Coat. Technol., 401: 126275 (2020); https://doi.org/10.1016/j.surfcoat.2020.126275
  25. G. Liu, S.C. Wang, X.F. Lou, J. Lu, and K. Lu, Scripta Mater., 44: 1791 (2001); https://doi.org/10.1016/S1359-6462(01)00738-2
  26. M. Umemoto, Y. Todaka, and K. Tsuchiya, Mater. Trans., 44(7): 1488 (2003); https://doi.org/10.2320/matertrans.44.1488
  27. Y.I. Babei, V.N. Maksimovich, Z.D. Maksimishin, L. V. Khomlyak, I. V. Gurei, T. N. Kalichak and E. N. Novosad, Mater Sci 21: 476 (1985); https://doi.org/10.1007/BF01147599
  28. S. Han, S.N. Melkote, M.S. Haluska, T.R. Watkins, Mater. Sci. Eng. A 488: 195 (2008); https://doi.org/10.1016/j.msea.2007.11.081
  29. H. Nykyforchyn, V. Kyryliv, O. Maksymiv, Z. Slobodyan and O. Tsyrulnyk, Nanoscale Res. Lett. 11, 51 (2016); https://doi.org/10.1186/s11671-016-1266-3
  30. V.G. Efremenko, Yu.G. Chabak, K. Shimizu, A.G. Lekatou, V.I. Zurnadzhy, A.E. Karantzalis, H. Halfa, V.A. Mazur and B.V. Efremenko, Mater. Design 126: 278 (2017); https://doi.org/10.1016/j.matdes.2017.04.022
  31. L. Zhou, G. Liu, Z. Han, and K. Lu, Scripta Mater., 58: 445 (2008); https://doi.org/10.1016/j.scriptamat.2007.10.034
  32. L. Zhou, G. Liu, X.L. Ma, and K. Lu, Acta Mater., 56: 78 (2008); https://doi.org/10.1016/j.actamat.2007.09.003
  33. V.N. Gridnev and V.G. Gavriljuk, Phys. Met., 4: 74 (1982) (in Russian).
  34. V.G. Gavriljuk, Mater. Sci. Eng. A, 345: 81 (2003); https://doi.org/10.1016/S0921-5093(02)00358-1
  35. D. Li, H.N. Chen, and H. Xu, Appl. Surf. Sci., 255: 3811 (2009); https://doi.org/10.1016/j.apsusc.2008.10.037
  36. L. Zhou, G. Liu, X.L. Ma, and K. Lu, Acta Mater. 56: 78 (2008); https://doi.org/10.1016/j.actamat.2007.09.003
  37. W.B. Lee, K.T. Cho, K.H. Kim, K.I. Moon, and Y. Lee, Mater. Sci. Eng. A, 527: 5852 (2010); https://doi.org/10.1016/j.msea.2010.05.083
  38. E. Maleki, O. Unal, and K.R. Kashyzadeh, Surf. Coat. Technol., 344: 62 (2018); https://doi.org/10.1016/j.surfcoat.2018.02.081
  39. S. Singh, K.K. Pandey, S.K. Bose, and A.K. Keshri, Surf. Coat. Technol., 396: 125964 (2020); https://doi.org/10.1016/j.surfcoat.2020.125964
  40. E. Maleki, O. Unal, K.R. Kashyzadeh, S. Bagherifard, and M. Guagliano, Appl. Surf. Sci. Adv., 4: 100071 (2021); https://doi.org/10.1016/j.apsadv.2021.100071
  41. L. Petan, J. Grum, J.A. Porro, J.L. Ocaña, and R. Šturm, Metals 9: 1217 (2019); https://doi.org/10.3390/met9121271
  42. D.A. Lesyk, H. Soyama, B.N. Mordyuk, V.V. Dzhemelinskyi, S. Martinez, N.I. Khripta, and A. Lamikiz, J. Mater. Eng. Perform., 28: 5307 (2019); https://doi.org/10.1007/s11665-019-04273-y
  43. D. Karthik, S. Kalainathan, and S. Swaroop, Surf. Coat. Technol., 278: 138 (2015); http://dx.doi.org/10.1016/j.surfcoat.2015.08.012
  44. J.Z. Lu, K.Y. Luo, F.Z. Dai, J.W. Zhong, L.Z. Xu, C.J. Yang, L. Zhang, Q.W. Wang, J.S. Zhong, D.K. Yang, and Y.K. Zhang, Mater. Sci. Eng. A, 536: 57 (2012); https://doi.org/10.1016/j.msea.2011.12.053
  45. Y. Hu and Z. Yao, Surf. Coat. Technol., 202: 1417 (2008); https://doi.org/10.1016/j.surfcoat.2007.07.008
  46. C. Ye, S. Suslov, B.J. Kim, E.A. Stach, and G.J. Cheng, Acta Mater., 59: 1014 (2011); http://dx.doi.org/10.1016/j.actamat.2010.10.032
  47. Y. Liao, S. Suslov, C. Ye, and G.J. Cheng, Acta Mater., 60: 4997 (2012); http://dx.doi.org/10.1016/j.actamat.2012.06.024
  48. H. Chen, A. Feng, J. Li, T. Jia, and Y. Liu, J. Mater. Eng. Perform. 28: 2522 (2019); https://doi.org/10.1007/s11665-019-04034-x
  49. S. Prabhakaran, S. Kalainathan, P. Shukla, and V.K. Vasudevan, Pre-prints, 2018040362 (2018); http://dx.doi.org/10.20944/preprints201804.0362.v1
  50. P. Ganesh, R. Sundar, H. Kumar, R. Kaul, K. Ranganathan, P. Hedaoo, G. Raghavendra, S. Anand Kumar, P. Tiwari, D.C. Nagpure, K.S. Bindra, L.M. Kukreja, and S.M. Oak, Mater. Des., 54: 734 (2014); http://dx.doi.org/10.1016/j.matdes.2013.08.104